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PASSAGE TIME MOMENTS FOR MULTIDIMENSIONAL DIFFUSIQx

S. BALAJI ™ AND
S. RAMASUBRAMANIAN,* ** lndian Statistical Iisiinie, Bungalore

Abstract

Let 7, denote the hitting time of B(0 : r) for a multidimensional diftfusion process. We
give verifiable criteria for finiteness/infiniteness ot £ ¢ r,ﬂ ). As an application we exhibit
classes of diffusion processes which are recurtent but £, ¢t 1 i wntinite Yp > 0y >
r > (; this includes the two-dimensional Brownian motion and the reflecting Brownian
motion in a wedge with a certain parameter « = 0.

Keywords: Hitting time; recurrent diffusions: gencrator:  ditfusion coefficients:
sub/super-martingales; reflecting Brownian motion in a wedge

1. Introduction

Recently, Menshikov and Williams (1996) have given conditions for finiteness/infinitensss
of pth moments (p > 0) of passage times of a continuous non-negative stochastic processin
terms of sub/super-martingale inequalities for powers of the process. In this note we use thest
ideas to get conditions in terms of suitable Lyapunov-type functions for finiteness/infiniteness
of E(rr’)) where 7, denotes the hitting time of B(0 : ») for a multidimensional diffusion
process; and then use such functions in turn to obtain easily verifiable criteria in terms of
the Qiffusion coefficients. No non-degeneracy assumption is made.

If a diffusion is transient it follows that E.(t/) = oc forany p > 0.]x] > r. Howeverif
the diffusion is recurrent, £, (z)”’) can be finite only for certain p. r. x. (For a one-dimensiond

: . P N :
Brownian motion E.(r/) < oo (or Ev(t)) = o0) for p < 1 (or p >3 x> thisen

be seen using Section 3 of Menshikov and Williams (1996).) In fact, as an application of
our results, we exhibit a class of recurrent diftusions in - ¢ for which E (t/) = oo foral
P> 0 lx| > r,r > 0. This class includes the two-dimensional Brownian motion and the
reflecting Brownian motion in a wedge with the Varadhan—Williams parameter o = 0.

2. Criteria for multidimensional diffusions
Let (2. F,{F:1,P) be a com ) ili
. ( , P plete filtered probability space: let {Z(1) : £ = 0 bead:
dimensional Fi-adapted diffusion process with generatory P 0 B
d
1 82 d ;
) LJZ:J l]( )axiax./_ + Z b; (x) o .

i=1
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If L isnon-degenerate we need to assume only continuity of aij (-). bi(-); if L is degenerate we
have toassume that a(-) 1= ((a;;(-))) has a Lipschitz-continuous square root and that bi(-) are
Lipschitz continuous so that the diffusion is well defined. In the context of the question we are
ivestigating we can as well assume thut the processes are non-explosive.

Denote by § the collection of all w € C (= ¢ ') such that

@u>0.u0)=0.u(x) = ocas |x| — oo;

(b} foreach r > O there exist 0 < ry < r> < 0o with

w 0D € BO ) € u (0, 1)), )

Note. Suppose u € C2- 9 2y satisfies (a) above and is of the form u(x) = ui(r)uz(0),
where ¥ = (. €) is the polar decomposition: then i € §.

Fori € §.r > O define the non-negative process X (1) = u(Z(¢)), t > 0 and the stopping
imest, =inf{t > 0: |Z()| <r}.op =inf{t > 0: X() <r}. Foru e G.r, r1, rp satisfying
{2) note that

Ory = Tp <0y (3)

Fori € . g > 0 by [td’s formula observe that

W(Z) —ut(Z(s)) = M(1) — M(s) + /, ququ(Z(a))[u(Z(a))Lu(Z(a))
P
+ 5(q — D{a(Z(@)Vu(Z(@)). Vu(Z(@))]de,  (4)
where M (-} is a stochastic integral.
Theorem 1. Let r > 0. p > 0 be fixed. Suppose there exist u € G, €9 > 0 such that
u(z)(Lu)(z) + %(2/) — 1) {a(z)Vu(z), Vu(z))) < —€o 5)

forall 2 € u=Y([ry, o0l). Then for = € u='([ry, o)), E.(t))y < coforall0 < B < pif
P<landalsofor B = pifp=> 1. »

Proof Fix z € u=1([r), oc]) and let Z(0) = z. In view of (3) it is enough to prove that
E(O'r}?) < oo for concerned 8. Putting X (1) = X (t Aoy, ), by (4) and (5) we getfor0 <s <1,
I o~ S
KO < (X(s))2" + M Aoy ) — M(s Aoy) — 2[760/ Ii(@)(X(@)?P % da,
S

where A = [(), oy, |. Consequently,

d <7 = T
E(ozmn,-))z/wmgozmn,-))ﬂﬂ_zpeozs( / I (@)(X (@))*" 2da|f.v>, ©)

N

where {n;} is a sequence of localizing stopping times for the local martingale {M(¢)}, and
Bi=10,0,, A 7). Letting ; 1 oo in (6) we get

[ ~
E(X0)* | F) < (X(s)* — 2peoE</ In(@)(X @)~ da | ﬂ) @

The required result now follows in view of (7) and Theorem 2.1 of Menshikov and Williams
{1996
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Corollary 1. Let r > 0 be fixed. Suppose there exist u € § such that (i) Luz([z)) <0;e
ui)l([rl go).), (i) inf{{a(z)Vu(z), Vu(2)) 1 z € u '(Ir1. 00N} > 0. Then E.(z]) < %
all0 < p <1,zeu"l(r,o0)).

Proof. Clearas p < 1l and 2ulLu + 2p — 1}{aVu. Vu) = Lu=+ 2p — 2){aVy, Vi),
Corollary 2. Letr > 0 be fixed. Suppose there existu € G.p > l.e >0 is'u('h zharLu3p(:JS
2p=2 1 .Then E.(t/) < ooforallg < p.z€u~ ([ry. o0)).

—€u"P=%(z),z € u= ([r1, 00)) z

Proof. Tmmediate as Lu*? = 2pu’?~"Lu + pQ2p — 1)’ *(aVu. Vu).
Theorem 2. Let r > 0, p > 0 be fixed. Suppose there exist u € §.0 < K < o, Ay <x
such that

0 < u@ULu)@) + $Q2p — D{a(x)Vu(z). Vu(z)) < K ®
forall 7 € u‘l([rz, 00)), and

sup{{a(z)Vu(z), Vu(z)) 1 z € u~ "(|r2. 00))} < 4. )

Then Ez(t,ﬂ) =ocforallB > p,z e u_l((rz, 00)).

Proof. Fix z € u=((rs, Q) and let Z(0) = z. In view of (3) it is enoggh to prO\"e
that E(ar’z) =ooforf > p.Put X(¢) = X(r A Ory), t = 0. Using (4), the first inequality n
(8) and an argument as in the proof of Theorem 1, we get that (X@)*P 1> 0} is a local
submartingale. Next observe that

uLu+ 3aVu, Vu) = uLu + Q2p — 1)(aVu. Vu) — (p ~ 1)(aVu, Va).

Therefore using the first inequality in (8), (9) and a similar argument shows that X2+
u{t Aoyt t > 0} is a local submartingle for any 1 > Aol(p — 1) v 0]. Similarly for any
y > 1V p),

ulu+ 32y — 1)aVu, Vu) = uLu + 32p — D{aVu, Vu) + (y — p)(aVu, Vu).
Hence (4),Athe second inequalitx in (8), (9) and an analogous argument give that for y >
TV PAXDO —v [§Ip@)(X @) 2da - ¢ > 0} is a local supermartingale for ary

v = K + (y — p)rg, where F — [0, 6,,]. Now apply Corollary 2.4 of Menshikov and
Williams (1996) to get the result.

Corollary 3. Letr > 0, p > 0 be Jixed. Suppose there exist u e §,h < 00,0 <K<
such that (9) holds and

—2p ~ D{a@)Vu(2), Vu2)) < Lu?(z) < K.
Jorz e u=l((ry, 0)). Then EZ(T,B) =ooforallf > p, 7 e u=((r2, 00)).
Proof: Since Lu? = 2uLy + (aVu, Vu) it is immediate,
Next for x # 0 set

i, j=1

d d d
AC = 3 ay@ux Ik, B = doai(, ) =2 xibi).
i=1

i=1
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Theorem 3. Let r > 0 be fixed.

(a) Suppose there exist € > 0. p > 0 such that

B{x)+ C(x) +2(p — DA(x) < —¢

249

forall|x| = r. Then Etf) < oo forall0 < B < pifp < 1, and alsofor B = p if

p> 1, forany |x| = r.
(b) Suppose there exist p > 0. kg < 00. 0 < K < oo such that

O0<B)+Cx)+2(p—- DHAKX) <K
A(x) < Ao

forall |x| = r. Then E_‘(T,-ﬂ) =ooforall B > p,|x| >r.

(c) If eigenvalues of a(-) are bounded and bounded away from zero then for |x| > r,

E«(tf) < oo forall p < inf{l — [(B(x) + C(x))/2A(x)] : x| > r},
Ec(tPy=o00 forall p > sup{l — [(B(x)+ C(x))/2A(x)] : |x| > r}.

Proof. If u(x) = |x| outside a neighbourhood of the origin note that

1
Lu(x) = W(B(x) + Cx) — Ax))

away from the origin. So assertions (a) and (b) are easy to see applying Theorems 1 and 2.
Under the non-degeneracy hypothesis in (c) one can divide by A(x); so (c) follows using

(@), ().

To illustrate our results we consider the following class of examples. Recurrence and

tansience of this class of diffusions have been studied by Friedman (1975).
Example 1. Let b;(-) = 0, and
g(x])
aij(x) = 8;j + Wx,-xj ,
where g(-) is a continuous function vanishing near 0, and

—l<p=infg(r) <supg(r) =v < 0.
r r

Observe that C(x) = 0, B(x) = d + g(|x]), A(x) = | + g(|x|); therefore

| Bx)+Cx) 1 d-1
240 20 20 4g0x)

Also, by (10),0 < 1+ p < A(x) < v+ 1 < oo; and by (10) and (11)

1 d-1 _, Bw+Cx 1 d-1
2 20+ - 24 T2 204w

(10)

(11)

(12)
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3(¢), the following arc casily obtained.
of Theorem 3(¢) U s E

Using (10)—(12),in view followin
(a) For a diffusion in this class E () = oo torany p Il > |
(b) For a diffusion in this class with ;1 > (d — 2y, we have £ ) < o foranyr >

l__(d_i] R
p = 220140 .

(In particular, for any one-dimensional diffusion in this class Eorly < o forany p
1

3, X > r.) . L , ~

(¢) For a diffusion in this class with —1 < ¢ < v o (d = 2) we get Ey(17) = foray
p>0,r>0,|x|>r. A ‘

(d) Supposed > 2,and g(r) = (d—2—h(r))/(L+he). where hisa non-negative functoy
with A(r) < 1/logr for all large ». In such a case the ditfusion is known to be recurrent: s
pp. 202-203 of Friedman (1975). Also it is easily seen that 1 e p <y <d=-2 T
E,(t/) = oo forany p > O,[x| > r > 0 for such a diffusion. Observe that the .

dimensional Brownian motion is such a diffusion.

Example 2. Take a;; = 8;5, bi(x) = —1/x;. for |x| = r. By Theorem 3{c), it 1s seen thatlyr
x| > r,

E (D) <oo il p < d+2).

E.xzf)y=00 if p=1d+2).

3. Reflecting Brownian motion in a wedge

Let D denote the two-dimensional wedge given in polar coordinates by D = {(r.6):1>
0,0 < & < &) where &€ e (0, 27); the two arms of D are D = {(n8) 112 0.6=
0}, 92D = {(r,0) : r > 0,60 = &}. Fori = 1.2 let v; be a vector such that (v;. nj) = I where
n; is the inward normal vector to 3; D\{(0. 0)}: let #; denote the angle v; makes with ;. withf
being positive if and only if v; points towards the corner. Observe that 0 < 6; < %JT. =Ll
Define o = (01 + 67)/¢.

It is a fundamental result due to Varadhan and Williams (1985) that if o < 2 then auniqe
reflecting Brownian motion {Z(r) : ¢ > 0} in ) exists with directions of reflection on
boundary given by v; on 3; D\{(0, 0)}, i = 1. 2; the process has been defined as the solutiond
the appropriate submartingale problem. Moreover, if o < () the process never hits (. 0)ad
is transient; .ifO < o < 2 the process hits (0, 0) with probability one and is recurrent; ifo ="
the process is recurrent but does not hit the corner point (0. 0): see Williams (1983).

We apply our analysis to the stopping time 7, = inf{s > 0 : |Z(1)] < r},r > 0®0 et e
following. - -

Theorem 4. Lerr > 0 be fixed. If & = O then E(t)]) = oo forany p > 0,1zl > -

Proof. By the obvious modifications necessary to make the proof of Theorem 2 g0 throe!

mn the pl esent context 1()] ea(:]l ¥ (’ ’) lUIlLtl nu e g .
s o= 5 > 0 8 A
near (() 0) 2]][(‘ we need a o

1 _ ¥
0< ll(4,)§AL{(Z) + %(ZP _ 1)|VI4(Z)]2 < K. ze MAl([rz, OO))HD (1
(4

Sup{| Vu()|> : z € u~!([ra, o0)) N D} < o0,
(15

Wi Vu@) =0, ze u”([r2, 00)) N 3D, i=12
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Let ry be arbitrary but fixed. Let ¢, u be functions such that

P(r.6) =logr + 6 tan gy,
1(r.0) = exp(p(r, 8)) = r exp(f tan b)),

forr > Iy, 0 < 8 < 2. Note that i can be extended to 22 5o that u ¢ G and u = O near

(0,01, Observe that
v du 1 du %
UH=\— —— )} = .
T LV

and

3 u 1 du 1 8%u
Au =

Sl rar 2907

dp\> 1 [0p)\?
:uliA(,Z‘)-F(g) +’—2<a—(g>:l

on B(0: %ro)". Since (v;. V) = 0 on 9; D it is clear that (15) is satisfied with r = rg. Also
forany p > 0,

u3Au+32p — DIVul® = p(l + tan’ 61) exp(26 (tan 6))) (16)
|Vui2 = (1 + tan® 0;) exp(26(tan 6,)) a7

on B(0 : %ro)‘. AsO < 6] < %n. (13) and (14) are now clear from (16), (17) for any p > 0.
This completes the proof.

Remark 1. If @ > 0, using the function u(r, ) = r(cos(ad — 61))!/* analogously one can
obtain Theorem 4.1 of Menshikov and Williams (1996); this is what is essentially being done
in their proof.
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