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SUNMMARY.  In competing risks data, missing failure types (causes) is a very common phenomenon. In this
work. we consider a general missing pattern in which, if a failure type is not observed, one observes a set of
possible types containing the true type, along with the failure time. We first consider maximum likelihood
estimation with missing-at-random assumption via the expectation maximization (EM) algorithm. We then
propose a Nelson-Aalen type estimator for situations when certain information on the conditional probability
of the true type given a set of possible failure types is available from the experimentalists. This is based
on a least-squares type method using the relationships between hazards for different types and hazards for
different combinations of missing types. We conduct a simulation study to investigate the performance of
this method. which indicates that bias may be small, even for high proportion of missing data, for sufficiently
large nunber of observations. The estimates are somewhat sensitive to misspecification of the conditional
probabilities of the true types when the missing proportion is high. We also consider an example from an

animal experiment to illustrate our methodology.
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1. Introduction

There is now considerable interest in the analysis of competing
risks data with missing failure types. Ideally, in the absence
of any such missingness, we have observation on possibly cen-
sored survival time T and the failure type J (exactly one of,
sav. m possible types) on each individual. However, due to in-
adequacy in the diagnostic mechanism, the experimentalists
quite often are uncertain about the true failure type, or are
reluctant to report any specific value of J for some individuals.
The problem of missing failure type arises in carcinogenicity
studies in which, besides deaths (failures) without tumor, we
have deaths with tumor present due to either the tumor itself
or some other causes. Often there is uncertainty in assigning
this cause of death even if the presence of tumor can be as-
certained (Dinse, 1986; Lagakos and Louis, 1988). In extreme
situations, one cannot even ascertain presence or absence of
tumor, because it is totally cannibalized or autolysed (see
Section 5 for details).

Dinse (1982) was among the first to consider this uncer-
tainty in the information on failure types while estimating
survival due to different failure types. Information on failure
type was either completely available (that is, observed as ex-
actly one of m possible types) or not available at all (that is,
unobserved failure type is any one of the m possible types).
This problem with two failure types was considered by many
authors (see Miyakawa; 1984; Racine-Poon and Hoel, 1984;
Lo, 1991; Mukerjee and Wang, 1993). Goetghebeur and Ryan
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(1990, 1995) considered the regression problem using partia
likelihood for two types of failures under the assumption that
the cause-specific hazards for the two failure types are pro-
portional. See also Dewanji (1992) and Lu and Tsiatis (2001).

Missingness in all this work meant that no information on
failure type was available at all. However, while dealing with
more than two failure types, the experimentalists quite of-
ten may be able to narrow down to fewer than m types to
be responsible for failure (as in the motivating example men-
tioned before). In this work, we consider a general missing
pattern so that for each individual failure we observe, in ad-
dition to survival time, a subset g C {1,...,m} to be the
possible types of failure (exactly one of which is the true, but
unobserved, cause of failure). When ¢ is a singleton set, then
the failure type is exactly observed, and when g = {1,...,m},
then the missingness is total. Flehinger, Reiser, and Yashchin
(1998) considered such general pattern of missing failure types
for the purpose of estimating survival due to different types,
with the strong assumption of proportional hazards due to
different types. They also assumed that, for some of the ob-
servations with missing failure type, a second-stage diagnosis
can be performed to pinpoint the type.

In this work, we consider nonparametric estimation of
the different cause-specific hazards, based on data with the
above-mentioned general missing pattern in failure types, and
without the assumption of proportional hazards due to dif-
ferent types. In Section 2, we develop an EM algorithm for
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nonparametric maximum likelihood estimation. Quite often,
given a set of possible causes of failure, experimentalists can
provide some information on the probability that one of them
is responsible. By incorporating this information, we suggest
a counting process approach leading to a Nelson-Aalen type
estimator, presented in Section 3. Section 4 presents a sim-
ulation study to investigate the finite-sample performance of
this estimator. We illustrate the methods in Section 5 with an
example of a carcinogenicity study conducted by the British
Industrial Biological Research Association (Peto et al., 1984).
Section 6 ends with some discussion.

2. Maximum Likelihood Estimation
Using the EM Algorithm

Suppose, for the m competing causes of failure, the corre-
sponding cause-specific hazard rates are given by

B (f)_hmZ—Pr[Te[t t+ AN T =5|T>1, (1)

At10
for j = 1,...,m, where T denotes the failure time and J the
failure type. Suppose the data consists of failure time, but
only partial information about the failure type is available.
For the Ith individual, we observe the failure or censoring time,
the censoring indicator &; (1 for failure and O for censoring)
and, in case of failure, a set g; C {1,...,m} representing the
possible causes of failure. The survival function S(¢} can be
written in terms of the cause-specific hazard rates as S(t) =
C Xp /() z'rn

Let ¢y,.. .ty denote the distinct observed failure or cen-
soring times. Also, let A; denote the set of labels for the in-
dividuals failed or censored at time ¢;, and D, the same for
failed individuals only. Assume that the mechanism of observ-
ing the g¢’s follows the missing-at-random assumption (Little
and Rubin, 1987, p. 90), in the sense that the probability of
observing g (given failure time, failure type, and censoring in-
dicator § = 1) is the same for all the types contained in g.
Formally, for j, 7/ € g with j # §/,

Pr[G:g{T:t,J:j,é:1]:Pr[G:g[T:t,J:j',é:l],

(2)
where G denotes the observed set of possible causes of failure.

Then, assuming independent censoring, the likelihood func-
tion for the observed data is proportional to

II II (Z%‘(M) St o1 - (3)

=1 | lcA; Jjeg;
[.1 15 clear from (3) above that the nonparametric maximum
ikelihood estimates of cause- specific hazard rates have masses
1t most at the observed failure times, s; <--- < sg, say. Then,
3
writing A}, as the discrete cause-specific hazard of type j

n;—d;

RDILY L@
j=1

*1il, number of failures at s;, and n;=
iduals at risk at time s,—

IT (>

leD; \jeg,

= num-
. We use the EM algo-

Biometrics, December 2003

rithm (Dempster, Laird, and Rubin, 1977) to estimate )

as follows.
For the {th individual, let us write

1,
.Ijl = O,

Note that the x;’s are not always observed and, in the cop.
plete data version for the EM algorithm, we assume these ;s
to be observed (that is, the failure type for each 1nd1v1dua lis
available). Then, the complete data likelihood is

if the Ith individual fails due to cause j,

otherwise.

K m m ni=d;
=TI {1 (T )} (-
i=1 leD; \j=1 =1
K m m ni~d;
= H H’\j-fl 1- Z/\ji ; 5)
i=1 \j=1 j=1

where d;; =), p, T, the number of individuals in D; failing

due to cause j (not observed). Note that d; = Z;n=1 dji.
The E-step of the EM algorithm involves taking conditional

expectation of dj’s, or x’s, given the incomplete observed

data and initial estimates of the Xj;’s, denoted by /\ s, This
(©)
7t
(O)/ Ekegl (0) , for j € g;, and 0 otherwise. The conditional
expectation of d]z is, therefore, calculated as d leD; z;?
The M-step maximizes conditional expectatlon of log L (see

5)), involving these cl(-o-)’s7 with respect to A;;’s, to obtain the
3t p j

conditional expectation of x;, denoted by z/, is glven by

improved estimates as /\;11_) = dgoi) /n; for all jand 1.

By Theorem 1 of Dempster et al. (1977), the incomplete
likelihood L; in (4) increases at each EM iteration. Then, by
the continuity of the mappings )\< - )\ (1) the above algo-
rithm converges to a local maxunum Now we prove that Ly
has unique maximum under certain conditions. From (4), we
see that the observed information matrix is a block diagonal
matrix, with the blocks (each being a m x m matrix) cor
responding to the observed failure times. The ith such block
corresponding to the failures at time s, is given by

& log Ly Hj € g} n; —d;
AN T Z 2 m \7
o Jt leD; (Z}\)ﬂ> _Z)\ki

keg; k=1
_3210gL1 :Z 1{j,5 € g1} +___T£ﬁ,——
AN O0Ajr;

Z Aki

for j # j'. For the kh individual, let us define g t0 be the
m X 1 vector with jth element being 1if j € g and 0 otherws
Then, the ith block, as given above, can be written a5

T
ey med

2 m
e <Z)"”> 1 —ZAM

keg; k=1

<o, (Z /\ki>

kegy

where | denotes the m x 1 vector of 1’s. If this matrix h[ 0‘2
(6) can be shown to be positive definite, then the likelibe
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function L; of (1) is concave and hence has a unique maxi-
mum. Then. the END algorithnn deseribed above converges to
this unique maximum,

Clearly. d, has to be at the least m so that it is possible
to estimate all the canse-specitic hazards. Let G be the m x
d; matrix fornied by stacking side-by-side the vectors aq’s, for
L€ D,. Then. we have the following theorem. -

Turortar 1o When d, = n, . the matvie I, in (6) is positive
definite if and only of G, is of full rank (that is, m). When
di <, the matrie s positice definite of and only if (G, 1) is
of full rank (that s, ).

Proof. Let us first consider the case d, = n,. Let p be any
non-mull < 1 vector. Since the denominators in all the
terms of the first sum of (6} are positive, IN)T[,Z) =0 if and
only if (‘)yl'_flf =0for all 7 £ D,. This is equivalent to b'G, =0.
Such a vector § exists if and only if the m rows of G; are
linearly dependent. Hence. the result is proved. When d; <
n;, the above argument goes through with G; replaced by
(Gy: 1),

Note that (¢, is of rank m if and only if the d; column vectors
of G, (that is. the g vectors for I € D,) span R™. Therefore,
if at the last ohserved failure time s, we have dy = ng, then
we need the g, vectors to span R™. When d, < n;, then the g
vectors, along with the vector 1. have to span R™. This is S0
becanse there is a contribution from survival beyond time s;,
allowing identifiability of Z;’;l A; corresponding to the vector
lin R™.

The EM algorithm described earlier allows one to esti-
mate the different cause-specific hazard rates, or the cu-
mulative cause-specific hazards. nonparametrically under the
conditions of Theorem 1 above. However, the condition of
Theorem 1 usually does not hold at each of the observed fail-
ure times and one needs to pool a number of such consecutive
time points for the condition to hold. In practice, one chooses
a partition of the study period so that the condition holds for
the failures within cach interval of the partition (see the ex-
ample in Section 5). One then estimates for each interval the
conditional probability of failure in that interval from a par-
ticular cause given survival up to the beginning of the interval;
it is interpreted as a“cause-specific interval hazard.” Prefixing
this partition nsing prior knowledge has some advantage, since
this results in a broad parametric model with finite number
of discrete hazards. This also facilitates variance estimation
using the formula of Louis (1982). See also the Appendix B of
Dewanji and Kalbfleisch (1986) for a working formula based
on Louis (1982).

3. Nelson-Aalen Type Estimator

Recall that an observation on failure type may be missing in
the sense that when the true cause is 7, it may be hidden with
a number of other possible causes, so that aset g C {1,...,m}
containing j is observed as the set of possible causes. Conse-
quently, let us consider the observation probabilities in (2),
denoting its Lh.s. by p,(t), forallg > jand j =1...,m. If
g does not contain j, this probability is zero, so for a fixed
Js Zg pg;(t) = 1. Assuming that the missing mechanism is in-
dependent of the censoring mechanism, the probability py; (t)
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equals Pr{G = ¢|T = t, J = j], which is the conditional
probability of observing g > j as the set of possible causes,
given failure at time ¢ due to cause j. Noting that X;(t)dt
is the conditional probability of instantaneous failure due to
cause j at time t, given survival up to time ¢t—, it follows that
the hazard rate for failure due to cause j at time ¢ and with
g 2 J observed as the set of possible causes is p,(£)X;(t).
Hence, the hazard rate for failure at time ¢ with ¢ observed
as the set of possible causes is

A = pgi (B (0). )

jeg

As expected, the sum of the hazards given by (7) over all
nonempty subsets g with {1,...,m} is A\.(t) = Z;’ll A (),
since in that sum, the coefficient of X;(t), for a fixed j, is
ngj pgj(t) = 1.

Note that the observation probabilities p;(t)’s are usually
not known and need to be estimated. The missing-at-random
condition (2), though required in Section 2 for maximum like-
lihood estimation, is not needed here. Instead, in order to be
able to estimate these probabilities in practice, we make a
simplifying assumption that pg(¢) is independent of time ¢,
though it may depend on ¢ and j. Thus, the missing pattern
here is allowed to be non-ignorable. We will write p,;(t) as py;
in the subsequent discussion.

Let us consider the (2™ — 1)-dimensional counting pro-
cess {Ngy(t)}g4eq, where G consists of all non-empty subsets
of {1,...,m}. Ny(t) represents the number of failures up to
time t, with g as the observed set of possible causes. Con-
sider the multiplicative intensity model of Aalen (1978), in
which the corresponding intensity process is given by a4 (t) =
A5 (t)Y (t), where Y (t) is the number of individuals at risk at
time t— and A (t) is as in (7). We have, for each nonempty
subset g of {1,...,m},

AN, () = aug(£) dt + dMy(t),

where M, (t)’s are local square integrable martingales. Hence,

we have the Nelson-Aalen estimator of A§(f) = fot X (s)ds
given by (Andersen and Borgan, 1985)

e [0
R0 = [ AR an o, ®

which is also known to converge in distribution to a Gaussian
process with mean A}(t) and a variance function which can
be consistently estimated by

~ b I{Y (s) > 0}
74(t) :/0 ——Wng(S)- . (9

Writing A* as the (2™ — 1) x 1 vector of A (t)’s and A(t)
as the m X 1 vector of the cumulative cause-specific hazards
A;(t)’s, we have, from (7),

A" = PA(), (10)
where P is the (2 — 1) x m matrix of the py’s.
Using (8) and (10), we have
A (8) = PA(E) + £(0), (11)
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where A*(t) is the vector of K; (t)’s and g(t) is a vector process
converging to a vector of Gaussian martingales whose variance
function is consistently estimated by the matrix diag(74(t))
(Andersen and Borgan, 1985). Note that (11) can be seen as
a linear model with the “design matrix” P to be estimated. Let
P denote a consistent estimate of P. Then, using the principle
of weighted least squares and the consistent estimate (9), we
have a consistent estimate of /N\(T) as

At = (PTW (O P) PTW®A' (1), (12)
where W (t) is the inverse of the estimated (2™ — 1) x (2™ —1)
diagonal covariance matrix of A'(t), as given by W{(t) =
diag(1/7,(t}).

Note that, for g 2 j,

) Pr[J =j|G = g|Pr|G = g]
py; =Prj{G=g|J=7]= : - e
Py = PelG=g17=J] ZPr{J=J|G=g]Pr[G=g]

eV

‘Therefore, we can estimate py by py; = fgqjg/zg,aj fo Qg
where f, denotes the number of failures with G observed as
g and g, = Pr[J = j|G = g]. When the experimentalists can
provide information on the g,’s, that can be used to esti-
mate the p,’s as above, and then estimate A(f) using (12).
Note, however, that this estimate cannot be guaranteed to be
nondecreasing, although it is expected to be so for large sam-
ple, because of its consistency proved later. In practice, one
can use “pooling-the-adjacent-violators” algorithm to achieve
monotonicity (See Figure 1).

Note that, if some of the {N,(t)}'s are not observed to
have apy jump during the study, the corresponding A} (t)’s
and 7,(t)’s turn out to be zero; the corresponding rows of P
are also estimated to be zero. The same estimation procedure
goes through with the observed {N,(¢)}’s as long as the result-
ng P is of full column-rank, except that the corresponding
diagonal entries of W(t) cannot be evaluated. We may assign
arbitrary values to them, as these would be multiplied by the
zero elements of PP anyway. Note that the assumption that the
rank of P is m entails much less restriction on the availability
of data than that of Section 2. Even if the rank of P is less
than m, some components of A(t) may be estimable.

When ¢ is small, most of the elements of K;(t) are zero.
The corresponding variance estimates are also zero. This may
create a problem in the computation of g(t) It is a good idea
to assign a large value to all those components of W(t), for
small £. This large value may be replaced by 1/7,() when
7,4(1) assumes a nonzero value. We used the value 50,000 for
the example in the next section: values ranging from 10,000
to H00.000 gave similar results.

For a fixed t. since A*(¢) converges in distribution to a
(2" — T}-variate normal random vector with mean A* (t) and
variance matrix estimated by W~(¢), we have, fromN(IQ) and
the fact that P is a consistent estimate of P, weak conver-
genee of A{t) (by Slutsky’s theorem) to an m-variate normal
rand(/)\m vector with mean A(t) and variance matrix estimated
by (PTW(#)P)"". This pointwise weak convergence has been
used to find confidence limits in Section 5.

Estimators of the cause-specific hazards Ag(t) may be ob-
tained via kernel smoothing as suggested by Ramlau-Hansen
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(1983). We first obtain smooth estimators of Xe(t), for al
g, as

X L (22 die
So=g [ () me

where X;(t) is as defined in (8). In the above expression, tpe
whole observation range is transformed into [0,1], the ke
function K () is a bounded function with support [-1.] and
having integral 1, and h is a positive constant denoting the
window length. The variance of this smooth estimate (13) may
be estimated by

5,(0) = 13 A & (=) I{Yy(fzg Lanfo)

so that the variance matrix of g*(t), the vector of /)\\;(t)"s, is
estimated by the diagonal matrix () = diag(a,(t)).

Using the relation A\*(t) = PA(t) (see [7]), an estimate of
the vector of cause-specific hazards A(t), as in (12), is given
by

Nty = (PSP PTEGN ), (4

where g*(t) has components defined by (13). The variaice
matrix of X(t) is consistently estimated by (ﬁTf'I(t)P)’I,
Asymptotig normality of ;S* (t), subject to some regularity con-
ditions, follows from Ramlau-Hansen (1983); the same for A(t)
follows from (14).

4. A Simulation Study

We conduct a simulation study to investigate the performance
of the estimator (12) with m = 3 and constant cause-specific
hazards 0.1, 0.2, and 0.3, respectively. Given the true caus
j, the probability of missing failure type is 1 — pyj);, which
is taken as constant o, for all j, with values 0.1, 0.3, and 05
representing different degrees of missingness. Also, for g 3.
pg; is taken as /3, since there are three such ¢'s. Once the
data is simulated with sample size n (taken as 100, 200, and
500), the cumulative cause-specific hazards A(t) is estimated
using (12). However, we need specification of the %S for
which we consider three choices. First, we consider the true
ones, which can be worked out, given the p,'s and the true
cause-specific hazards. The true ¢ matrix, in this case, s
out to be

100 1/3 0 1/4 1/6
g= 10 1 0 2/3 2/5 0 2/6.
00 1 0 3/5 3/4 3/6

Next we consider a slight deviation from the trué © e b}
suitably adding (to type 3) and subtracting probability [).[)oi
Lastly, we consider a balanced case in which the g's ar¢ eqPal
for all jin g. We carry out 1000 simulations based .011 which
the following performance characteristics are imvestigete be

Since we believe, due to scarcity of data, there .ma.V "
violation of monotonicity in the tail area, we co.nmfiel‘tf‘;n
proportion of times (out of the 1000 simulations) this vlolﬁ.]ln‘e
takes place before the 90th percentile of the observed fa]‘ln
times. It is desirable to have small values for this PP

3 tion
Our observation is that, when  is small (0.1), this propof
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Table 1

Simvalation-hascd ¢ stimates of the cumulative cause-specific hazards at 60th percentile of the
true Life disteibution. The true values are 0.153, 0.305, and 0.458, respectively.

- 0

o= 100

n = 200 n = 500
e N 1390276, 418 148, .296, .447 151, .301, .456
(.053..078, .102) (.036, .052, .062) (.023, .031, .040)
3 11000288, .433 150, .297, 449 .150, .303, .454
. (054,078, .095) (.037, .052, .061) (.023, .032, .038)
5 5,204, 440 149, .300, .454 153, .305, .455
N (.055, .078, .090) (.038, .052, .064) (.024, .034, .040)
Slight N 139,279, 415 147, .294, 449 146, .302, .458
deviation (.051. 031, .109) (.035, .051, .065) (.022, .034,.040)
oy 135,283, .450 141, .293, .466 142, 298, .472
(.051..079. .098) (.035, .052, .067) (.022, .032, .038)
5 130, 281, .465 135, .292, 479 136, .294, 482
(.049..078, .093) (.036, .051, .065) (.021, .034, .040)
Balanced N 141, 278, 422 .158, .295, 439 163, .302, .444
(.064. .079, .094) (.038, .050, .062) (.023, .032, .038)
3 170, .284, .406 (182, .298, .419 188, .303, .420
(.065. .079, .087) (.041, .053, .059) (.025, .032, .035)
] 197, .295, .386 211, .300, .390 214, .302, .392
(.066. .077, .085) (.047, .054, .060) (.029, .032, .037)

is almost zero and. for higher o’s. this approaches zero with
increasing =ample size. regardless of the choice of g;,’s.

We also consider the mean of the estimates (over the 1000
simulations) at different guantiles of the true life distribu-
tion (vrponentinl with hazard 0.6). presenting only those at
the 60th pereentile in Table 1. The true values of these cu-
mulative cause-specific hazards are 0.153, 0.305, and 0.458,
respectivelv. The corresponding standard errors are found by
taking the mean of individual standard errors based on the
formula of Sceetion 3 and also based on the estimates from
1000 simmlations. Since they give similar results, we report
(in parentheses) only those obtained by the latter method. As
expected. the standard error decreases with increasing sample
size. However. this does not seem to depend on «, the pro-
portion of missing data. For the true choice of g;,’s, we notice
the estimates to be closer to the true value with increasing
sample size. as expected, regardless of the value of a. Even
for the second choice with slight deviation, the estimates are
quite satisfactory for o = 0.1 and larger sample size. With
higher o values. however, the performance worsens.

To cheek asvinptotic normality. we compute the mean, me-
dian, variance, and the 95th and 97.5th percentiles of the
1000 simulation-based standardized estimates, to compare
with those of the standard normal distribution. We find sat-
isfactory results for the true choice of ¢,’s with increasing
sample size, regardless of the value of a. For the other two
choices, the results seem to be encouraging, except the bias
factor, since the estimates converge to values that depend on
the wrongly assumed g, values, resulting in some bias.

5. An Example

A large animal experiment with a total of 5000 rodents was
conducted by the British Industrial Biological Research As-
sociation (Peto et al., 1984) to investigate the carcinogenic-
ity of different nitrosamines administered in drinking water.
Gart et al. (1986, pp. 58-66) reported details of the data

set for the occurrence of pituitary tumors in male rats given
N-nitrosodimethylamine (NDMA) in different concentrations.
For our illustration, we consider only the control group hav-
ing 192 animals. The data consists of the time to death (in
days) for each animal and some information on the cause of
each death, described as the “context” of death. There are
essentially three causes of death: (1) death without tumor,
(2) death due to tumor (fatal), and (3).death due to some
other causes but with tumor present (incidental). Because of
various pathological problems, observation on the actual cause
of death is sometimes missing. The “context” of an observa-
tion gives this occasionally incomplete information. Out of
seven such “contexts,” three give the exact causes of death,
mentioned above. Two other “contexts,” probably fatal and
probably incidental, are interpreted (for our analysis) as miss-
ing, with {2, 3} being the set of possible causes, since presence
of tumor is observed. In yet another “context,” the presence
or absence of tumor is not ascertained, but death is known
not to be caused by tumor; hence {1, 3} is taken as the set
of possible causes. In the last “context,” the cause of death is
not at all ascertainable, and so {1, 2, 3} is taken as the set of
possible causes. Exact cause of death is available for 183 out
of the 192 animals, with 135, 25, and 23 deaths due to cause
1, 2, and 3, respectively. For the nine missing causes, 3, 2, and
4, respectively, are observed with {1, 3}, {2, 3} and {1, 2, 3}
as the set of possible causes. There are 163 distinct times of
death.

We first use the EM algorithm of Section 2. For this, we
partition the range of observed failure times into six intervals.
The identifiability condition of Theorem 1 is satisfied for the
events in these six time intervals. The intervals were: (0,700},
(700,800], (800,900], (900,1000}, (1000,1100], (1100,00). The
corresponding estimates (of \j;'s) are interpreted as “cause-
specific interval hazards,” as discussed at the end of Section 2.
The estimates with corresponding standard errors in paren-
theses are given in Table 2.
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Table 2 '
Magimum likelihood estimates of cause-specific interval
hazards
Death type
Time .
interval 1 2
(0,700] 1342 0117 0.0
(.0159) (.0123) 01726
700,800 1265 .0316 .
( ] (.0261) (.0139) (.0082)
800,900] 1537 .0368 .015
( (.0311) (.0164) (.0108)
(900,1000] 3333 .0556 .0926
(.0454) (.0220) (.0279)
(1000,1100] .4821 1179 .0786
(.0676) (.0450) (.0376)
(1100,00) 6111 111 2778
(.1843) (.0786) (.1242)

In order to obtain the Nelson-Aalen type estimates for the
cumulative cause-specific hazards of Section 3, we consider
two extreme choices of the probabilities ¢,,’s as follows.

(a) We choose g3 (1033 = 0.02, q1,11,23 = ¢2,01,2.3) = 0.49,
q3,{1,3) = {q3,{2,3} = 0.02 and q1,{1,3} = 42,{2,3} = 0.98.
This case represents a situation where cause 3 has very
low probability whenever it is observed with some other
cause.

(b) We choose g3,(1,2,3 = 0.98, q1,01,2,3) = g2,{1,2,3) = 0.01,
q3,{1,3} = Q3,{2,3) = 0.98 and q1,(1,3) = Ga2,{2,3 = 0.01. This
case represents a situation where cause 3 has very high
probability whenever it is observed with some other
cause.

We also consider the balanced choice (as in Section 4), which
does not favor any particular cause. The results for this choice
are generally found to lie in between those for the two extreme
choices and are not reported in order to save space.

The estimates of the cumulative cause-specific hazards
for the choices (a) and (b) are presented (solid lines) in
Figures 1(a) and (b), respectively, along with 95% pointwise
confidence limits (dashed lines). The three curves in each
figure correspond to the three types of death, respectively.
Note that, in some of these curves, monotonicity breaks down,
but only in the tail area, where the estimates K; (t)’s them-
selves are not precise (as seen by the widths of the confidence
intervals in the tail area). In choice (a), the type 3 failure has
low probability, and so the third curve mostly uses complete
observations with type 3. Thus, it is not surprising that the
third plot in Figure 1(a) is nondecreasing. Likewise, the other
two plots of Figure 1(b) are nondecreasing. The estimates ob-
tained by using pooling-adjacent-violators algorithm are also
given by dotted lines. These estimates, as expected, coincide
with the original ones (solid lines) in the three plots mentioned
above.

Figures 2(a) and (b) show the plots of the three estimated
cause-specific hazard rates for cases (a) and (b), along with
the corresponding 95% pointwise confidence limits. For these
estimates, we use the Epanechnikov’s kernel function given
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Figure 1. Estimated cumulative cause-specific hazards for
cause (type) 1, 2, and 3 when (a) type 3 has low probability
(93,011,230 =02, @1, (1,23} = 92,012, = 49, @,01,3) = G2 =.:02
and g1 1,31 = g2,12,3) = .98) and (b) type 3 has high probability
(g3,{1,2,3 = .98, q1,01,2,3) = qo,q1,2,3) = -01, g3, 1,3 = Q3,009 = ‘9.8
and g (1,3) = g2,{2,33 = .01). The solid line represents the es.tl-
mate while the two dashed lines represent the 95% pointwise
confidence limits. The dotted line gives the estimate obtained
by using pooling-adjacent-violators algorithm.

by K(z) = 0.75(1 — 22), |z| < 1, and a window length h of
approximately 100 days. This choice of window length corre-
sponds to the one proportional to n~'/2, where n = 163 is th.e
number of observed time points, satisfying a sufficient cond}—
tion for the asymptotic results (Ramlau-Hansen, 1983). We
also work with another choice in which the window length
(of approximately 220 days) is proportional to n~'/% and also
satisfies the sufficient condition; the results are similar except
for the greater smoothing effect.

6. Discussion

In this work, we consider a general pattern of missingness I
failure types while dealing with competing risks data in‘WhICh‘
instead of the true failure type, a set of possible types; includ-
ing the true one, is observed. Under the missing—at-randof11
assumption, we discuss maximum likelihood estimation Yla
the EM algorithm and find that, in practice, only some
terval cause-specific hazards are estimable, depending on the
availability of data. In contrast, when information on the 9011]'
ditional probability of the true type, given a set OfPOSSl,ble
types, is available, a Nelson-Aalen type estimator 1 dew;
oped by assuming that the observation probabilities pilt)?
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Figure 2. Estimated cause-specific hazard rates for cause
(type) 1. 2. and 3 when (a) type 3 has low probability
(@000 = 020q) 1100y = G2y = 49, @3.01,3) = 3,42,3p = .02
and gy 14y = (2 123y = .98) and (b) type 3 has high probability
(gaiiog = 98 qrpom = Gapasy = 0L ga s = @323 =
98 and ¢y 414y = ¢2.42.4, = -01). The solid line represents the

estimate while the other two lines represent the 95% pointwise
confidence Hmits.

are time-independent under the much less restrictive assump-
tion that the matrix P has full column-rank. Some of the
cause-specific hazards may be estimable by the method of
Section 3. even if this condition is violated. The two meth-
ods in Sections 2 and 3 have two different requirements on
the missing mechanisin. While the first makes a missing-at-
random asstnption (2). the second requires information on
the g, probabilities, allowing the missing mechanism to be
nonignorable. These ¢,,’s are found to have some effect on the
Nelson-Aalen type estimates and also on the cause-specific
hazard rate cstimates. Regarding the choice between maxi-
mum likelihood cstimation and Nelson-Aalen type estimates,
there remains the question of making either the missing-
at-random assumption or the time-independence assumption
for the nonignorable observation probabilities (p,;’s), none of
which can be tested.

The estimation procedure of the P matrix, as described
in Section 3, leads to the ignoring of those components of
A*(t) for which the corresponding {N,(¢)}’s are not observed
to have jumps during the study. If, in particular, there is no
missingness in the cause of death information (that is, only
those { N, (t)}’s with singleton g's are observed to have jumps'),
the P matrix is estimated to be an m x m identity matrix
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augmented by rows of zeros. As expected, this leads to the
usual Nelson-Aalen estimator of A(t) based on the observed
{N,(t)}’s. This, however, is not the case if the P matrix is
known not to be of the above estimated form. In such a case,
this extra information on the P matrix makes a modification
of the Nelson-Aalen estimator via the least squares approach.
One can think of a more restrictive assumption on the P ma-
trix than the one used in Section 3. For example, we may
assume, for a fixed set g > j with |g| = I, the observation
probability p,; = 6,, which depends only on |g| = I, for [ =
1,...,m. It is to be noted that this assumption, although not
very realistic, conforms with the mechanism of missing at ran-
dom. It can be seen, after some probabilistic arguments, that
#; can be consistently estimated by

-1
(m — 1) y number of observations with |g| = [
1-1 d ’

where d. = Zf; d;, total number of observed failures, for [ =
1,...,m.

A set g is assumed to capture all the available information
on the cause of death. However, we sometimes may have more
information regarding the cause of death. In the example of
Section 4, for instance, we have two descriptions of cause of
death, given by “probably fatal” and “probably incidental,”
which are interpreted as missing with the same set g = {2, 3}.
Consequently, the probabilities pg,;’s and gjg,’s, for j = 2, 3,
cannot distinguish between the above two descriptions, al-
though “probably fatal” is more likely to be due to cause 2
and “probably incidental” due to cause 3. In order to make
this distinction, one needs to split gy into two cases and deal
with them accordingly.

The estimators of Section 3 can serve as a basis for testing
the completely specified null hypothesis given by Hy : A;(t) =
Ag (t), for all jand a fixed t = . Using the weak convergence
result of ]\:(t) (see Section 3), we have, under Hy,

[A) - 2°()] " [PTW () P] [A) - 4]
as an asymptotic x? variate with m degrees of freedom, where
A°(t) denotes the vector of AJ(t) = fot Ai(s)ds,j=1,...,m.
Similar tests can be constructed for more specific hypotheses
such as A;(t') = Aj(t), for some of the 7s.

Although we have dealt exclusively with competing risks
data with partially missing information on failure types, the
inference procedure would work for a general Markov chain
with incomplete information on the observed types of tran-
sitions. Some work in this context with specific application
would be interesting. Another relevant issue is incorporation
of covariates that, in this context of general missing pattern,
does not seem to be simple.
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RESUME

Dans des données de risques compétitifs, I’absence de cer-
tains types de défaillance est une situation commune. Dans
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ce travail nous envisageons un cadre général d’absence dans
lequel si un type de défaillance n’est pas observé, il est
cependant observé un ensemble de cas possibles incluant le
type réel ainsi que le temps de défaillance. Nous envisageons
d’abord une estimation au maximum de vraisemblance sous
hypothese d’absence aléatoire par 'algorithme EM. Nous pro-
posons alors un estimateur de type Nelson-Aalen pour les sit-
nations dans lesquelles une information sur la probabilité con-
ditionnelle du type réel étant donné un ensemble de types de
défaillances possibles est disponible par les expérimentateurs.
Ceci est basé sur une méthode de type moindres carrés
utilisant les relations entre les risques de différents types
et les risques pour différentes combinaisons des types ab-
sents. Une étude de simulation que nous avons réalisée pour
étudier les performances de cette méthode montre que le
biais peut étre petit, méme avec une proportion élevée de
données manquantes, pour un nombre d’observations assez
grand. Les estimations sont quelque peu sensibles aux mau-
vaises spécifications des probabilités conditionnelles des types
réels lorsque la proportion de données manquantes est élevée.
Nous illustrons aussi notre méthodologie avec un exemple
d’expérimentation animale.
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