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Abstract

We show that the critical probability for the frog model on a graph is not a monotonic
function of the graph. This answers a question of Alves, Machado and Popov. The
nonmonotonicity is unexpected as the frog model is a percolation model.
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1. Introduction

We study a property of the critical probability for percolation of a discrete-time particle
system on a graph, known as the frog model with death. In this model, particles move a5 a
discrete-time independent simple symmetric random walk (SSRW) on the vertices of a graph §.
dying after a geometrically distributed random lifetime. Initially there is an independent random
number of particles at each site of §. A site of § is singled out and called its root. All particles
are inactive at time zero, except for those that are placed at the root. At each instant of time.
each active particle may die with probability 1 — p. If an active particle survives, it jumps
along an edge, to one of its nearest neighbor sites, chosen with uniform probability, performiﬂg
an SSRW on the vertices of §. Up to the time it dies, it activates all inactive particles that it
meets along its way. From the moment that they are activated onwards, every such particle
starts to walk, performing exactly the same dynamics, independent of everything else.

The motivation for studying this model is practical, as this model has been proposed for
the study of both information spreading and virus transmission over a network of computers:
one of the authors learned this from K. Ravishankar. The original idea is that every mov.mg
particle has some information and it shares that information with a sleeping particle at the tume
the former jumps onto the site at which the latter is. Particles that have the information m?"e
free]y, helping in the process of spreading information. This model has experienced a growing
interest and progress recently.

Let us define the model in a formal way. We denote by § = (V, €) an infinit¢ connected
nonoriented graph of locally bounded degree. Here, 'V := V(§) is the set of vertices (Site*)
of G and € := €(§) is the set of edges of §. Sites are said to be neighbors if they belong w
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acommon edge. The degree of asite x is the number of edges which have x as an endpoint.
A graph is locally bounded it all its sites have finite degree. In addition, a graph has bounded
degree if its maximum degree is finite. Fix a site 0 € 'V and call it the root of §.
With the usual abuse of notation. by Z¢ we mean the graph with the vertex set Z¢ and edge
set
804 oy € Z¢ and lx = vl = 1},

where || - ||} is the £y norm: that is. for x = (xy,...,x,) € Z¢, we take ||x[|; = Z;I:I |xi].
For d > 1. we denote by T, the degree d + 1 homogeneous tree.

Let i be a random \'uriuble taking values in N = {0, 1, 2, .. .} such that P[ > 1] > 0. Let
) x e VEUS i) ern @€ {1 2.3...4}AEV}and{(E*(z)) ief{l,2,3, ...}, xeV}
be independent \us of i.1.d. landom variables defined as follows Foreachx € 'V, n(x) has the
same law as 7 and gives the initial number of particles at site x. If n(x) > 1, then, for each
iefl,.. .. N (S ), e s a discrete-time SSRW on § starting from x (it describes the
trajectory of the 11h pamde from x), and E'[‘,(i), which denotes the lifetime of the ith particle
at the site x. is a random variable whose law is given by P[E'I‘,(i) =k]=(1- p)pl"‘1 for
k=1,2..... where p e [0. 1] is a fixed parameter.

Thus, the /th particle at site x follows the SSRW (87 (i))nen and dies (disappears) =¥ (z)
units of time after being activated.

Observe that. from the moment the particle disappears, it is unable to activate other particles
(as first we decide whether the particle survives, and only after the particle survives is it allowed
to jump). Notice that there is no interaction between active particles, which means that each
active particle moves independently of everything else. We denote by FM(4, p, 1) the frog
model on the graph ¢ with survival parameter p and initial configuration given by independent
copies of 1 at each site of §. We denote by 1 the case where n = 1 almost surely.

Let us consider the following definition.

Definition 1. A particular realization of the frog model survives if there is at least one active

particle at every instant of time. Otherwise, we say that it dies out.

Now we observe that P{FM(4, p, 1) survives] is nondecreasing in p and define
pe(G. n) == inf{p : P[FM(§, p, n) survives] > 0},
with the convention that inf @ = 1. As usual, we say that EM(§, p, ) exhibits phase transition
if
0 < pe(§.m <1
Before going further, let us emphasize that in fact we are dealing with a percolation model.

Indeed, let
={SH): 0<n<E,M}C§

be the “virtual’ set of sites visited by the ith particle originally placed at x. The set 32’ becomes
Teal” in the case when x is actually visited (and thus all the sleeping particles from there are

activated). We define the (virtual) range of site x by

VIS
R ifn) >0,
Re =100

) i) =0
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Notice that the frog model survives if and only if there exists an infinite sequence of distinct
sites 0 = xq, X1, X2, . . . such that, for all j,

Xj41 € Ry, (1

The last observation shows that the extinction of the frog model is equivalent to the finiteness
of the cluster of 0 in the following oriented percolation model: from each site x the oriented
edges are drawn to all the sites of the set R,.

2. Nonmonotonicity of pc(%, n) in G

We show the nonmonotonicity of p.(§,n) in § by presenting graphs G, G2, $3 and G4
such that §; C §2 and 3 C G4. We show that, for these graphs, pc($1,1) > pe(G2, 1) yet
pe(93, 1) < pe(§a, 1). This answers a question posed by Alveseral. [1]. The nonmonotonicity
may be considered an unexpected fact as the frog model is a percolation model. To be more
specific, §1 = T2, §2 = T2 and §3 = 7Z2. The graph 4 is a little tricky to describe and is
defined after the proof of the fact that pc(Z?,1) < 1.

2.1. §1 C §2 and pc(§2, 1) < pe($1, 1)
First of all let us show that p¢(T2, 1) > pc(T2, 1). For this, by comparison with a Galton-
Watson branching process, we present a lower and an upper bound to pc($. 1)

Lemma 1. Suppose that § is a graph of maximum degree k and 1 is such that En < o0. Then

k
>

PG 2 TR D@+ D

Proof. Consider a Galton—Watson branching process where particles produce no offspring
with probability 1 — p, one offspring with probability p/k and the random number 7 + 1
of offspring with probability p(k — 1)/k. Observing that every site with at least one active
particle at time n > 0 has at least one neighbor site whose original particle or particles have
been activated prior to time #, we find that the frog model is dominated by the Galton—Watson
process just defined. An elementary calculation shows that, if p < k(1 + (k — D(En+ .
then the mean offspring in the Galton—Watson process defined above is less than 1; therefore.
it dies out almost surely. Consequently, the same happens to the frog model.

Lemma 2. We have that
d+1
N e
2d-1)

Proof. Let &, be the set of active particles of FM(Ty, p, 1) which are at level n (i.e. at
distance n from the root) at time n. Next we present a discrete-time supercritical Galton—
Watson branching process, which is dominated by £,. We do this by constructing an auxiliary
[)ro_cess &, C &,. First of all, consider the particle at 0 belonging to §0. In general, the process
£, is constructed by the following rules. If at time n — 1 the set of particles &1 (which lives
on the level n — 1) is constructed, then at time n the set of particles £, (which are all at level #)
i1s constructed in the following way. Introduce some ordering of the particles of Eq—ys they will
be allowed to jump according to that order. Now, if the current particle survives, then

Pc (Ta,

o if the particle jumps to some site of level n and does not encounter any particles taat
already belong to &, there, then this particle and the particle activated by it enter En:

e otherwise it is deleted.
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The particles of £,+1 activated by some particle from &, are considered to be the offspring
of that particle; note that, due to the asynchronous construction of the process &,, each particle
has exactly one ancestor and, comparing with a Galton—Watson process, may have either zero
or two offspring. So, it follows that the process &, dominates a Galton—Watson process with
mean offspring being greater than or equal to

2(d — Dp
d+1

From this we conclude that, it p > (d 4+ 1)/2(d — 2), the frog model survives on T, with
positive probability. This means that p.(Ty) < (d + 1)/2(d —2).

Now we are done with the first part of our task.

Corollary 1. We have that
pe(Ti2, 1) < pe(To, 1).

Proof. The result follows from Lemmas 1 and 2. All we have to do is to notice that the upper

bound presented by Lemma 2 for T is smaller than the lower bound presented by Lemma 1
for T.

22. §3 C Ga but pe(§3, 1) < pe(§a, )

In this subsection we present a graph G4 which contains 72 but is such that pc(Zz, 1) <
Pe(§4, 1). The following theorem is proved for the more general condition of random initial
configuration in [1]. To keep the paper self-contained, we present here a simpler proof which
works well for the one-particle-per-site initial configuration.

Theorem 1. We have that p.(Z2,1) < 1.

Proof. Forn > 1, let
fo=PHS? =01 N (SY £O0forallm e (L,...,n— 1}}]

and let A(k, p) be the event {the first particle to be woken returns to the origin at least k times

before dying}. Notice that
%) k
> fnp”] :

n=1

P[A(k, p)] = [

Since the SSRW is recurrent on Z2, we have that 3°°%, f, = 1. It follows that, for any fixed .
lim PLA(k. p)] = 1.
P

FiXk = 4r, where r > 1. Then, by choosing p large enough, the probability that the first
Particle to be woken returns to the origin at least k times can be made arbitrarily large. After
¢ach instant the particle returns, it has a fixed positive probability of hitting the site (0, 1) which
N the same as that of hitting any other of its nearest neighbors. At each time 4, i > 1. after
Ihe particle returns, observe whether it hits the site (1, 0) or not. Do the same for site (0, 1) at
lime 4 4 1, site (—1, 0) at time 4 + 2 and site (0, —1) at time 4i + 3. If r is large enough, the
Probability of hitting all nearest neighbors, given that the particle returns at least r times, can
be made arbitrarily large. Denote this probability by Q(r). Choose r so large that Q(r) > m,
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where 7 is the critical parameter for independent site percolation on Zi (see [3]). Choose p
so large that
PIAQRr, )I1QO(r) > 7.

With this choice for p. the supercritical independent site percolation process is dominated by
the set of active particles in the frog model. Therefore, with positive probability. the frog model
survives on Z2.

Let us denote by G4 = Ga(n) the graph whose set of vertices is

Vga) = | Nalw),

xeZ?

where

Nyx) ={(x,0), (x, D), ..., (x,m)}.

The set of edges of Gy is such that, for any x € 72, the vertex (x, i) is a neighbor of (v, j)
when O < i < j < n. Inaddition, (x.0) is a neighbor of (v, 0) if [lx — v[l) = 1.

We prove that P2 1) < pe(Gy. 1) by showing that p.(G4. 1) can be made arbitrarily
close to 1 by increasing the parameter 1. This is done by dominating the model on G4 by o
Galton--Watson branching process. With every active particle which leaves its original complete
connected graph, we associate Y offspring, where Y is the random variable defined as follows:
among the n + 1 particles which were in the complete connected graph to which the active
particle jumps initially plus the jumping particle which activated it, ¥ is the number of particles
which leave this graph. If two or more active particles jump to the same complete connected
graph, we associate with one of them Y offspring and to each one of the others we associate
independent copies of Y. As shown later, for any fixed value of p, as n increases. EY)
goes to zero. So it is eventually smaller than | which makes the Galton—Watson branching
process, which dominates our model, die out with probability 1. Consequently. any p2 such that
Pe(§a. 1) < p < I can be astrict lower bound to p.(G4, 1) for a large value of n. As we also
show later, the model on §.4 has phase transition as well.

For a fixed n and x € Z2, let ¥ (x) be the random variable which counts the total number
of particles originally from the complete connected graph connected to (x.()) whose virtual
range includes some other site v € Z2. Observe that, if the active particle from the origin in
its first movement jumps to a site (x, 0) for some x # 0, then ¥ (0) > I. That event happens
with probability 4p/(n + 4). In the event that the active particle initially from (0. 0.0 in s
first movement jumps to a site (0. 0. i) with i € {1, ....n}. there will be two active particles at
(0. 0.7y attime 1.

Let us number the particles that are originally at the sites of the connected graph connected
tothesite tx. M asi = 1... ., n + 1 and define

I if R! | includes asite (v.0) such that v # .
O if not.

Yoy =

Thus, Yoy = \;ZHII Y, (v). Now,

nel n+l

\ nel
F,(Z )',(.\')) = ZE(Y,(.\‘)) = ZP(Y,(.\') =h
o1

1= =l
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and

PY;(x) = 1) = 3" p(a),

k=1

where A,i is the event {it takes & steps for the ith particle to visit a neighboring complete

connected graph}. Morcover, fori =2, ..., n+1,
P(A}) =0,
. 4p2
P(A)) = ;(7’17)
P(AL) = ~——p<"n" D paiy
and, for & > 4,
P(A}) = ———-p(”’; Dpeai_+ fp(—”n'—l—) P(AL ,).
Thus,
© o0
iP(Ai) =P(A)) + &’;Q iP(Ai,) + fz—(';zig > P4,
k=2 k=2 k=2
and so

;P(AL) Tt A1 - pn—1/n—p*n—1)/n?]

Now observe that

4p np ) =
==— 4+ T pyhix)=1)
PN = 1) = o+ —— P
and finally we have that
2
4p 4pn+ 1) : 2)
O S T AT =5t = D — %7

Clearly, the r ight-hand side of (2) goes to 0 as # grows to infinity. To esum‘ate theha:/i]x;%:
Humber of offspring of the Galton—Watson branching process that we used, assume th al Jhere
1 W0 active particles at 7,2 level in the complete connected graph connected to a fixed :
01 Thatis casy once we know that (2) holds. _—

Finally, we briefly argue that pe(94,1) < 1. For this, define ¢ to be the pl:ob?-bm{i,:h;;
4 particle which ig gt 772 level leaves its complete connected graph. That probdpl 1iiy c’mde
e Wbitrarily cloge to | by making p close to . Now associate the event thata hli(/le 7};& ‘
Mually ip the complete connected graph of a given site of 72 to the eYent thegjm F ; ( k'<(1éc,,
Ith Dartiete nitially at that site Survit/es and jumps from that fixed site in FM(Z". ¢. 1}. As:

" heorem | gy model exhibits phase transition.
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3. Strict monotonicity for critical probability

Alves et al. [1] proved the following theorem which gives asymptotic values for critical
parameters for the case of 74 and regular trees.

Theorem 2. We have 1
lim pe(Tq,m) = lim pe(Z4, ) = 3.
d—o0 d—00

Theorem 2 suggests that there is monotonicity of the critical probability in the dimension
for regular classes of graphs (such as 74 or Ty for d > 1). The example we have given
makes clear that this is not true in general. A natural question to ask is whether it is true that
pe(Z8,n) > po(Z3*1, ) for all d or at least for d large enough. In addition to that, can we
replace ‘>’ with ‘>’? What about the case of T4?

In fact, a more general question would be on necessary and sufficient conditions for a class
of graphs such that, whenever §; C $; in that class, is it true that pc(§1, 1) > pc(§o2, 1), as
happens for the usual percolation models. Observe that, even though this model can be seen
as a percolation model (see (1)), there is no natural way of coupling the constructions of the
clusters of fixed sites for the process on Z¢ and Z4*! as can be done in independent percolation
(e.g. [2]).

Finally, observe that the graph G4 defined in this paper is not an enhancement of 72, so the
critical probabilities for independent percolation on these two graphs are the same. For more
details, see [4]. In order to distinguish them, consider another graph 4.5 made up from two copies
of Z?* where each site (x, y) of the first copy is connected to each site of a complete connected
graph as in §4. Moreover, each site of that complete connected graph is also connected to the
site (x, y) of the second copy. From the computation above, we can see that, while for the frog
model p.(Z2,1) < pc(§s, 1), on the contrary (again from [4]) for independent percolation
pe($s5) < Pc(Zz)
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