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ABSTRACT

Classification of certain linearly nonseparable pattern classes with nonconvex deci-
sion regions is a problem that cannot be efficiently handled by the Bayes’ classifier for
normal distributions or other metric-based methods. An attempt is made here to
demonstrate the ability of fuzzy versions of Kohonen’s net and the multilayer percep-
tron for classification of such patterns. In these models, the uncertainties involved in
the input description and output decision have been taken care of by the concept of
fuzzy scts whereas the neural net theory helps to generate the required concave and /or
disconnected decision regions. Superiority of these fuzzy models (over the respective
conventional versions, the Bayes’ classifier and seven other existing neural algorithms)
has been adcquately established when they are implemented on different sets of linearly
nonseparable pattern classes. The effect of fuzzification at the input has been investi-
gated for both models. The contribution of the a priori probabilities of the pattern
classes in the back-propagation procedure for weight updating has also been studied.

1. INTRODUCTION

Artificial neural networks [1]-[3] are massively parallel interconnections
of simple neurons that function as a collective system. An advantage of
neural nets lies in their high computation rates provided by massive
parallelism, so that real-time processing of huge data sets becomes feasible
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with proper hardware. Information is encoded among the various connec-
tion weights in a distributed manner.

The utility of fuzzy sets [4]-[8] lies in their capability, to a reasonable
extent, to model uncertain or ambiguous data so often encountered in real
life. Besides, human reasoning is somewhat fuzzy in nature. Hence, to
enable a system to tackle ambiguous (ill-defined) data in an effective
manner, one may incorporate the concept of fuzzy sets into the neural
network.

There have been several attempts recently [9]-[12] to make a fusion of
fuzzy logic and neural networks for better performance in decisionmaking
systems. The concept of fuzzy sets takes care of the uncertainties involved
in the input description and also in the output decision whereas the neural
net model helps to generate the appropriate class boundaries (which may
be disconnected and concave). The development of fuzzy versions of
Kohonen’s self-organizing network [13] and the multilayer perceptron
(MLP) (14] for pattern recognition recently has been reported. Their
suitability for classification of speech patterns has also been demonstrated.

During self-organization, the input vector of the fuzzy extension to
Kohonen’s model [13] includes some contextual information (with lower
weightage) regarding the class membership of the pattern (in addition to
the input feature information). This may, therefore, be termed a partially
supervised fuzzy classifier. The training samples are presented to the
network in cycles until the output space is ordered, as measured by an
index of disorder. Next the neurons in the output space are calibrated
(labeled) by using only the class information parts of these input vectors.
The self-organization and calibration together constitute the training phase
for the fuzzy model.

The fuzzy multilayer perceptron (MLP) [14], on the other hand, func-
tions as a fully supervised classifier. In the learning phase the training
samples are presented to the network in cycles until it finally converges to
a minimum error solution. A heuristic for gradually decreasing the learn-
ing rate and momentum is used to help prevent oscillations of the mean
square error in the process of convergence.

- Both proposed fuzzy neural models [13], [14] are capable of handling
input features in quantitative and/or linguistic form and can take care of
unce_r?ain‘ty and/or impreciseness, to a reasonable extent, in the input
specifications as _well as in the output decision. The components of the
input vector consist pf the membership values to the overlapping partitions
of linguistic properties low, medium, and high corresponding to each input
feature. Thereby an n-dimensional feature space is decomposed into 3"
overlapping subregions corresponding to the three primary properties [15].
This enables the models to utilize more local information of the feature
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space and is found to be more suitable in handling linearly nonseparable
pattern classes having nonconvex decision regions. Output is provided in
terms of membership functions. One also can obtain hard decisions (as a
special case).

In this work we concentrate on the problem of handling pattern classes
that have concave and disconnected decision regions. Such patterns cannot
be properly classified by the parametric Bayesian method for normal
distributions or other metric-based algorithms. Three sets of such linearly
nonseparable pattern classes (artificially generated) are depicted in Fig-
ures 1-3. There are two pattern classes (1 and 2) in each case. The region
of no pattern points is modeled as the class none (no class). In two cases,
the decision region of class 2 is disjoint and its a priori probability is much
lower as compared to that of the other classes. It is to be noted that the
Gaussian classifier makes strong assumptions concerning underlying distri-
butions and is more appropriate when the class distributions are known
and match the Gaussian assumptions [1]. Nonparametric classifiers gener-
ally construct a measure of performance over the training set and adjust
the variables of the classifier to optimize this measure [16). Neural net-
works belong to this category of classifiers and possess the ability to also
perform nonlinear classification involving nonconvex and disjoint decision
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Fig. 1. Pattern Set A in the F)-F, plane.
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Fig. 2. Pattern Set B in the F,-F, plane.
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Fig. 3. Pattern Set C in the F,-F, plane.
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regions. It may be mentioned in this connection that the nonparametric
single layver perceptrons are incapable of classifying linearly nonseparable
patterns [17].

In this paper. an attempt is made to demonstrate the ability of the fuzzy
versions of Kohonen's self-organizing network [13] and the multilayer
perceptron [14] for classification of the aforesaid linearly nonseparable
patterns. The effect of fuzzification at the input has been investigated for
both models. Their performance is adequately compared with those of the
Baves™ classifier, the nonfuzzy versions of the two neural models, other
existing neural algorithms of Rumelhart and McClelland {2}, McClelland
(reported in [18]), Franzini [18], Chan and Fallside [19], Tollenaere [20],
Silverman [21]. and networks using second-order weight correction [2]. The
contribution of the a priori probabilities of the pattern classes in the error
derivative of the back-propagation procedure for weight updating has also
been studied.

2. KOHONEN’S SELF-ORGANIZING NEURAL MODEL

Let us consider the self-organizing Kohonen network [3]. Let M input
signals be simultaneously incident on each of an N XN array of neurons.
The output of the ith neuron is defined as

n(t)=a|[m ()] x(t) + ¥ wem (1= A1) |, (1)
kesS;

where x is the M-dimensional input vector incident on the neuron along
the connection weight vector m;, k belongs to the subset S, of neurons
having interconnections with the ith neuron, w,; denotes the fixed fegd—
back coupling between the kth and ith neurons, o[] is a suitable sig-
moidal output function, ¢ denotes a discrete time index, and T stands for
the transpose.

If the best match between vectors m; and x occurs at neuron ¢, then we
have

Ik—m, = minlx—m[, i=0,1,....N% (2)

where ||-|| indicates the Euclidean norm.
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The weight updating is given by [3] as

m,(¢)+a(t)(x() —m,(t)), forieN,
m,(t), otherwise,

(3)

m,(t+1)=

where a() is a positive constant that decays with time and N, defines a
topological neighborhood around the maximally responding neuron c, such
that it also decreases with time. After a number of sweeps through the
training data during self-organization, with weight updating at each itera-
tion obeying Eq. (3), the asymptotic values of m; cause the output space to
attain proper topological ordering.

3. KOHONEN’S NET AS A FUZZY CLASSIFIER

In this section we describe, in brief, a fuzzy version of Kohonen’s model
(reported in [13]) that is capable of representing input in linguistic and/or
quantitative form and providing output decision in terms of membership
values. We consider a single-layer two-dimensional rectangular array of
neurons with short-range lateral feedback interconnections between neigh-
boring units. In the first stage a set of training data is used by the network
to initially self-organize the connection weights and finally calibrate the
output space. After a number of sweeps through the training set, the
output space becomes appropriately ordered. An index of disorder is
computed to evaluate a measure of this ordering. The network is now

supposed to encode the input space information among its connection
weights.

A. THE INPUT VECTOR

The input to the proposed neural network model consists of two
portions. In addition to the input feature representation in linguistic form,
there is some contextual information regarding the fuzzy class membership

of each pattern (used as training data) during self-organization of the
network.

1. Feature Information

. Let X={X,X,,...,X,} be a set of L pattern points in an n-dimen-
sional feature space. In the model under consideration, each input feature
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F, (in quantitative and/or linguistic form) can be expressed in terms of
membership values indicating a measure of belongingness to each of the
linguistic properties low, medium, and high [15). Therefore, an n-dimen-
sional pattern X, =F,=[F,, F,,..., F,,] may be represented as a 3n-dimen-
sional vector

X;= [ Mumu-‘,l)(x,'), l"Lmulium(Fll)(Xi)’ Mmng,l)(Xi)’---’ /'Lhigh(Fi,,)(Xi)]’ (4

where the p value indicates the membership of X to the corresponding
linguistic set along each feature axis.

It is to be noted here than an n-dimensional feature space is decom-
posed into 3" overlapping subregions corresponding to the three primary
properties [15]. This enables the model to utilize more local information of
the feature space and it seems to be more effective in handling the linearly
nonseparable pattern classes (shown in Figures 1-3) that have nonconvex
decision regions.

For numeric feature value F; (along the jth axis), the 7 function (in the
one-dimensional form) lying in the range [0, 1] is given as

2(1—|F —cl/a)’, for A/2<IF—cl<A,
m(Fic,A)= 1—2(|Fj—cl//\)2, for 0 <|F,—cl<A/2, )

0, otherwise,

where A> 0 is the radius of the 7 function with ¢ as the central point at
which 7(c;¢,A\)=1. The values of the As and cs for each of the three
linguistic properties low, medium, and high are given by Eqgs. (ND-(9).

When the input feature F; is linguistic, its membership values for the 7
sets low, medium, and high in Eq. (4) may be quantified as

0.7 095 0.7

e f Uod BP0 e 6
med’”m—{L’M’H’ (6)
0.6

high={ =L~ 37 7|

Let F; ~and F, denote the upper and lower bounds of th'e dynamic
range of teature F; in all L pattern points, considering numerical values



304 S. K. PAL AND S. MITRA

only. Then for the three linguistic property sets we define

1
/\medium(Fj) = 7 (P}mux —F:imm)

cmedium(Fj):F}mm_‘— )\metlium(F]) (7)
1
Alow(Fj) = fdenom (Cmedium(F,) - ij,,,)
Clow(Fl)zcmedium(F])_0'5* /\10»*(["/) (8)
1

)\high(Fj) = fdenom (F}max - Cmedium(FJ))
Chigh(F,) = Cmedium(Fy T 0-3% Apighcr)) %)

where 0.5 <fdenom < 1.0 is a parameter that controls the extent of over-
lapping.

2. Class Information in Contextual Form

In many real-life problems, the data are generally ill-defined with
overlapping or fuzzy class boundaries. Each pattern used in training may
possess finite belongingness to more than one class. To model such data, it
often becomes necessary to incorporate some contextual information re-
garding class membership as part of the input vector [13]. However, during
self-organization this part of the input vector is assigned a lower weightage
so that the linguistic feature properties dominate in determining the
ordering of the output space. During calibration we use the contextual
class membership information part of the input vector only for determin-
ing the hard labeling of the output space.

The pattern X; is considered to be a concatenation of the linguistic
properties in Eq. (4) and the contextual information regarding class
membership. Let the input vector be expressed as

x=[x’,xf’]T=[x’,0]T+[O,X”]T, (10)

where x’ contains the linguistic information in the 3z-dimensional space of
Eq. (4) and x" covers the class membership information in an I/-dimen-
sional space for an I-class problem domain. So the input vector x lies in a
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(3n +1)-dimensional space. Both x' and x” are expressed as membership
values.
The membership of the ith pattern to class C, is defined as

1

(X)y=—"""+
i) 1+(Zik/Fd)Fv’

(1)

where =, is the weighted distance between the ith pattern and the kth
class. 0 < w,(X,) < 1 and the positive constants F, and F, are the denomi-
national and exponential fuzzy generators that control the amount of
fuzziness in this class-membership set.

In this connection, note that the particular problem of modeling the
decision surfaces for classifying the linearly nonseparable patterns of
Figures 1-3 might also be eased by incorporating the contextual class
information in the input vector. However, in such cases, z; of Eq. (11)
may be set to 0 for a particular class and to infinity for the remaining
classes. so that w,(X,)={0,1}.

For the ith input pattern we define

x":s*[l‘Ll(Xi)P"’FLI(Xi)]T’ (12)

where 0<s<1 is the scaling factor. To ensure that the norm of the
linguistic part x' predominates over that of the class membership part x”
in Eq. (10) during self-organization, we choose s <0.5.

3. Modification of Input during Calibration

During calibration of the output space the input vector chosen is
x=[0,x"], where x” is given by Eq. (12), such that

], if g=k, 13
M"(Xi)_{o, otherwise, (13)

for ke{l,...,1} and s=1. The N* neuron outputs 7, are calibrated W.I.t.
the [ classes. Here the class information of the training patterns is given
full weightage while the input feature information is suppresslefl. The
primary objective of this stage is to label each neuron by the partition for
which it elicits the maximum response. The resulting hard (labeled)
partitioning of the output space may be used to qualitatively assess the
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topological ordering of the pattern classes w.r.t. the input feature space.
We also generate a fuzzy partitioning of the output space.

B. THE ALGORITHM

Consider an N XN array of neurons such that the output of the ith
neuron is given by Eq. (1), with the subset S; of neurons being defined as
its r-neighborhood N,, where 0 <r<3. We use

b, forr=1,

wki: _%’ fOrrZZ, (14)

0, otherwise.

Here b is the mutual interaction weight for the lateral coupling w,.
1. Weight Updating

Initially the components of the m;s are set to small random values lying
in the range [0,0.5]. Let the best match between vectors m; and x, selected
using Eq. (2), occur at neuron c¢. Using Eq. (3), the weight updating
expression may be stated as

m,(¢) +h, *(x(t) ~m,(t)), forieN,r=0,1,...,3,

m;(t+1)=
( ) m;(t), otherwise,

(15)

where N, qescribes a r-neighborhood around neuron ¢ such that r
dgcreases with time. Here the gain factor 4, is considered to be bell-shaped
like the 7 function, such that |4, is the largest when i =c and gradually

decreases to zero with increasing distance from c¢. Besides, lh ;| also decays
with time.

We define

ho— (I-rxfy=a’
“ [1+(nt/cden0m)2] ’

(16)
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where nt is the number of sweeps already made through the entire set of
training samples at any point of time, cdenom is a positive constant
suitably chosen and 0 <f, a’ < 1. The decay of |4 ;] with time is controlled
by nt. The slowly decreasing radius of the bell-shaped function h,; and the
corresponding change in |4_| are controlled by the parameters "’ and f.
Due to the process of self-organization, the randomly chosen initial m;s
gradually attain new values according to Egs. (2) and (15) such that the
output space acquires appropriate topological ordering.

2. Index of Disorder

An index of disorder D may be defined to provide a measure of this
ordering. Let msd denote the mean square distance between the input
vector and the weight vectors in the r-neighborhood of neuron c. We
define

deZ‘tr—al.lrEe—t' Z [Z {( miflz)*(l—r*f)}}’ (17)

X € trainset r ieN,

where |trainset| refers to the number of input pattern vectors in the
training set. This definition ensures that neurons nearer ¢ (smaller r)
contribute more to msd than those farther away. Also

O0<r<3, fornent=1,
0<r<?2, forncnt=2, (18)
0<r<1, otherwise.

\H
f
Nl wl— &l

Here |N,| denotes the number of neurons in the r-neighborhood of neuron
¢ such that |N,|<8, |N,|< 16, and |N;|<24 depending upon the position
of ¢ in the two-dimensional array. Note that N, implies the neuron ¢
itself.

The expression for the index of disorder is given as

D =msd(nt —kn) —msd(nt), (19)

where msd(nt) denotes the mean square distance by Eq. (17) at the end of
the nrth sweep through the training set and kn is a suitable posmve
integer. Further, D is sampled at intervals of kn sweeps. Initially ncnt is
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set to 1. Then

ncm:{ncnt—Fl, ifD<§, (20)
ncnt, otherwise,

where 0<8<0.001. The process is terminated when ncnt>3, so that
always r> 1 in Eq. (18). For good self-organization, the value of msd and,
therefore, D should gradually decrease. It is to be noted that » and f of
Egs. (15) and (16), that control | ], obey Eq. (18). The parameter ncnt of
Eq. (20) depending on D of Eq. (19), controls » and f of Eq. (18).

3. Partitioning during Calibration

During calibration the input vector x=[0,x"] of Eq. (10) is applied to
the neural network. Let the (i1),th neuron generate the highest output 7,
for class C,. We define a membership value for the output of neuron I
when calibrated for class C, simply as

n;
pe(m) =%, fori=1.. N’and k=11, (21)
/i

such that 0< () <1 and w,(n)=1 for i=(1),.

Each neuron { may be marked by the output class C,, among all /
classes, that elicits the maximal response =, . This generates a hard
partitioning of the output space. On the other hand, each neuron i has a
finite belonging or output membership w,(7,) to class C, by Eq. (21). We
may generate crisp boundaries for the fuzzy partitioning of the output
space by considering for each of the / classes the alpha-cut set {i| w,(n,) >
a'}, 0<a'<1, where o is a suitably chosen value. An ordered map of the
output space indicates good self-organization and hence grouping of the
patterns according to similarity.

4.  Testing Phase

. After.self-organization, the proposed model encodes all input data
information, along with the corresponding contextual class membership
values, distributed among its connection weights. During calibration, the
neurons are labeled by the pattern classes and the corresponding member-
s'}np values also are assigned. This is the desired fuzzy classifier. In the
final stage, a separate set of test patterns is supplied as input to the neural
network model and its performance is evaluated.



FUZZY VERSIONS OF KOHONEN’S NET AND MLP 309

During this phase the input test vector x =[x',0]", consisting of only the
linguistic information in the 3n-dimensional space defined by Eq. (4), is
applicd to the network. Let the plth and p2th neurons generate the
highest and second highest outputs n, and m, , respectively, for test
pattern p. We define ' !

,'Lk:( 7]_/',,,") - I‘Lkl(npl)7

1 ) . (22)
) = 7 ) *
and kl =kl1, k: =k2, if “’kl(npl) = (1/7’f,,)“k2(np2)* ns,,‘ Otherwise,
1
/J“kl( 77/,,,,,) = ?Mkz(npz) * s,
' (23)

”"'\‘:( 77&,,,,,) = Mp1 )s

such that k, =k2 and k,=k1. Here k1 and k2 refer to the output classes
(hard partitions) C,, and C, that elicited maximal strength responses at
the pith and p2th neurons, respectively, during calibration. On the other
hand, C; and C,, are dependent both on the actual output responses
during testing and the membership values evaluated during calibration
w.r.t. classes C,, and C;,. The membership values on the right-hand side
of Egs. (22) and (23) are defined as

TP
#«kl(”’lpl): M : (24)
i1

from Eq. (21), where 7, ~and 7, are obtained during calibration for
class C,,. Hence pattern p may be classified as belonging to class Cy, with
membership p (nf,,m) lying in the interval [0,1], using the first choice and
to class C, with membership p;, (TIS,,,,,) using the second choice. It is to be'
noted that classes C,, and C, are determined from classes Cy; and Cy;
by Egs. (22) and (23).

4. MULTILAYER PERCEPTRON

Let us next consider the MLP [2] network. After a lowermost input
layer there are usually nay number of intermediate or hidden la_yers
followed by an output layer at the top. There exist no interconnections
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within a layer whereas all neurons in a layer are fully connected to
neurons in adjacent layers. The total input xj’-’+1 received by neuron j in

layer h+1 is defined as

x}f’”=2yi”w]ﬁ-’—0j"“, (25)
i

where y/ is the state of the ith neuron in the preceding hth layer, w)! is

the weight of the connection from the ith neuron in layer 4 to the jth
neuron in layer £+ 1 and 6/*" is the threshold of the jth neuron in layer
A+ 1. Threshold Gj"“ may be eliminated by giving the unit j in layer 4 +1
an extra input line with a fixed activity level of 1 and a weight of — 0]-"' L

The output of a neuron in any layer other than the input layer (4> 0) is
a monotonic nonlinear function of its total input and is given as

1
h
Vi =T——=%-
! 14+e ™™

(26)

For nodes in the input layer, we have y=x], where x{ is the jth
component of the input vector clamped at the input layer.

The least mean square (LMS) error in output vectors, for a given
network weight vector w, is defined as '

E(w)=1Y (y(w) —d,.). 27)

yvhere y]{’c(w) is the state obtained for output node j in layer H in
input—output case ¢ and d; _ is its desired state specified by the teacher.
One method for minimization of E(w) is to apply the method of gradient

des'cent by starting with any set of weights and repeatedly updating each
weight by an amount

JE

Awl(1) = S +adwl(t—1), (28)

1

where the positive constant e controls the descent, 0 < w< 1 is the damp-

ing coeffigient or momentum, and ¢ denotes the number of the iteration
currently in progress.
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Using Egs. (25)-(27), we have

:f - %y}’(l AL (29)
where
JE y/'—d,, forh=H,
ay, - ) g—f/\ %w,’&, otherwise, (=0

such that units j and k lie in layers 4 and A+ 1, respectively. The central
idea is to first use a forward pass for each input—output case c, starting at
the input neurons, to compute the activity levels of all the neurons in the
network. Then a backward pass, starting at the output neurons, is used to
compute the error derivative 7E /dy; and back-propagate to enable weight
updating until the input layer is reached.

After a number of sweeps through the training data, the error E(w) in
Eq. (27) may be minimized. In the testing phase the neural net is expected
to be able to utilize the information encoded in its connection weights to
assign the correct output labels for the test vectors that are now clamped
only at the input layer.

5. FUZZY EXTENSION TO THE MLP MODEL

We now discuss, in brief, the fuzzy version of the MLP (reported in
[14]), which is capable of representing input in linguistic and /or quantita-
tive form and providing output decision in terms of membership values.
The components of the input vector consist of the membership values to
the overlapping partitions of linguistic properties low, medium, and high
corresponding to each input feature. This provides scope for incorporating
linguistic information in. both the training and testing phases of the said
model and increases its robustness in tackling imprecise or uncertain input
specifications. During training, supervised learning is used to assign output
membership values lying in the range [0,1] to the training vectors. The
back-propagated error has inherently more weightage in case of nodes
with higher membership values such that the contribution of ambiguous or
uncertain vectors to the weight correction is automatically reduced. A
heuristic for gradually decreasing the learning rate and the momentum 18
used to help avoid spurious local minima and usually prevent oscillations
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of the mean square error in the weight space, in the process of conver-
gence to a minimum error solution.

The details regarding the input feature representation in this model (for
quantitative and /or linguistic input) is the same as explained earlier in
Section 3A with reference to the fuzzy self-organizing model. The input
vector x is represented in the 3n-dimensional space of Eq. (4).

A. OUTPUT VECTOR REPRESENTATION

For an [-class problem domain, the membership of the ith pattern to
class Cy, lying in the range [0,1] is given as in Eq. (11). Then for the ith
input pattern we define the desired output of the jth output node as

d,=p;(X;), (31)

where d;=[0,1]. During testing, the output of the jth output neuron
denotes the inferred membership value of a test pattern to the jth class.

Note that in the special case of classifying the linearly nonseparable
patterns of Figures 1-3, the weighted distance z,, of Eq. (11) between the
ith pattern and the kth class is set to 0 for one class and to infinity for the
remaining classes. Therefore, d;= ;,Lj(Xi) ={0, 1} in such cases.

B. WEIGHT UPDATING

The € of Eq. (28) is gradually decreased in discrete steps, taking values
from the chosen set {2,1,0.5,0.3, 0.1,0.05,0.01,0.005,0.001}, while the mo-
mentum factor o« is also decreased. Let the various values of e be
indicated by ,=2, €, =1,..., €,=0.001 such that ¢, indicates the (i + 1)th
value of €. Let ay=0.9 and &, =a,= - = a, =0.5. Note that « close to

- . q
zero is avoided because small values of « are unable to prevent unwanted

oscillations. We use

;= i+ 1, if mse(nt —kn) —mse(nt) <8,
: : (32)
i, otherwise,

where i=0 initially, |e|=g+ 1, and 0< &<0.0001. Here mse(nt) is the
mean square error at the end of the nrth sweep through the training set
and kn is a positive Integer such that mse is sampled at intervals of kn
sweeps. The process Is terminated when i > g and €,=0.001. At this stage
the network is said to have converged to a good minimum error solution
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and the corresponding value of nt indicates the number of sweeps re-
quired in the process.

We use two measures of percent correct classification for the training
set. The output, after a number of updating steps, is considered a perfect
match if the value of each output neuron yjH is within a margin of 0.1 of
the desired membership value d;. This is a stricter criterion than the best
match, where we test whether the jth neuron output yjH has the maximum
activation when the jth component d; of the desired output vector also

J
has the highest value, provided y/’ > 0.5.

6. OTHER NEURAL ALGORITHMS FOR COMPARISON

In this section we briefly describe the salient features of the other
neural algorithms in the comparison. These models are based on the MLP
or its variations and use different techniques for adapting the learning rate
e of Eq. (28).

A McCLELLAND'S NEW ERROR MEASURE

In this method [18], the total error of Eq. (27) is redefined as

E(w) =~ Lhn[1-(3/(w)—d,.] (33)

Jj.c

such that

o S (34)
Y 14+(d, -y 1= (dj—yj”)

for h=H in Eq. (30). This error derivative is expected to speed up the
movement of weights that had previously moved slowly because pf small
sigmoid derivatives. Hence in case of output units whose output 1s at the
wrong end of the sigmoid (and close to 0 or 1), the weight change increases
and thereby the learning time is reduced.

B. LEARNING RATE ADAPTED BY ANGLES

In this scheme proposed by Chan and Fallside [19], useful information
about the shape of the energy contour can be learned from the directions



314 S. K. PAL AND S. MITRA
of the local gradient vector VE(r) and the weight updates Aw(t‘—'l) and
Aw(z) using the vector version of Eq. (28). The angle 6(1), giving an

indication of the nature of the energy surface during training, is defined as

VE(1)-Aw(z—1)

cos o(t):_||VE(t)H|IAw(t—1)H' (35)
The learning rate is adapted as
e(t) =e(t—1)(1+3c0s 6(1)) (36)

such that e(t) decreases near the ravine walls when 7/2<6(1)<37/2
and increases at the plateaus when 6(¢1)— 0 or 27r. The damping coeffi-
cient is modified as

a(1) =M1)e(1),
where

_ IVE()II
A(t) =A(0) TAw(z = D)1

and 0<M0)< 1. This scheme is supposed to reduce oscillations at the
walls of the ravine.

C. ADAPTIVE ACCELERATION STRATEGY SSAB

This is a modification of the strategy reported by Jacobs [22]. In this
approach by Tollenaere [20], (i) every weight w,; has its own individual
(adaptive) step size ¢;;, (i) each step size ¢, ; 1s allowed to vary over time,
(iii) for each w;;, as long as the w; ; derivative does not change sign, the
corresponding ¢;; is increased, and (iv) when a change in the sign of the
w;; derivative is detected, (a) the previous weight update is undone and
then ignored in the momentum term of the following step and (b) the
corresponding ¢;; is decreased.

Therefore, as long as the weight derivative keeps changing sign, the step
size is decreased until a step can be done without causing the weight
derivative to change sign. This method requires a number of local compu-
tations and is supposed to be easier to implement on parallel architecture
computers. However, it also involves an increase in the total computational
overhead in its attempt at increasing the speed of convergence.
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D. SECOND-ORDER WEIGHT CORRECTION FOR SIGMA-PI UNITS

Considering two element conjuncts [2], the output of the jth neuron in
layer h [of Egs. (25) and (26)] is given as

vt =1 S oy, (37)
ik

where f(-) is the sigmoidal function. The error derivative corresponding to
the jth neuron in layer i of Eq. (29) becomes

JE IE 41 n-1
==y 38
ER PR (58)
such that
JF JE
3y = L ax why) Tt forO<h<H.
ik Tk

Such nets are expected to result in better performance due to the higher
order connection weight interactions. However, it should be noted that
each sweep through the training set involves a much larger number of
weight updates and leads to a resultant increase in the computational
overhead.

E. LEARNING RATE ADAPTED BY ERROR

The total error E of Eq. (27) is used to determine the learning rate € in
the method reported by Silverman and Noetzel [21]. When E(¢) <E(t—1),
€ is increased additively. On the other hand, when E()>E(t-1), € is
decreased multiplicatively. This scheme ensures that the decrease is faster
than the increase.

There is a potential pitfall in such methods if, in some dimension, the
energy landscape is such that the gradient never changes [20]. In such
cases the learning rate may keep growing and the weights may become
infinitely large.

F. HEURISTIC SCALING OF LEARNING RATE

This technique by Franzini [18] aims to maintain a maximun? value of
learning rate e such that the direction of weight change remains nearly
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constant. The angle between the error derivative vector component d,;; =
JE/dw,; at cycles ¢ and ¢t — 1 is defined as

Z,‘ d, [_1 d’ [)
cos 6= 145 (7 D iy : (39)

Vo [d,(-0]'s,, [d,(0]

The epsilon-scaling rule is given as

e(t—1)B" cos B, ifcosf>0,

e(8) = {e(l—l)B‘, otherwise, (40)

with 87=1.005 and B~ =0.8. This rule is supposed to significantly reduce
the learning time and avoid local minima (which fixed higher values of €
are likely to reach).

G. FIXED LEARNING RATE

The conventional MLP uses fixed learning rate e [2]. However, it has
been pointed out in [20] that there is an optimal step size region (osr) with
the interval [€,,, — &), €, + 8,] for every problem. For all € lying in this
region, the learning converges reasonably fast and remains stable. How-
ever, one does not know a priori where the osr is located for a particular
problem. The width of the osr scales with the absolute value of e... [20].
The network size and training set seem to influence the osr.

To overcome these problems, various techniques are currently being
used for heuristically adapting the learning rate €. A few of these schemes
are discussed in this section.

opt

H. MINIMIZATION OF CROSS ENTROPY

This is a modification of the fuzzy MLP using the more standard mean
square error criterion. In this approach [14], the cross-entropy S is mini-
mized during training. We define

S=X[-diny —(1-a)in(1-y/)] (41)
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such that the weight updating of Eq. (28) is given as

Aw/,-’(t) =—€ s

aw, +adwli(t-1). (42)

Note that

o5 _ s oy, o,
aw.. ay; dx; Iwy (43)

J

from Eq. (29), where

(9_5 _ y].Hﬁdj,
iy (1)

for i = H. Given a set of training cases, the likelihood of producing exactly
the desired vectors is maximized when we minimize the cross entropy [23].
The use of cross entropy also helps to speed up the learning in cases of
output units that are close to 0 when they should be close to 1 and vice
versa. Note that here ﬁS/&szyjH—dj. This technique also enables the
network to attain high values of perfect match.

7. IMPLEMENTATION PROCEDURE: RESULTS AND
COMPARATIVE STUDY

The two fuzzy neural network models {13], [14] have been used to
classify three sets (A4, B,C) of artificially generated linearly nonseparable
pattern classes involving nonconvex decision regions. These are depicted in
Figures 1-3 in the two-dimensional space F}-F, each set consisting of 880
pattern points. The training set consists of the pattern vectors in the
nine-dimensional (for Kohonen’s net) and six-dimensional (for MLP) forms.
The classification decision regarding the test set is inferred by each trained
neural network. The neural models were trained on the three sets of
linearly nonseparable pattern classes in succession, using different network
as well as training set sizes. Two linearly nonseparable pattern classes 1
and 2 were considered in each case. The region of no pattern points was
modeled as the class none (no class).

The effect of fuzzification at the input, by varying the radius of the
w-function corresponding to the linguistic set medium was demonstrated
for both the models. In the cases of Pattern Sets A and C, the decision
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region of class 2 was disjoint and the a priori probability of this class was
much lower than that of the other classes. For this region, the contribution
of the a priori probabilities in the error derivatives of the back-propagation
procedure for weight updating was also investigated.

In order to demonstrate the superiority of the fuzzy neural models, an
extensive comparison of their performance was made with other models.
Performance of the fuzzy MLP has been compared with those of the
conventional MLP, the Bayes™ classifier, and seven other neural algo-
rithms. Because the self-organizing, fuzzy Kohonen’s model has been used
as a classifier, its performance has been compared only with its conven-
tional version (used as a classifier) and the Bayes’ model.

A. USING FUZZY SELF-ORGANIZATION

Tables 1-3 are used to compare the performance on test set (both
classwise and overall) of different sizes of the fuzzy self-organizing neural

TABLE 1

Comparison between recognition scores for various sizes of proposed self-organizing
neural net array with s = 0.2, the nonfuzzy version of the model, and the Bayes’
classifier, using perc =50 on Pattern Set A.

Proposed Fuzzy Nonfuzzy
Class 10x10 14x14 10x20 20x10 16X16 14x 14 Bayes
1 33.0 77.4 721 68.2 65.6 96.9 100.0
2 44.9 67.3 79.6 87.7 69.3 0.0 20.4
None 72.2 55.5 40.7 44.4 53.7 4.3 24.0
Overall 48.8 68.3 59.0 61.7 61.2 52.1 63.2
TABLE 2

Comparison between' recognition scores for various sizes of proposed self-organizing
neural net array‘vylth s =0.2, the nonfuzzy version of the model, and the Bayes’
classifier, using different values of perc on Pattern Set B.

Proposed Fuzzy
Tix1a Nonfuzzy
1 16X16  18x18  16x16 Bayes

Class \perc 50 10 50 10 50 50 50 10

1 634 587 83.0 641 51.7 10.7 3
S : ; . 84 273
2 505 308 556 302 40.2 6.1 340 508
None 504 781 556 635 56.0 94.4 728 719

Overall 537 628 626 564 515 537 s55 559
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TABLE 3

Comparison between recognition scores for various sizes of proposed self-organizing
neural net array with s = 0.2, the nonfuzzy version of the model, and the Bayes’
classificr, using different values of perc on Pattern Set C.

Proposed Fuzzy

Nonfuzzy
0x10 14X 16X46 g8 16% 16 Egyes
Class \ perc 10 50 10 50 10 50 50 50 10
1 433 77.3 50.6 827 51.7 72.7 534 100.0 794
2 39.1 53.8 587 192 84.7 65.3 0.0 0.0 00
None 81.7 445 516 554 358 53.5 72.9 0.0 28.6
Overall 56.6 644 515 694 480 65.5 57.1 589 570

net {13] on the three sets of linearly nonseparable patterns A, B, and C,
respectively. Various training set sizes were used by randomly choosing
perc% samples from each representative pattern class. The remaining
(100 — perc)% samples from the original data set were used as the test set
in each case. We selected fdenom = 0.8 in Egs. (8) and (9), b=0.02 in Eq.
(14), cdenom =100 and o' =0.9 in Eq. (16), kn=10 in Eq. (19), and
6=0.0001 in Eq. (20) after several experiments.

Comparison was made with the performance of the Bayes’ classifier and
the nonfuzzy version of the network. The standard Bayes’ classifier for
multivariate normal patterns was used with the a priori probabilities
p;=IC,|/N, where |C,| indicates the number of patterns in the ith class and
N is the total number of pattern points. The covariance matrices were
different for each pattern class. The proposed fuzzy models were found to
result in better performances in all the three cases, considering individual
classwise behavior. It is to be noted that here an n-dimensional fe.ature
space was decomposed into 3" overlapping subregions corresponding to
the three linguistic properties. This enabled the model to utilize more local
information about the feature space [15] and was, therefore, bc?ttefr
equipped to classify the given linearly nonseparable patterns. This is
particularly evident on observing the classification efficiency of the. non-
fuzzy neural model for class 2 (whose recognition score is very poor) in the
case of all three pattern sets.

In addition, Table 4 shows a comparison in the classification perfor-
mance of the fuzzy neural model on Pattern Set A using different values Qf
the scale factor s of Eq. (12) (during self-organization). Here s=0.2 is
found to yield the best results. It may be noted that large values of s result
in a greater dependency on the contextual class information part of the
input vector during self-organization. Hence during testing (when s=0)
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TABLE 4

Comparison between recognition scores for various values of scale factor s using
14 x 14 self-organizing neural net array with perc =50 on Pattern Set A.

Scale Factor s

Class 0.1 0.2 0.3 0.5 1.0
1 70.0 77.4 66.0 39.1 40.0

2 69.3 67.3 73.4 73.4 93.8
None 58.0 55.5 62.3 51.2 44.4
Overall 65.5 68.3 65.5 47.4 47.6

the input vector becomes less complete, thereby leading to a poorer
recognition score on the test set consisting of the input feature informa-
tion part only. It may be noted that 0 <s < 0.5 appears suitable in this
context.

The fuzzy partitioning for the pattern classes along with the hard
partitioning of the output space are also depicted for each set of patterns.
Figures 4-6 illustrate the output maps generated for the three pattern sets
A, B, and C, respectively, using 50% of the samples from each representa-
tive class during self-organization. In each case, parts (a) and (b) show the
fuzzy partitioning for classes 1 and 2 separately (for the sake of clarity),
whereas part () gives the hard partitioning of the output space (consider-
ing all classes). Note that along the horizontal axes each pair of numerals
denotes the location of a single neuron whereas along the vertical axis one
numeral corresponds to a single neuronal location. This is done to com-
pensate for the difference in resolution along the two perpendicular axes.
A comparison of these output maps with the corresponding original
pattern sets in Figures 1-3 brings forth the utility of the fuzzy neural net
in modeling the given linearly nonseparable pattern sets.

B. USING THE FUZZY MLP

A detailed study was made with the fuzzy MLP [14] in the batch mode
of updating. Various numbers of hidden nodes m were used in conjunction
with different training set sizes perc% (chosen as explained in Section 6A).
We selected fdenom =0.8 in Eqgs. (8) and (9) and kn =10 and 6= 0.0001 in
Eq. .(32) after several experiments. The effect of using a different number
of hidden layers was investigated. The performance of a modified version
of the proposed fuzzy MLP that minimizes cross-entropy (model H)
(reported in [14]) instead of the more standard mean square error measure
(model O) has also been demonstrated (in the case of Pattern Set A).
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Fig.4. Output map generated by 14 X 14 self-organizing neural net array withA perc = 50
and 5 =0.2 for Pattern Set A. (a) Fuzzy partitioning for class 1; (b) fuzzy partitioning for
class 2; (c) hard partitioning of the output space.

Tables 5 and 6 demonstrate the effect of using three and more layers
(having m nodes in each hidden layer) and different training set sizes on
the proposed neural net (model O) for the three pattern sets (A, B, C). In
Table 5 an additional comparison is provided with the model H for Patiern
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Fig.5. Output map generated by 16 X 16 self-organizing neural net array with perc =50

and s=0.2 for Pattern Set B. (a) Fuzzy partitioning for class 1; (b) fuzzy partitioning for
class 2; (c) hard partitioning of the output space.
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TABLE 5

Comparison in output performance for various sizes of the proposed neural net model.
having m nodes per hidden layer and using differcnt values of perc, with model H
for pattern Set A.

Model O Model H

Layers 3 3 4 4 4 4 5 5 3 4 4 4
perc 1 50 10 10 10 50 10 50 10 10 10 50
Nodes m 16 16 17 18 19 19 11 11 16 18 19 19
Best b (%) 100. 87.7 100. 100. 100. 98. 100. 95.7 98.9 989 100. 98
Perfect p (%) 16.1 187 69. 77. 81.6 53.6 73.6 70. 66.7 989 954 841
mse 008 .046 .005 .003 .002 .016 .004 .023 .016 .003 .0007 .011
Test

mse, 066 075 .112 .065 .067 .028 .086 .042 .071 .124 .06 .03

Class 1(%) 90.5 91.7 88.1 91.3 932 95.6 96.1 943 91.8 92. 937 95.6
Class2(%) 863 469 67. 69.3 71.6 91.8 59.1 83.6 84.1 68.2 76.1 817
None (%) 852 86.4 735 84.2 824 90.7 763 90.7 78.7 615 835 913

Overall 1 (%) 88.1 84.8 80.4 86.2 86.9 93.4 84.7 91.8 86.1 782 88. 932

TABLE 6

Output performance for various sizes of the proposed neural net model, having m
nodes per hidden layer and using different values of perc, on Pattern Sets B and C.

Pattern Set B Pattern Set C

Layers 3 3 4 4 5 5 3 3 4 4 5 S
perc 10 50 10 50 10 50 10 50 10 50 10 50
Nodes m 11 11 14 14 14 14 13 13 12 12 13 13
Best b (%) 100. 86.6 100. 993 100. 99.6 100. 679 100. 973 100. 96.6
Perfect p (%) 62.1 12.1 655 69.1 874 80. 32.2 (63 736 376 793 604
mse (0.007 0.086 0.004 0.008 0.005 0.005 0.008 0.159 0.003 0.024 0.005 0.026
Test

mst, 0.088 0.09 0.09 0.041 0.095 0.037 0.143 0.168 0.162 0.042 0.097 0.036

Class 1 (%) 786 937 885 964 87. 973 839 100. 79.7 957 82. 95
Class 2 (%) 84. 68. 777 917 89.7 948 848 0. 282 846 717 923
None (%) 849 849 839 883 786 918 595 0. 627 87.1 8l. 896

Overall 1 (%) 831 834 837 911 832 938 754 589 707 92. 811 929

Set A. The perfect match p, best maich b, and mean square error mse
correspond to the training set, whereas the remaining measures refer to
the test set. Table 5 demonstrates using Pattern Set A that model H always

converged .to an appreciably better perfect match as compared to the
corresponding version of model O.
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C. FUZZIFICATION AT THE INPUT

The effect of varying the amount of fuzziness of the input vector was
investigated for both fuzzy models [13], [14]. The input feature information
is given in the 3n-dimensional space of Eq. (4) in terms of the linguistic
property sets low, medium, and high. The o-functions that represent these
properties arce defined by the radius A and center ¢ values given by Eqgs.
{(N-(9).

Varving A,,.qm While keeping A, and Ay, fixed [by Egs. (8) and
(9)]. one can alter the overlapping among the three m-functions. Let
Mvodiom = 1108 % A yims Where frios =1 for the value of A, gium given by
Eq. (7). As we decrease fnos, the radius A, gium decreases around ¢, gium
such that ultimately there is insignificant overlapping between the 7-func-
fions medium and low or medium and high. This implies that certain
regions along the feature axis F; go underrepresented such that
Mpower X Bomedimir, {X ;) and ;Lh,-gh(Fl])(X,-) attain small values. Note
that the particular choice of values of the As and cs by Egs. (7)—(9) ensure
that for any pattern point X, along Fj, at least one of /U,,OW(F”)(XI»),
oediamir (X ), and Pnighcr, (X)) is greater than 0.5 [14]. On the other
hand, as we increase frnos the radius A,.qi,, increases around C,,.gium
such that the amount of overlapping between the m-functions increases.

Tables 7 and 8 demonstrate the performance of the fuzzy Kohonen’s
net and the fuzzy MLP, respectively, with different values of frnos on
Pattern Set A. Kohonen’s model was implemented on a 14 X 14 array using
perc =50 whereas the MLP used one hidden layer that had 17 nodes with
perc = 10. This was done to maintain uniformity with the results of Tables
1 and 5, respectively. It was observed that for the Kohonen’s model
0.8 < frnos < 1.2 gave good results whereas the MLP generated good perfor-
mance for 0.7 <fnos < 1.2. This implies that the amount of overlapping
signified by Egs. (7)—(9) [14] indicated the most suitable choice of the

TABLE 7

Effect of varying fuzziness of input features for fuzzy Kohonen’s model using
14 x 14 array with perc =50 on Pattern Set A.

fnos
Class 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
1 67.8 70.0 67.8 80.8 77.4 60.0 58.7 439
2 551 ©53.0 59.1 77.5 67.3 63.2 81.6 91.8
None 45.6 42.6 53.7 53.7 55.5 58.0 53.7 58.0

Overall t 58.2 58.0 61.6 70.5 68.3 59.6 59.4 54.4
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TABLE 8

Effect of varying fuzziness of input features for three-layered fuzzy MLP model
using m = 17 hidden nodes with perc =10 on Pattern Set A.

fnos
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Best b (%) 943 989 100. 100. 100. 100. 100. 100. 100. 100.
Perfect p (%) 219 00 541 184 345 368 173 460 219 196
mse 0.039 0.019 0.006 0.008 0.006 0.006 0.007 0.005 0.008 0.012
Test

mse, 0.113 0.092 0.068 0.073 0.076 0.077 0.099 0.094 0.128 0.131

Class 1(%) 850 905 908 884 893 867 879 860 789 864
Class 2 (%) 750 693 602 670 750 738 579 647 579 545
None (%) 69.7 759 89.0 86.6 845 91.0 838 81.7 783 694

Overall t (%) 783 828 867 853 860 868 831 821 764 766

values of the As and cs. Very large or very small amounts of overlapping
among the linguistic properties of the input feature are found to be
undesirable.

D. COMPARISON OF OTHER NEURAL ALGORITHMS

A comparison was made among several layered neural net models
(variations of MLP) mentioned in the following text, using the same
number of hidden nodes as well as the same set of initial random weights
as in the corresponding proposed fuzzy model O [14]. This enabled a more
appropriate comparison in performance of the various models. It was
observed that the overall performance of the fuzzy model was better,
especially considering the fewer number of sweeps (through the training
set) required in the process of convergence. The other models compared
here use (i) McClelland’s new error measure reported in [18] (model M),
(ii) learning rate adapted by angles [19] (model C), (iii) adaptive accelera-
tion strategy SSAB [20] (model A), which is a modification over the
strategy reported in [22], (iv) second-order weight correction for sigma-pi
units [2] (model S), (v) learning rate adapted by error [21] (model P), (vi)
heuristic scaling of learning rate [18] (model F), and (vii) the conventional
fixed learning rate [2] (model R).

.Tl.le above-mentioned models were modified to incorporate fuzzy lin-
guistic values in the 3n-dimensional input space of Eq. (4) to facilitate a
more authentic comparison with the proposed fuzzy model O. The objec-
tive was mainly to demonstrate the utility of the heuristic adaptation of the
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learning rate e by Eq. (32). However, model M (using a different error
measure) and model S (using a different network architecture) were
compared incorporating the same scheme (as model O) for adapting e.
The performance of the traditional nonfuzzy version of the MLP (model
0'), using the same learning rate variation scheme as model O, was also
studied.

Tables 9-11 compare the performance of the fuzzy neural network on
the three pattern sets (A, B,C) with the various other models previously

TABLE 9

Comparison between output performance of various three-layered neural models
on Pattern Set A using m =17 hidden nodes with perc = 10.

Model

R
O €=20e=10e=05€=03¢e=01 P C M F A S O

Best b (77) 100.  70.2 100, 989 96.6 782 100. 100. 100. 50.6 77. 93.1 73.6

Perfect p (7)) 34.5 0. 9.2 2.3 1.2 104 46 15. 58 0. 115 115 35
mse 0.006 0.064 0.013 0.015 0.023 0.081 0.023 0.018 0.008 0.162 0.109 0.06 0.096
Test

mse, 0.076 0.13 0.084 0.087 0.087 0.132 0.09 0.088 0.119 0.161 0.169 0.12 0.119

Class 1 (%) 893 947 864  89.1 90.3 843 959 88.6 862 99. 538 872 97.8
Class 2 (%) 75. 4.5 76.1 81.8 454 318 76.1 647 50. 79 216 829 00
None (%) 845 787  81.1 77.3 842 694 70.1 814 763 46. 79.7 642 72.]

Netr (%) 86. 788 833 84. 83.1 73. 842 833 785 695 59.7 783 775

TABLE 10

Comparison between output performance of various three-layered neural models
on Pattern Set B using m = 11 hidden nodes with perc = 10.

Model
O P C M F A S (0}
Best b (%) 100. 97.7 94.3 100. 61. 60.9 190. 87.4
Perfect p (%) 62.1 35.7 18.4 28.8 0. 2.3 472 1.2
mse 0.007 0018 0.039 0.007 0133 0.113 0.007 0.078
Test
mse, 0.088 0.105 0.121 0.099 0.174 0.142 0.076 0.152

Class 1 (%) 78.6 83.1 85. 83.6 55.7 65.6 82.1 47.7
Class 2 (%) 84. 78.8 64.5 74.3 36. 32. 89.7 72.0
None (%) 84.9 81. 79.3 84.4 78.1 88.9 84.6 82.0

Overall ¢ (%)  83.1 81.1 715 81.9 63.1 70.5 85.1 71.1
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TABLE 11

Comparison between output performance of various three-layered neural models
on Pattern Set C using m = 13 hidden nodes with perc = 10.

Modecl
O P C M F A S o
Best b (%) 100. 93.1 93.1 100. 70.1 82.8 100. 77.1
Perfect p (%) 32.2 19.6 0. 334 10.4 9.2 10.4 8.1
mse 0.008 0.049 0.041 0.009 0.116 0.09 0.011  0.104
Test
mse, 0.143 0.139 0.14 0.149 0.162 0.163 0.131 0.16
Class 1 (%) 83.9 85.4 84.8 79.7 85. 929 90.1 87.1
Class 2 (%) 84.8 0. 0. 91.3 0. 0. 67.4 0.
None (%) 59.5 70.9 69.9 61.6 50.1 279 458 51.6

Overall 1 (%) 754 75.4 74.6 74. 67.8 64.7 73.2 69.6

mentioned, choosing m nodes in the single hidden layer and 10% of
training samples from each representative class. The choice of m was
made after several runs with different number of hidden nodes. Best
results were obtained with m =17, 11, and 13 for pattern sets A4, B, and C,
respectively. In all three cases the nonfuzzy model O gave poorer results.
This is particularly evident on observing the very poor recognition score
for class 2 in the case of Pattern Sets A and C. It may be noted that the use
of fuzzy linguistic inputs caused the n-dimensional feature space (as in
model O') to be decomposed into 3" overlapping subregions corresponding
to the three primary properties. As mentioned before, this enabled the
fuzzy model to utilize more local information about the feature space and
was, therefore, better equipped to handle the linearly nonseparable pat-
tern classes that have concave decision regions.

All models [except M and S that terminated by the criterion proposed in
Eq. (32)] were run for the same number of sweeps as required by the
corresponding model O before convergence. This allowed us to assess the
status of the other models at the time when model O converged after
hav%ng started from the same set of initial connection weights and then
pa_vmg been trained with the same set of pattern points. In this connection,
It 1s worth mentioning that the recognition score depends on the terminat-
1ng_p0int of the algorithm as well as on the heuristic used for learning rate
variation. However, when a neural algorithm converges to a reasonably
good solution over a smaller number of sweeps through the training set,
this is indicative of its efficiency. Hence, the comparison provided with the
other algorithms in Tables 9-11 (using the same terminating point and
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uniform input representation), with different heuristics for adapting the
learning rates. helps to bring out the utility of the scheme proposed in [14]
for model O. Further, it is to be noted that model S involves a larger
number of connection weights (second-order connections) as compared to
all other models used here. Therefore, a certain number of sweeps in case
of model S entail a much larger number of weight updates (increased
computational overhead) as compared to the other models. Note that
investigations regarding model R have been reported in detail with respect
to Partern Ser A only (in Table 9 and Figure 8) because it uses a constant
learning rate that is verv much problem dependent.

On the whole. the performance of model O over Pattern Set C was
observed to be poorer than that of its performance over the other two
pattern sets. This 1s perhaps an indicator of the more difficult nature of the
problem in the case of Pattern Set C. Comparing the results from Tables
9-11. we conclude that model O gave consistently good performances over
all three of the linearly nonseparable pattern sets. On the other hand, the
behavior of the other models varied over the same three cases.

Figures 7-10 illustrate the variation of the mean square error of the
various layered neural net models during training with the number of
sweeps. using perc = 10, over the three linearly nonseparable pattern sets
(A.B.C). All models (except S) were assessed by their status up to the
sweep number when the corresponding three-layered model O converged.
Figure 7 shows the results of using variations of three-layered nets with
m =17 over Pattern Set A. We observe that in the case of model S (e) the
mse decreased very rapidly in the initial stages, but stabilized to 0.06 after
around 60 sweeps. On the other hand, models O (a), C (¢), and P (d)
exhibited similar behavior in the early stages with the mse of model O
falling more rapidly after around 125 sweeps to an ultimate low value of
0.006. Model S terminated at around 190 sweeps, as indicated by the arrow
along the abscissa. Note that this corresponds to a larger number of weight
updates as compared to the corresponding stage in the other models. The
mse for model M (b) decreased rapidly from an initial high value to a
satisfactory final value that was lower than those obtained by models C
and P, which incidentally behaved better initially. Oscillations were evident
for models P and A (f) in the process of convergence. Models A (f) and F
(g) behaved rather poorly. .

Figure 8 demonstrates the results of using three-layered models R with
e=2(f), 1 (c), 0.5 (d), 0.3 (e), 0.1 (g), and model O (b) with m =17 nodes
on Pattern Set A. Tt is seen that model O (b) had the best overall behavior,
although (c), (d), and (e) also exhibited satisfactory performance. However,
a four-layered version of model O (a) with m =19 converged to a lower
final value of mse over a fewer number of sweeps through the training set.
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Fig. 7. Comparison of the variation of mean square error with the number of sweeps
for the various three-layered neural net models (using m =17 and perc=10) over
Partern Set A. (a) Model O; (b) model M; (¢) model C; (d) model P; (e) model S: (f)
model A; (g) model F.

However this entailed a larger number of weight updates. The results of
Figures 7 and 8 may be compared with those of Table 9 for a better
understanding of the behavior of the various neural models. Note that as
reported in [20], the choice of the appropriate value of € is very much
problem dependent. Here lies the advantage of choosing adaptive algo-
rithms for varying the learning rate.

In Figure 9 we depict the results of using variations of the layered
neural network models on Pattern Set B. The four-layered version of model
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Fig. 8. Comparison of the variation of mean square error with the number of sweeps
with perc = 10 over Pattern Set A between three-layered (m = 17 hidden nodes) models

R with e=1.0(¢c), 0.5 (d), 0.3 (e), 0.2 (f), 0.1 (g) and (b) model O. A four-layered version
of O with »m =19 is given (a).

O (a) with m =14 did not give superior results as compared to its
three-layered counterpart (c) with m = 11. This may also be verified from
Table 6. All other models used three layers with 7 = 11 hidden nodes. The
mse for model S(b) initially decreased rather rapidly and finally stabilized
to a low value at around 100 sweeps. The arrow along the abscissa marks
the point of termination of this algorithm. Model P (d) had a satisfactory



332 S. K. PAL AND S. MITRA

—

meon Q. error -

0 250 500 75C

=4 Sweeps

Fig. 9. Comparison of the variation of mean square error with the number of sweeps
for various layered neural net models with perc = 10 over Pattern Set B. (a) Four-layered
version of model O with m = 14. Three-layared networks with » =11 for (b) model S.
(¢) model O, (d) model P. () model M. (f) model C. (g) model A. and (h) model F.

overall performance. However, models C (f) and M (e) resulted in a final
larger value of mse at termination. Oscillations were evident for model A
(g) whereas model F (h) fared the worst. These results may be compared
with those of Table 10.

Figure 10 illustrates the results of using different layered neural net-
work variations on Pattern Set C. The four-layered version of model O (a)
with m =12 gave the lowest final value of mse. All other models used
three layers with 7 =13 hidden nodes. The three-layered version of model
O (b) had a good overall performance. Models P (e), C (d), and M (¢) had
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Fig. 10. Comparison of the variation of mean square error with the number of sweeps

for various layered neural net models with perc =10 over patiern Set C. (a) Four-layered
version of model O with m = 12. Three-layered networks with m = 13 for (b) model O,
(¢) model M. (d) model C, (e) model P, (f) model A, and (g) model F.

similar final mse values (at termination) that were higher than that of
model O. Models M (c) and A (f) exhibited a lot of oscillations in the
process of convergence. The mse value for model M was initially rather
high, but finally decreased somewhat after around 350 sweeps. Both
models A (f) and F (g) behaved rather poorly. All results of this figure may
be compared with those of Table 11.

E. CONTRIBUTION OF A PRIORI CLASS INFORMATION FOR
BACK-PROPAGATION

It may be noted from Figures 1 and 3 that the a priori probability for
class 2 in the case of Pattern Sets A and C is very low as compared to that
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of the other two classes. Therefore, the contribution of class 2 pattern
vectors toward weight correction of the MLP (positioning of the decision
surface) by Egs. (28)-(30) is much smaller relative to the contribution of
the other cases. This makes the nonfuzzy model O, with its n-dimensional
input space, unable to recognize test patterns from class 2 in case of
Pattern Sets A and C (as observed from Tables 9 and 11).

In order to take into account this fact, an error correction term is
introduced in Eq. (30). The modified equation becomes

JE _

T (y/'—d;)*i(1~p;), forh=H, (44)

where p,={C;|/N is the a priori probability of class C; and / indicates the
number of pattern classes. The correction term ensures that the lower the
value of p;, the higher is its contribution in positioning the decision
surface.

Table 12 demonstrates the effect of Eq. (44) to the back-propagation
procedure of the MLP in improving the performance of the model in the
case of Pattern Sets A and C. Note that this modification is effective in the
case of pattern classes that have widely varying a priori probabilities. The
use of the multiplicative factor serves to counteract the insignificant

TABLE 12

Comparison between the output performance of three-layered nonfuzzy (O') and
fuzzy (O) neural models with their corresponding extensions (using a priori probability
contributions) O, and O, on Pattern Sets A and C, using m hidden
nodes and perc = 10.

Pattern Set A (m=17) Pattern Set C (m =13)
© o 0 o, o o o o

Best b (%) 73.6 72.5 100. 100. 77.1 86.2 100. 100.
Perfect p (%) 3.5 0.0 34.5 1.2 8.1 5.8 32.2 414
mse 0.096 0.094 0.006 0008 0. 104 0.06 0.008 0.006
Test

mse, 0.119  0.125 0.076 0.08 0.16 0.145 0.143 0.135

Class 1 (%) 97.8 95.9 89.3 87.4 87.1 89.1 83.9 80.9

Class 2 (%) 0.0 45.4 75.0 73.8 0.0 40.9 84.8 76.0

None (%) 72.1 57.0 84.5 88.3 51.6 59.8 59.5 69.9

Overall t (%) 775 76.0 86.0 86.2 69.6 73.0 75.4 76.8
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contribution (to weight correction and hence to the positioning of the,
decision surface) of a pattern class that has very few samples.

Models O, and O, refer, respectively, to the variations of the three-
lavered models O' (nonfuzzy) and O (fuzzy) using the contribution of the
a prior probabilities. Each network used m hidden nodes with perc = 10
training samples chosen from each pattern class. Note that the recognition
score of class 2 patterns improved radically for both Patrern Sets A and C
in case of model O). The performance on the whole was superior in the
case of both models O}, and O, (relative to models O’ and O, respectively)
in the case of Pattern Set C (involving more complicated decision regions).
The relative improvement was always more noticeable in the case of model
0O, (the nonfuzzy version).

8. CONCLUSIONS AND DISCUSSION

The effectiveness of using fuzzy versions of the Kohonen’s net [13] and
the MLP [14] in classifying certain linearly nonseparable pattern classes
with nonconvex decision regions has been demonstrated. It may be noted
that such patterns cannot be properly classified by the Bayes’ classifier for
normal distributions or other metric-based methods. The components of
the input vector of these fuzzy models [13], [14] consist of the membership
values to the overlapping partitions of linguistic properties low, medium,
and high corresponding to each input feature. The use of linguistic inputs
enables an n-dimensional feature space to be decomposed in 3" overlap-
ping subregions such that more local information of the feature space can
be used. On the other hand, the neural models help in generating the
required concave and/or disconnected decision regions. The fusiqn of
these concepts, therefore, enabled the fuzzy neural models to provide a
superior performance in classifying the given linearly nonseparable pattern
sets of Figures 1-3. The effect of fuzzification at the input, by varying the
radius of the m-function corresponding to the linguistic set medium, was
demonstrated for both models. The contribution of the a priori probal?ili—
ties of the pattern classes in the back-propagation procedure for we?lght
updating was seen to be effective in classifying patterns from classes with a
low a priori probabilities.

Performance of the fuzzy MLP was compared with those of the conven-
tional MLP, the Bayes' classifier, and seven other neural algorithms.
Because the self-organizing fuzzy Kohonen’s model was use.d as a cla§51-
fier, its performance was compared only with its conventional version
(used as a classifier) and the Bayes’ model. Similar work has also been
done on Indian Telugu vowel data, but has not been reported here due to
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space limitations. It may be noted that the fuzzy self-organizing model
used partial supervision, with s >0, during self-organization. On the other
hand, the fuzzy MLP was fully supervised during training. This accounts
for the comparatively better performance of the fuzzy MLP as compared
to that of the fuzzy self-organizing network (with both models being used
as classifiers). This may also be verified by comparing Tables 5 and 6 (fuzzy
MLP) with Tables 1-3 (fuzzy self-organizing network).
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