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Abstract

Given a set of N points in multi-dimensional space. it may be necessary to choose a subset of # representative points. For
example, in clustering problems. 1t is necessary to choose a few seed points around which the cluster may grow. This problem
may be posed as that of choosing one out of cach k data when | N/nj=k. In our proposed method, the data points are ordered in
decreasing magnitude of density. The datum toping the ordered list is chosen and its k— 1 nearest neighbours are deleted from
the ordered list. From the remaining data. the onc currently toping the list is chosen. The process is repeated till the data are
exhausted. The problem of more general choice of 7 is also addressed.
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1. Introduction

Given a st S of A data in & spacc. we address
here the problem of selecting a subset R < Sof n< N
“good representative” data. As compared 1o N, we
may be requested for a small. medium or large # de-
bending on the application requirement. Some ex-
amples are as follows.

Smalln (Seced point detection ). When a few seed
Points should be selected to initialize a data cluster-
mg algorithm.

Medium n (Algorithm cconomy ). A medium value
ofnmay be chosen when N is very large and it is wise
10 use a costly data processing algorithm on a set of
Medium size representative data.

YLargen (Outlier rejection ). When # is large so that
Nen=n'is small, the problem may be viewed as that
ofrejecting #’ outliers from the data set.

In some problems, # may be defined in percent of
the original data. Also, in some situations the prob-

lem is as follows: From a set .S of data, how to select
(reject) one out of k=2 data

Apart from the applications cited above, the prob-
lem may be viewed as that of data compression. If we
sclect one out of k data, we can define a cost to be
paid for rejecting the k— 1 data. Thus, the problem is
10 choose the data for which the cost is minimum. In
conventional data compression, say by using the
Karhunen—Loeve transform, the number of data re-
mains the same but they are represented in a trans-
formed space of reduced dimensionality and hence
less storage space is needed to represent them. In
contrast, here the dimensionality is unaltered while
the number of data is reduced and hence less storage
space is needed to represent them.

It is difficult to define “good representative” points
that can satisfy the requirement of a wide variety of
applications. A plausible definition is given and some
early related work is reviewed in Section 2. Then, in
Section 3 our approach is presented.



894

2. Good representatives and seed points

Let g be a member of the representative data set R.
We assume that g represents a subset S, = S of data.
The representation is such that for any datum reS,. »
is closer to ¢ than to any other member of R. In other
words, g is the nearest neighbor of the members of S,.

Since fewer data will represent the space i.e. R < S,
we can consider an error of representation. For the
point g, the error is given by
e,= 2, d(a.r), (1)

resSq
where d(g, r) is the euclidean distance between ¢ and
rgiven by

172
a’(q,r)={z1 [Xi(CI)—xi(V)]z} ; (2)

where x;(q) is the ith coordinate value of g. The total

error is given by

E=3Y e,. (3)
geR

For a given n, the best R is the one for which E is
minimum. A straightforward algorithm is not attrac-
tive since one has to examine N, combinations to
getan optimum R. The cost of the algorithm is, there-
fore, as high as O(N"*') and even for the detection
of seed points (where # is small), heuristic ap-
proaches should be tried. We briefly review some of
the seed point detection techniques.

MacQueen (1967) chooses the first # data units in
the data set as the n seed points. Another idea is to
label the data as 1, 2, ..., N and choose those labeled
N/n,2N/n, ..., (n—1)N/M and N. A variation of the
labeling approach is to choose the data correspond-
ing to n different random numbers in the range of 1
to N. However, nothing can be said about “good rep-
resentation” in the above techniques. Astrahan
(1970) proposed a better approach where the “den-
sity” at each datum is computed as the number of
data units within some specified distance, say d,. The
data units are ordered by decreasing magnitude of
density and the one with highest density is chosen as
the first seed point. The subsequent seed points are
chpsen in order of decreasing density subject to the
stipulation that each new seed point be at least a min-
imum distance, say @, from all other previously cho-
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sen points. The problem with this method lies in
choice of ¢/, and d, tor the stipulated number of seeg
points. Ball and Hall (1967) suggested a simpler s,
proach where they choose the overall mean vectorof
the data set as the first seed point. Then any data g
which is at least at some specified distance, say dfrom
all previously chosen seed points, can be chosen s
the subsequent seed point. However, it s difficult o
say why in this method the chosen data are good rep-
resentatives except that they span the whole dap
space.

If the good representatives are defined on the bass
of minimization of £ in Eq. (3) then we suggest the
following approach of obtaining a semi-optimum s
lution. Select n data at random from the data set§
and compute £ using Eqgs. (1)-(3) K number of
times. The set of » data for which E is minimum s
finally accepted as the best set of representatives, The
computational requirement is much less than thatin
the optimum method but A should be fairly large o
get a good result. We propose another approach i
the following section.

3. Proposed approach

Let the problem be that of choosing | out of/\'délﬂ
units. We proposc here a ““density” based met.hodwllh
the following steps.

(1) Find the density at cach datum and order
data in decreasing magnitude of density. Let Lbeltt
ordered list. Let 7«- 1, ‘

(2) Choose the datum that tops the list Lasthed
representative datum. .

(3) Count the number of data in the current $.1
the number is less than & — 1 then stop. Else, flom
current S find the & — 1 ncarest neighbours of the d¥
tum P which has been chosen in Step 2. Delelef?ﬂnq
these k— 1 neighbours from L and S to get the lsto
L and S for the next iteration. Make iei+1a6#
to Step 2.

When we want to reject 1 out of k data, Sep
should be modified so that L denotes thelist1? orde
of increasing magnitude of density. Step 2 and 30
3, however, remain unaltered. R

Apparently, there exists some similarity ? g
above algorithm with that proposed by At
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(1970). In both methods the data are ordered in
ierms of their density. But in (Astrahan. 1970), the
data are chosen so that they are pairwise at least d,
distance away while in our method the data are cho-
sen by excluding k— 1 nearest neighbours. The prob-
iem of choosing 4> 1s avoided here. Thus, if » seed
points should be chosen (718 much smaller than Nin
this case ) then our algorithm can be used by consid-
ering & as the integer part of N/2. Another advantage
of our method is that exactly n seed points can be
chosen while no such guarantec is given in the method
of Astrahan (1970) even by varving ds.

If the problem 1s 10 select A% of the data. then too
the above algorithm can be used with small modifi-
cations. If x> 50. then the problem is modified to that
of "rejecting” (100 —x)% data. Thus. without loss of
generality. we assume that v<50. If x is such that
=1/rwhere ris an integer then the above method
can be used directly to find the representative points.
For example. if x=25. then r=4 and we can select
one out of four data. On the other hand if x=22, then
we can select one out of r, data k, times and one out
of r,data &, times so that on an average 22% data are
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Fig. 1. Representative point selection from touching Gaussian clusters: (a) 1 out of 2 data, (b) 1 out of 4 data,

loutof 20 data, (The representative points are shown by X.)

selected. Of the four unknown integers, r, and r, are
chosen as the smallest and largest integers, respec-
tively so that 1/r;>x% and 1/r,<x%. In our exam-
ple, ry=4 and r,=5because ;> x% and + < x%. Now,
selecting one out of r; =4 data k; times means select-
ing k, out of 4k, data. Then on an average, k; + k, out
of 4k, + 5k, data are being selected in our method.
According to our requirement

ky +ks .
3k, ¥5k = 22P= 100 (4)

which leads to

’

(5)

=
i
[o RN

One solution of this relation is to choose k; =5 and
ky=6.

Then our algorithm should be modified so that on
an average one out of 4 data are chosen 5 times while
one out of 5 data are chosen 6 times. Clearly, the
modification can be done quite easily.
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(c) 1 out of 8 data, (d)



896 B.B. Chaudhuri / Pattern Recognition Letters 15 (1994) 893-899

‘ L
.
% K. X * X (b) K
. .
(a) * o
. ‘x. ¥ ..
L .x .‘ ;. R
. - oo
5 8 XK .
i'.. X ox*,
X X% . R oot .
Xyt oxk ° Joe . o X
* & . X°* % ‘.‘. .
¢ X . .
’ X
X .. ..
. . .
X . .
® g
s o
.
oy s
I . ..!
. L
(c) . (d) o
P e ox
- . . .
. * [ . ..o.
'S S S .o -

N o® e o .

o.. . *eo o
.'l .. .:..

o A ] . %
. ..A" - ° . .o - . ..
o 4 ¢ L * . ..l. .

. . ..k. % . .. L
L] ® . ;
. e x° .
. . . .
. [ ] L4 [
L)
ox.
...‘('. o :'
L] R "
. :‘l ..
.

Fig. 2. Representative point selection from another set of data: (a) 1 out of 2 data, (b) | out of 4 data, (c) I out of 8 data, (d)
20 data. (The representative points are shown by X.)
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Fig. 3. Rejection of points from the data set of Fig. 2: (a) rejecting 1 out of 2 data, (b) rejecting 1 out of 10 data.
are shown by X.)

(The rejected poift
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4, Results and discussion

The method has been tested on a set of points in
space. Two sets of representative results are shown
here. Data pooled from a mixture of two Gaussian
distributions generate the first set, as shown in Fig. 1.
The second set 1s an arbitrary data denoting clusters
of various size. Experiment is also done on rejecting
one out of k data. as shown in Fig. 3. We have used
the method for seed point detection in connection
with data clustering methods similar to the A-means
technique and found that they lead to satisfactory
results.

Somewhat similar but alternative methods can be
proposed for the representative point detection prob-
lem. For example. we can choose the data so that their
k-1 neighbours are mutually “disjoint”". However,

(a)

L

(c)

we may obtain less than N/ data satisfying this con-
dition. Another alternative is to take the first k data
from the list (in which the data are ordered accord-
ing to density), and choose the datum which is near-
est to the centroid of these k data. Delete these k data
from the list and repeat the process.

A discussion on density estimation is in order. Two
popular approaches of density estimation are the
Kernal estimator and the k-nearest neighbour esti-
mator (Prakasa Rao, 1983). Although both estima-
tions are consistent and unbiased, there is a difficulty
in choosing the window size A in the Kernel estima-
tion or the value of k in the k-nearest neighbour esti-
mator. We used a Kernel-based estimator where the
window size £ is related to the average edge length of
the minimum spanning tree of the data set. In partic-
ular, in two dimensions i1=./1/N, where [ is the length

(b)

(d)

Fig. 4 The effect of changing the Kernel window width in obtaining representative points: (a) Yvipdow widtl.l 2h, (b) window width &,
¢) window width 0.5k, (d) window width 0.254, where / is the window width chosen by the minimal spanning tree method.
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Fig. 5. Comparison of the proposed method with that due to Astrahan: (a) 5% representative, and (b) 10% reprcsenlatl-ve pO}ﬂlst?gn .
proposed method, (c) 5% representative, and (d) 10% representative points by the method due 10 Astrahan. ( The density estima

all cases is the same.)

of the minimum spanning tree. In a separate paper
(Chaudhuri et al., 1993) we proved that such an es-
timator is also consistent.

We have tested the effect of varying the window
width for density estimation on our method of rep-
resentative point selection. The results are shown in
Fig. 4. Although the chosen representatives are dif-
ferent for different values of window width, they are
evenly distributed in each case, which is desirable.

We have compared the method of Astrahan with
that of ours where 5% and 10% representatives are to
be chosen from 200 random points. The density es-
timation was done by a Kernel-based method in both
cases where the width of the window is h=/l/N
where /=length of the minimal spanning tree of the

data and N=the number of data points. However. I
we use d=2#4 in Astrahan’s method, we can not gﬁ‘
5%, i.e. 10 representative points. In the current &
ample, d=0.5h was chosen for the desired resu!lv
Similarly, for 10% representative points, d=025
was needed. The results are compared in Fig. 5_’ whert
our method shows more homogeneous distributi??
in representative points. We obtained similar results
on other data sets also. i

It may be an interesting theoretical study 10 Seehe
the 7 data chosen by the proposed approach has 1 :
distribution identical to that of the original data &
tends to infinity.
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