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In this paper we study 3D digital topology under the transfor-
mation of an object point to a nonobject point and vice versa.
As a result of such a transformation, an object component in
the 3 X 3 x 3 neighborhood of the affected point may vanish
or split into two or more components or more than one object
components may merge into one. Also, cavities or tunnels in
the 3 X 3 x 3 neighborhood may be destroyed or created. One
of the goals of this paper is to develop an efficient algorithm
(topo_para) to compute the change in the pumbers of object
components, tunnels and cavities in the 3 X 3 X 3 neighborhood
of the transformed point. Another important contribution is
the classification of different types of points (e.g., arc inner
point, arc edge point, surface inner point, surface edge point)
and detection of different types of junction points (e.g., junction
between arcs, junction between surfaces and arcs, junction be-
tween surfaces) on the surface skeleton representation of a
3D digital image. Using these junction points it is possible to
segment a 3D digital surface topologically into meaningful
parts. Also, we describe an efficient algorithm for computing
the Euler number of a 3D digital image using the topological
parameters computed by fopo_para.

I. INTRODUCTION

The study of digital topology [2, 5, 6, 10, 15, 16, 22]
provides a sound mathematical basis for various image
Phocessing operations such as thinning [11, 17, 23, 24],
surface recognition [7, 12, 14], and computation of the
Euler number [1, 2, 25]. In this paper we consider 3D cubic
grid to represent a three-dimensional (3D) binary digital
image and concentrate on the effects of transforming an
object point to a nonobject point or its inverse.

Object (black) points in an image may be grouped as a
set of connected components. An object component may
contain cavities and tunnels. A cavity is a 3D analog of

hole in 2D signifying the existence of a component of
nonobject (white) points surrounded by an object compo-
nent. A tunnel, on the other hand, does not signify a new
nonobject component. However. an object component
contains a tunnel if it contains a solid handle or a hollow
torus. An open-ended hollow cylinder also has a tunnel.
In 2D there is no concept analogous to tunnel. ,

When an object point is transformed to a nonobject
point, i.e., deletion, an object component may vanish or
split into two or more object components. Similarly. cavi-
ties or tunnels of an object component may be destroyed
or created by the transformation process. On the other
hand when a nonobject point is converted to an object
point, i.e., addition, two or more object components may
join to form a single object component or a new object
component may be created. Similarly, under such a trans-
formation, cavities or tunnels may be created or destroyed.
One of the goals of this paper is to develop an efficien!
algorithm (topo_para) to compute the change in the nun-
bers of object components, tunnels, and cavities within the
3 X 3 X 3 neighborhood of p when p is deleted. This study
may be useful in many image processing operations, some
of which are mentioned above. Another important contri
bution is the classification of different types of points (¢£,
arc inner point, arc edge point, surface inner point, surface
edge point) and detection of different types of junction
points (e.g., junction between arcs, junction between suf-
faces and arcs, junction between surfaces) on the surface
skeleton representation of a 3D digital image. Using thest
junction points it is possible to segment a 3D digital surfac
topologically into meaningful parts. Also, we describe an
efficient algorithm for computing the Euler number of2
3D digital image using the topological parameters com
puted by topo_para.

In Section II we provide some useful definitions and
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qotations related to 3D digital topology. An efficient algo-
ithm called topo_para tor computing the topological
danges in the numbers of object components, tunnels, and
avities within the 3 X 3 X 3 neighborhood of the deleted
paint is developed in Section L In Section IV we address
the problems of classitving the points in a surface skeleton
gpresentation Into edge points. inner points of a surface
md are. and different junction points. Segmentation of a
iD digital surface 1s described in Section 1V, An algorithm
weompute the Euler number of a 3D digital image using
the topological parameters computed by topo_para is also
Jescribed in Section 1V, The results of application of the
ggmentation technique to several synthetically generated
3D objects are discussed in Section V.,

II. GENERAL DEFINITIONS AND NOTATIONS

Here we present a few definitions on 3D digital topology
frequently used 1n this paper. We consider 3D cubic grid
B to represent a 3D digital image. In this paper. points
wferto 3D digital grid points unless stated otherwise. We
follow the conventional definition of «w-neighborhood or
aadjacency of points. where « € {6. 18. 26}. Two nonempty
sets of points Sy and -, are said to be «-adjacent if at least
one point of 5, 1s a-adjacent to at least one point of S,.
Let §be a nonempty set of points. An a-path between two
points p. ¢ in S means a scquence of distinct points p =
popro....pn = ¢ of S such that p; is a-adjacent to p;..
I<i<n Two points p. g € S arc a-connected in S if
there exists an a-path from p to ¢ in S. An a-component
of §is a maximal subsct of § where cach pair of points is
e-connected.

A 3D digital image .7’ is defined as a quadruple (7, a,
B.%). Here 7 is the imagc space which is a set of all grid
points (1. j. k). where i. j. k are integers and ipin = [ =

i Jin = S Jaxt Ko = & = Kkmay. In other words, /-

Sthe set of all 31D cubic grid points in a finite rectangular
narallelepiped. . 77 is defined as the set of black points in
7and 7~ z11s the set of white points. a-adjacency and
badjacency are the adjacencics used for finding a-compo-
tents and B-components in .7 and 7 — .7, respectively.
\916 that 7 — ./ denotes the set of white points in 22 In
”“F paper we usc 26-adjacency for black points and 6-
Wjacency for white points and call 26-components of .73
black components and 6-components of / — .73 white com-
Ponents. A point p € 7 is called an interior point of 7 if
'{p) C 7, otherwise p is called a border point of 7. The
%tof all border points of 7 “is called the border of 7 and
Sdenoted as 7 *. A cavity in .»is a white component of
"surrounded by a black component. According to our
C({Hyention for 7 a cavity is a white component of #’con-
lining no border point of 7.

Inthe following discussions, . f (p) is used to denote the
*10f 27 points in the 3 X 3 X 3 neighborhood of the point
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left: 3 X 3 X 3 neighborhood; back plane; middle plane; front plane.)

p including p itself. The set of points of ../'(p) excluding
p is denoted as . | *(p). Note that ..1™*(p) is the border of
. I {p). For a set of points S we define 26-envelope &(S) of
S as follows:

«=J 1 -s

PES

With respect to. ' (p), we classify the points according to
their adjacency relations with p.

1. An s-point is 6-adjacent to p.
2. An e-point is 18-adjacent but not 6-adjacent to p.
3. A v-point is 26-adjacent but not 18-adjacent to p.

The nomenclature for the points of .#{p) is explained
in Fig. 1. In Fig. 1, E, W, S, N, T, and B denote east, west,
south, north, top, and bottom points, respectively. Similarly,
TE denotes top-east point and so on. An E-surface of Ap)
is defined as a set {E, SE, NE, TE, BE, TNE, TSE, BNE,
BSE} of exactly nine points. Five other surfaces of . 1 p),
namely, W-surface, S-surface, N-surface, T-surface, and B-
surface are defined in a similar way. Exactly one s-point
belongs to each surface of ./ (p). A NE-edge of ¥{(p) is
defined as a set {NE, TNE, BNE} of exactly three points.
Eleven other edges of ../{p), namely, SE-edge, TE-edge,
BE-edge, NW-edge, SW-edge, TW-edge, BW-edge, TN-
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edge, BN-edge, TS-edge, and BS-edge are defined in a simi-
lar way. Exactly one e-point belongs to each edge of ..} { p).
Two s-points a, b € _{p) are called opposite if they are
not 26-adjacent, otherwise they are called nonopposite
s-points.

III. THEORETICAL DISCUSSION

The concept of a simple point [6, 11, 18-20] is well
established for both 2D and 3D image spaces and is useful
in many binary image processing applications. The devel-
opment of the simple point concept deals with the question
of whether or not binary transformation of a point changes
the topology of the image. However, in the present work,
we compute the topological changes in terms of the changes
in the numbers of black components, tunnels, and cavities
within _¥(p). Let us consider two situations arising due to
deletion of a point p: (1) creation of two black components,
and (2) creation of a tunnel in .. #{ p). Using a characteriza-
tion of simple points we can detect that in both the situa-
tions the black points are nonsimple points. On the other
hand, the present contribution distinguishes these two
cases and efficiently computes the numbers of black com-
ponents and tunnels generated in the 3 X 3 X 3 neighbor-
hood of the deleted point. This work facilitates the classifi-
cation of points as edge points, inner points of arcs and
surfaces, and different types of junction points in a surface
skeleton for possible segmentation. Also, the study is ap-
plied to compute the Euler number of an object (see Sec-
tion IV).

Let 7= (7] 26, 6, ) be an image under consideration.
Then for every point p, we define two images in .¥{p)
as follows:

Ap) = (A(p). 26,6, (N (p) N ) — {p})
A(p) = (AN(P), 26,6, (AN (p) N B) U {p}).

Note that .(p) and A(p) are 3D digital images with
image space .4{p) (the 3 X 3 X 3 neighborhood of p).
Moreover, p is always white in .¥(p) (ie., p is deleted),
while p is always black in .¥(p) (i.e., p is added). For any
other point of _I{p), its color in _(p) and AN(p) is the
same as the color of corresponding point in 22 Thus, our
work boils down to the estimation of differences in the
numbers of black components, tunnels, and cavities in
~{(p) and _¥{p). The definitions of black components
and cavities are well established. Kong and Rosenfeld (6]
pointed out the difficulty of defining a tunnel. However, a
precise definition of the number of tunnels can be provided.
For example, the number of tunnels in a polyhedral set is
the rank of its first homology group [9]. From Saha and
Chaudhuri [20] we state the following result on . /' (p):

1. . #(p) contains exactly one black component,
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2. the number of tunnels in. { (p) is zero.

3. . I (p) contains no cavity.

For the definition of the number of tunnels in . ({p) y
use some of the following notations:

W,(p) the set of white s-pointsin. I{p)

W.(p) the set of white ¢-pointsin. I {p)
Wi(p) Wi(p) U W.p).

DeriniTION 1. The number of tunnels in . IA'(p) Is zero
when all s-points are black, otherwise the number of tup-
nels in . I'(p) is equal to one less than the number of ¢-
components of W, (p) that meet w,(p).

From the above definition of the number of tunnels in
. 1'(p) it may be noted that . {{(p) may contain at most
five tunnels. From Definition 1 the corollary given below
immediately follows.

CoROLLARY 1. The number of tunnels in . I“(p) is inde-
pendent of the color of the v-points.

Here, we shall develop an efficient algorithm to compute
the change in the numbers of black components, tunnels.
and cavitiesin. | { p) that may occur due to binary transfor-
mation of p. As we have already mentioned that the num-
bers of black components, tunnels. and cavities in . { (p)
are always 1, 0, and 0, respectively, we have to compute
these numbers only in . [(p). To do so we use three im-
portant properties of . | {p).

Property 1. Let x be an s-point and y # x be a point
in the x-surface of . | (p). Then a point g € . 1 {p) is 2-
adjacent to x if it is 26-adjacent to y.

Property 2. Let x be an e-point and y # x be a point
in the x-edge of . I{(p). Then a point ¢ € . ({p) is 2
adjacent to x if it is 26-adjacent to y.

Property 3. Let x be an s-point and y be an e-point in
the x-surface of ../'(p). Then a 6-path of s- and e-poinis
that joins two s-points must contain x if it contains ¥.

To verify the correctness of Property 3 the readers should
note that in this paper paths are sequences of distinct
points.

ProrosrTioN 1. If an s-point x is black in . | (p) ther
the number of black components in .fifA’( p) is independen
of the color of other points of the x-surface.

PROPOSITION 2. If an e-point x is black in . 1'(p) thet
the number of black components in . ((p) is independert
of the color of other points of the x-edge.

Proposition 1 and Proposition 2 may be proved using
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property 1 and Property 2. respectively. Also, the following
proposition may be proved using Definition 1, Corollary
|, and Property 3.

PrOPOSITION 3. If an s-point x is black in . 1(p) then
the number of wunnels in . 1 (p) is independent of the color
ofother points of the x-surfuce.

Let & p). n(p). and &(p) denote the numbers of black
components. tunncls. and cavitics in . { (p), respectively.
Since . 1(p) has only one interior point, it follows from
the definition of cavity that. | { p) may contain at most one
cvity and it occurs when all s-points are black [20]. Thus,

1
P =
(p) {0

Therefore. &(p) is a function of s-point configuration.
Moreover. as described in Proposition 1 and Proposition
3.ép)as well as n(p) are independent of the color of the
points of the x-surface when x is black. We define an x-
srface as a dead surfuce of . 1 (p) if the s-point x is black.
Av-point or an e-point is called an effective point of . iA'(p)
it does not belong to any dead surface.

if six s-points are black;

otherwise.

CoroLLarY 2. With a known s-point configuration of
Hpl.wecan compute E(p). n(p). and 8(p) from the effec-
ive point configuration of .1 (p).

CoroLLarY 3. With a known s-point configuration of
"p).we can compute n(p) from the effective e-point con-
figuration of . 1 ( p).

Corollary 2 is a straightforward conscquence of Proposi-
tions I and 3 while Corollary 3 is a straightforward conse-
fuence of Corollary 1 and Proposition 3.

Using Proposition 2. Corollary 1. and the definition of
ip) we see that & p). m(p). 8(p) are independent of the
wlor of the points of the x-cdge when x is black. We define
Mx-edge as a dead edge of . I"(p) if the e-point x is black.
Avpaint is defined as an isolated point of . 1(p) if it
Rither belongs to any dead surface nor belongs to any
dead edge.

CoroLLarY 4. Let v be a black isolated point of . (p).
Then {y} is a black component of . 1 (p).

CoroLLarY 5. Ler . ((p) contain six white s-points.
Then the number of black components in . | (p) is equal to
e number of 26-components in B,(p) plus the number of
tack isolated points (where B.(p) is the set of black
“Points in . ({( p)).

Corollary 4 follows from the definition of an isolated
Mt while Corollary 5 is a straightforward consequence
if Proposition 2 and Coroilary 4.

Now we shall describe the possible geometric classes of
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s-point configurations of ../{ p). Two s-point configurations
belong to the same geometric class iff one can be trans-
formed to the other by some three-dimensional rotation
in multiples of 90° about different axes (with p as origin).
Possible geometric classes of s-point configurations and
corresponding numbers of effective points (n.) are as
follows.

Class 0: Six s-points are black (n, = 0).
Class 1: Five s-points are black (n, = 0).

Class 2: Two pairs of opposite s-points are black
(n, = 0).

Class 3: One pair of opposite s-points and two other
nonopposite s-points are black (n, = 1).

Class 4. One pair of opposite s-points and another
s-point are black (n, = 2).

Class 5: Three nonopposite s-points are black (n, = 4).

Class 6: One pair of opposite s-points is black (n, = 4).

Class 7: Two nonopposite s-points are black (n, = 7).

Class 8. One s-point is black (n, = 12).

Class 9: No s-point is black (n, = 20).

As discussed eartier, £(p), n(p), and 8(p) are functions of
effective point configuration of ..#(p). Thus, if n, = 0, as
in Classes 0-2, we can at once know &(p), n(p), and 8(p).
In other cases, as in Classes 3-9, where n, > 0, we can use
a look_up_table. For a given s-point configuration there
are 2" possible effective point configurations. An effective
point configuration can be thought of as an n,-bit binary
number. For example, consider a Class 5 situation with e,
€1, €2, e3 denoting the four effective points. Then a four-
bit binary number is generated such that its ith bit denotes
the color of ¢; (i.e., 1 when ¢; is black and 0 otherwise).
For example, a four-bit binary number 1010 denotes an
effective point configuration where e, and e, are white
while e, and e; are black. For each such effective point
configuration there is an entry in the look_up_table which
contains the values of &(p), n(p), and &(p). Since there
are only six s-points in .#{p), .4#(p) can contain at most
five tunnels and it occurs when all s-points are white and
all e-points are black (see Definition 1). Also .#{p) can
contain at most eight black components and it occurs only
when all v-points are black and all other points are white.
Moreover, for Classes 1-9, 8(p) is always zero. Thus, for
each entry of the look_up_table we use one byte whose
tower order four bits give the value of &(p) and higher
order four bits give n(p).

Since any two different s-point configurations belonging
to the same geometric class can be transformed to each
other by some three-dimensional rotation in multiples of
90° about different axes (with p as origin), a single look_up_
table can be used for different s-point configurations be-
longing to the same geometric class. Here we shall describe
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how one look_up_table can be used by two different s-
point configurations belonging to the same geometric class.
Let an s-point configuration y belong to Class i and a
look_up_table is generated for y with its effective points
ordered as e, €1, - - - , €,. Let us consider another s-point
configuration ' belonging to Class i. Since 'y and y' belong
to the same geometric class, y can be transformed to ¥’
by some three-dimensional rotation in multiples of 90°
about different axes (with p as origin). Let us denote that
rotation by . Then the same look_up_table can be used
for y' with its effective points ordered as eg,ef,. .. , €5,
where ¢/, 0 = i =< n is obtained from ¢; after the rotation
w. For example, if a s-point configuration contains the
black s-points N, T, E then we may have a look_up_table
where its effective points are ordered as eg = SW, ¢; =
BW, e, = BS, and e; = BSW. On the other hand, if another
s-point configuration contains the black s-points N, B, E
then the same look_up_table can be used if we make the
effective points ordered as ey = TW, e, = SW, e, = T8,
and e; = TSW. We denote the ordering of effective points
for an s-point configuration y as an ordered set EFO(y).
Note that the s-point configuration with black s-points N,
B, E as well as its ordered effective points can be obtained
by rotating the s-point configuration with black s-points
N, T, E and its ordered effective points about the x-axis
by 90° in clockwise direction (with p as origin). As discussed
above, only one look_up_table is necessary for each Class
i, 3 =i = 9. Let these tables be called LT;,3 =i = 9.
Thus, the total storage for the look_up_tables of Class i,
3 =i =8isas follows (considering one byte for each entry).

21 4+ 22 + 2% 4+ 2% + 27 + 212 bytes = 4 Kbytes

Unfortunately, the memory space required for the look _
up_table of Class 9 is as high as 2% bytes, i.e., 1 Mbytes.
Hence, a straightforward use of look_up_table described
above is not efficient for Class 9. To generate a different
look_up_table for Class 9 that needs less space we use
Corollaries 3 and 5. When all s-points are white, there may
be two cases:

Case 1: All e-points are white.
Case 2: At least one e-point is black.

If Case 1 is true then n(p) = 0, 5(p) = 0, the number
of 26-components in B,(p) = 0, and all v-points are isolated
points. Thus, we can compute £(p) by finding the number
of black v-points.

If Case 2 is true, let us consider that an e-point x is black.
Thus, there can be at most 2!! possible configurations of
other e-points and hence the look_up_table LT, needs 2!!
entrics. An ordered set of these eleven e-points is used to
calculate their configuration value. We denote this ordered
set as EEO(x). The address of an entry of LT, corresponds
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to a distinct configuration of these eleven e-points. Thyg

to compute &(p) and n(p) (here. 8(p) = 0). the following
information is stored at each entry of LT,.

1. the number of tunnels in . | (p),
2. the number of 26-components in B.(p).
3. the set of isolated points in . (p).

Since, the e-point x is black. at most six v-points can be
isolated points depending on the configuration of eleven
other e-points (i.e., two v-points belonging to the r-edge
are never isolated point). To denote the set of isolated
points by a bit pattern we use an ordered set. say ISO(x).
of the above mentioned six v-points. Thus, each entry of
LT, needs two bytes. The higher order four bits of the
first byte contain the value of n(p). while the lower order
four bits of the same byte contain the number of 26-compo-
nents in B,(p). The lower order six bits of the second bvte
denote the set of isolated points (sixth and seventh bits
are always zero). For example. if the first and second bytes
of certain entry of LT, are 00110010 and 00010001. then
n(p) = 3 and the number of 26-components in B,(p) is 2.
while zeroth and fourth points of ISO(x) are isolated
points.

The look_up_table LT, now needs only 2 X 2 bytes.
i.e., 4 Kbyte, instead of 1 Mbyte in its earlier form. Unlike
LT, 3 =i=38, LT, does not contain the value of &p).
During run time a one-byte word w is generated to denote
the color of the points of ISO(x). For example, 00101101
denotes that the zeroth, second, third, and fifth points of
ISO(x) are black. Thus a bitwise AND operation between
w and the second byte of a corresponding entry of LT
gives the set of black isolated points in . ‘A‘(p).

An e-point can be rotated in multiples of 90° about
different axes (with p as origin) to reach another e-point
Thus, we can use single look_up_table for different e-points
in the same fashion we described for different s-point con-
figurations belonging to the same geometric class. How-
ever, here we need the rotational transformation on both
EEO(x) and ISO(x).

LA, The Algorithim

It is understood that our procedure for computing &(p)
n(p), and 8(p) has two parts, which are: (1) a priori know!
edge, and (2) run-time computation. The a priori knowledge
includes the precalculation and storage of all the look_up-
tables L7;,3 = i < 9, in separate files. Also, for each s
point configuration y belonging to Class i, 3 =i = 8, the
ordered set of effective points EFO(y) is precalculated a
discussed earlier and implicitly stored in the program t0
compute the entry value of L7,. Similarly, in the casé
of Class 9, for every e-point x, EEO(x) and 150(x) af?
precalculated and implicitly used in the program. In add”
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jon.for all Class 2. 0 = i = 2, where the number of effective
point is zero. &(p). n(p). and 8(p) are predetermined.

It should be mentioned that the a priori knowledge
sindependent of the input image to be processed. Thus,
once generaled. the knowledge can be used for any image
Jater on.

During the run time. for any point p of an input 3D
image /. we can generate . {(p) and use the following
procedure (fopo_para) to compute the topological param-
sers €(p). n(p). and 8(p).
procedure topo_para (. IA'(p)) )
gt the s-point configuration y from . | {p):
witch{geometric class of «y)

Case 1: /* y belongs to Class 0 #/
&p) = Lin(p) =0:68(p) = 1.
(ase 2: /* y belongs to Class 1 #/
&p) = linlp) = 0:8(p) = O
(ase 3. /* y belongs to Class 2 #/
&p) = lin(p) = 1:6(p) = O
(ase 4: /* y belongs to Class 3-8 #/
let y belong to Class /. 3 =/ = &;
get the configuration value of EFO(vy), say j;
&(p) = value of lower four bits of jth entry of LT}
n(p) = value of higher four bits of jth entry of LT};
d(p) = O:
(ase 5: /* y belongs to Class 9 #/
if all e-points are white in . | (p) then
&(p) = number of black v-point:
n(p) = O
é(p) = 0:
else /¥ at least one e-point is black */
get a black e-point x:
get the configuration value of EEO(x), say i;
generate a one-byte word w to denote the con-
figuration of 1SO(x):
r = result of bitwise AND opcration between
w and the second byte of ith entry of LTy;
& p) = valuc of lower four bits of the first byte
of ith entry of 1.7, + number of 1-valued bits
mr
n(p) = value of higher four bits of the first
byte of /th entry of L.7y:
o(p) = O;
M procedure topo_para.

IV. APPLICATION

_me the theoretical development described above, we
;flthe expressions for &(p). n(p), and 8( p) corresponding
‘Mobject point p. These parameters are useful in differ-
mage processing techniques such as thinning, 3D sur-
f’te %egmentation, and Euler number computation. Here
Ie hall describe their application to the classification of
“lereng types of points such as surface edge point, arc

423
Pg
Pe

p,—£D
8 p

7

Py

Py

FIG. 2. Demonstration of different types of points in a surface skele-
ton representation (see the text for detail).

end point, surface or arc inner point, and different types
of junction points in a three dimensional surface skeleton
representation. The results of this classification method
are applied for a meaningful segmentation of 3D surface.
Finally, we describe an algorithm to compute the Euler
number of a 3D digital object.

IV.A. Point Type Classification

In a 2D skeleton we can imagine only three types of
points, namely, arc end point, arc inner point, and junction
point of arcs. However, in a 3D surface skeleton, different
types of junction points may occur (e.g., junction of sur-
faces, junction of surfaces and arcs, and junction of arcs).
As an example, let us consider a surface skeleton represen-
tation shown in Fig. 2, where different points of importance
are marked as p;,i = 1, 2, ..., 8 These points, along with
their &(p), n(p), and 8(p) values, are described below.

» p, is an edge point of surface (SE-type),
&p) = 1, m(p) = 0,8(py) = 0;

« p, is an inner point of surface (S-type),
&p2) =1, n(p2) = 1, 8(p2) = 0;

- ps is a junction point of surfaces (SS-type),
&(ps) =1, n(ps) = 2, 8(ps) = 0;

- ps is a junction point of surface and arcs (SC-type),
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TABLE 1 )
Initial Decision Table for Skeleton Point Classification
Name
&p)y nlp) 8(p) Point type assigned
0 0 0 I-type N,
1 0 0 SE-type or CE-type N>
2 0 0 C-type N
>2 0 0 CC-type Ny
1 1 0 S-type or CC-type Ns
>1 =1 0 SS-type or SC-type or CC-type Ne
1 >1 0 SS-type or SC-type or CC-type N;
1 0 1 SS-type or SC-type or CC-type Ng

&(ps) = 2, n(ps) = 1, 8(pa) = 0;

« ps is an arc end point (CE-type),

&(ps) = 1, n(ps) = 0, 8(ps) = 0;

« pe is an inner point of arc (C-type),

&(ps) = 2, n(ps) = 0, 8(pe) = 0;

* p; is a junction point of arcs (CC-type),

‘f(p7) = 3’ "I(P7) = 0’ 5(P7) = 0;

* pg is an isolated point (I-type),

&(ps) = 0, n(ps) = 0, 8(ps) = 0.

From the above example it may appear that §(p) does
not have any discriminating power. However, as seen from
Table 1, there is a situation (last row of the table) where
8(p) takes a value 1 and hence discriminates against other
cases. By analyzing all feasible combinations of &(p), n(p),
and 8(p) we develop Table 1 for automatic detection of
different types of points.

1t can be found from Table 1 that N;, N5, N, signify
unique point type while N,, N5, Ng, N;, Ng signify two or
more point types. Thus, using Table 1 we can get a partial
classification of skeleton points in one scan. However, from
this partial classification we can arrive at unique classifica-
tion using another scan. During this second scan we ob-
serve the 26-neighborhood of any point not uniquely de-
cided by Table 1 and use Table 2 for unique classification.
Thus, in Table 2 only N,, N5, Ng, N;, Ng points are con-
sidered.

At the end of second scan the classification process is
completed except for a small problem illustrated by Figs.
3 and 4. In Figs. 3a and 3c the hidden points immediately
below the vertical 6 X 6 rectangle are all white points.
Also, in Figs. 3b and 3d the hidden points immediately
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below the vertical 5 X 6 rectangle are all white points, In
Figs. 3a-3b, the SS-line (a 26-path of SS-type points)
should be extended to rcach surface edges as shown in
Figs. 3c-3d. In Fig. 4. the arc-line (a 26-path of C-type or
CC-type points) meets the surface and we have to find out
the junction point between the arc-line and the surface,
On the other hand, in another example shown in Fig. 5,
the SS-line should not be extended at two ends. However,
as discussed below, it is possible to identify these cases
and act accordingly.

Extension of SS-lines. At first we define a function D
of two points p, ¢ as follows:

(0 ifp =g

1 if pisans-pointof. 1 {g):

D(p.q) = { 2 ifpisane-pointof. 1{g):
3 ifpisav-pointof. i (g):
> ifp&. i{g):

Let S denote a set of points. Using the above function
we define g as one of the nearest points of p in Sif Vr €
S, D(p, r) = D(p, q). It should be noted that a point may
have more than one nearest point in a set of points.

Let Ssz denote the set of all SE-type points in a surface
skeleton. Let p be an end point of a $S-line (an end point
has at most one 26-adjacent SS-type point). Let §S, denote
the set of all SS-type points in. | (p) excluding p. and et
S, denote the set of all S-type points in . | (p) excluding
p. We observe every SE-type pointg € (. 1 (p) — ¢(85,))1
Sse and flag according to the following algorithm.

TABLE 2
Final Decision Table for Skeleton Point Classification
Name Neighborhood analysis Point type
N, Exactly one ASP CE-type
N, More than one ASPs SE-type
Ns All ASPs are N, or N, CC-type
Ns Not all ASPs are N; or N, S-type
Ns All ASPs are N; or N, CC-type
Ng Not all but some ASPs are N, or Ny SC-type
Ne No ASP is N; or N, SS-type
Ny All ASPs are N; or N, CC-type
N Not all but some ASPs are N; or N, SC-type
N; No ASP is N; or N, SS-type
Ng All ASPs are N; or N, CC-ype
Ng Not all but some ASPs are N; or Ny SC-type
Ng No ASP is N; or N, SS-type

Note. In this table ASP is an abbreviation of ‘26-adjacent skeleton
point.”
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FIG. 3. Extension of $S-lines. (a. b) The SS-line (shown black) ob-
tained using Table 20 (¢, d) the 88 after the extension process.

i8S N
then
flag g:
else
if the number of tunnels in S¢p M.
ze10 then
flag g:
else
iS5 N i *(q) contains less than two 26-components then
if3re S, N.i%g) — (SS,) such that D(q, ry <
D(q. p) then
select one of the ncarest points of g in S, N. 1%(q)
= (8S,). say 1.
flag 1.

i *(g) contains more than two 26-components

I *(g) is greater than

Note that after the last “clse’ statement the flagged point
(f at all) is not ¢ but a point ¢ nearest to ¢ in S, N
*(q) — ¢(SS,). Finally, all flagged points are renamed
# §S-type points. If the algorithm is executed on Figs. 3a
and 3b then we obtain Figs. 3c-3d.

Finding junctions between arc and surface. Let p be a
Ctype or CC-type point and let S be the set of S-type,
5C-type, and SS-type points in . ( {p). Let S8, ..., S,
be the 26-components of S. For each S, such that S, contains

_FIG' 4. The SC-type junction point (shown black) cannot be detected
ing Table 2.
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FIG. 5. An example where the extension process is not needed.

no SC-type or SS-type points, one of the nearest points of
pin §;is declared as a SC-type point. The SC-type junction
point in Fig. 4 is detected by this algorithm.

IV.B. Surface Skeleton Segmentation

Here, we shall describe a method of segmentation of a
surface skeleton representation based on the classification
method described in Section IV.A. Let S denote the set
of all skeleton points and let J denote the set of all SS-
type, SC-type, CC-type points (i.e., all junction points).
Let 8’ = 8§ — (£(J) U J). The set of 26-components of §’
represents different segmented surfaces and arcs of the
suface skeleton. However, some undesired situations may
occur for some surface representations. These situations
along with their solutions are described below.

For a surface representation shown in Fig. 6a an unde-
sired tunnel is created in S’ as shown in Fig. 6b. Moreover,
in Fig. 7a the tail-like part is removed as shown in Fig. 7b.
To solve these problems we use two more steps.

Step 1. Let S;,S5,...,S, be all 26-components of S’.
Each S/ is extended to ES| as follows:

ES! =S U(&SHNS).

Step 2. Each extended component ES; is further ex-
tended to reach final components FS; as follows:

FS} = ES; U (LES)NJ).

Finally all FS!’s as well as all 26-components of J —
UL, FS! are declared as segmented parts. Figures 6¢ and
7c demonstrate the final outputs obtained using these steps.

1V.C. Computation of the Euler Number

Most of the existing methods for computing the Euler
number of an object is based on computing the expression
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(c)

FIG. 6. An example where an undesired tunnel is created in S’ (see the text). (a) Original surface representation with the junction points shown

black; (b) 26 components of S’; (c) final segments.

2(—1)* * Cy, where C; is the number of k-dimensional
simplex in an object. However, the Euler number of a 3D
object is also equal to the number of object components
minus the number of tunnels plus the number of cavities
in the object [8]. We know that deletion of a point from
an object may change the Euler number of the object.
Also, the change in the Euler number of the object that
may occur due to the deletion of a point is equal to the
change in the Euler number of object points in the 3 X
3 X 3 neighborhood of the deleted point.

Let us consider a 3D digital image 22 = (7% 26, 6, %)
and we want to compute the Euler number of 22 Due to
the deletion of a point p € 23, the change in the Euler
number in the 3 X 3 X 3 neighborhood of p equals

the Euler number of .#{p) — the Euler number of .#{p).

Again, the Euler number of .#{p) = the number of black
components in .4¥(p) — the number of tunnels in
A(p) + the number of cavitiesin A{(p) =1 -0+ 0 = 1.
Thus, the change in the Euler number due to the deletion
of p = 1 — the Euler number of ./ (p) = 1 — &p) +

n(p) — 8(p). The algorithm for computing the Euler num-
ber of #is as follows.

begin Euler_number(#’ = (7, 26, 6, .53))

E(@) =0
for each point p € A do
begin
E(@) = E(?) + 1 = &p) + n(p) — &(p);
B =R - {ph
end
return( E(2));

end Euler_number.

Our method for computing the Euler number is locally
defined and massive parallelization may be introduced us-
ing the concept of subfields [3].

V. RESULTS AND DISCUSSION

Segmentation done by the present approach on somé
images are illustrated in Figs. 8-10. Figures 8a-10a ar
three binary images displayed by 3D surface rendering
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i

FIG. 7. An example where the tail-like part is lost in §°. (a) Original surface representation with the junction points shown black; (b) 26
amponents of $7 (¢) tinal sepments (the right-most segment represents the tail-like part).

7 FIG.8. Results of segmentation. (a) Original object; (b) surface skeleton representation by the thinning algorithm of Saha and Chaudhuri [20];

(¢) segmented parts.
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FIG.9. Results of segmentation. (a) Original object; (b) surface skeleton representation by the thinning algorithm of Saha and Chaudhuri [20];

(c) segmented parts.

The minimum sizes of the rectangular parallelepiped to
enclose these images are 71 X 114 X 71, 79 X 40 X 60,
and 77 X 77 X 29, respectively. Here the background is
made black to produce a better visual effect. Figures 8b—
10b are three surface skeleton representations obtained by
applying the thinning algorithm of Saha and Chaudhuri
[20] on the images of Figs. 8a—10a, respectively. In Fig. 10
the original image and the skeleton are displayed from
different angles of view. Figures 8c—10c demonstrate the
segmented parts obtained from Figs. 8b—10b, respectively,
using the method described in Sections IV.A and IV.B.

The segmentation process is based on observing the to-
pological junction points. Nontopological segmentation is
not possible by this method. Figure 11 is an example where
the two surfaces can not be separated. In this case the
segmentation could be done by noting the abrupt change
in surface normal direction.

The proposed approach can segment a surface skeleton
representation into surfaces and arcs containing no junc-
tion. More specifically, a segmented part is one of the
following: a simple surface patch (topologically equivalent
to a rectangular sheet), a simple closed surface (topologi-
cally equivalent to a hollow sphere), a simple curve (topo-

logically equivalent to a straight line segment), a simple
closed curve (topologically equivalent to a circle). The
segmented parts (along with the depth information derived
from a thinning algorithm) can be used to represent an
object by a set of simple geometric features (restricted by
a predefined feature set).

Malandain er al. [13] also considered segmentation of a
3D surface using topological features. They have made
some classification of points in .~ where every point type
classification is unique and applied the same classification
in digital domain. The unique classification table creates
some undesired situations, some of which are described
by them. Also, Fig. 12 of [13] has a junction of surfaces
which is not a curve but a surface of three-point width
which will create further problems in segmenting the sur-
faces. Such a situation does not arise by our approach.
Also in [13] no mention was made of how to compute
efficiently the numbers of adjacent object components
(called C* in [13]) and adjacent background components
(called C in [13]) of a point in its 3 X 3 X 3 neighborhood.
On the otherhand, our algorithm topo_para is an efficient
approach to compute the parameters related to topological
segmentation that is characterized by Table 1. The concept

FIG. 10. Results of segmentation. (a) Original object; (b) surface skeleton representation by the thinning algorithm of Saha and Chaudhuri [20:

(c) segmented parts.
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FIG. 11 An example where two surfaces can not be segmented by
e proposed method.

of using 18-neighborhood in computing the number of 6-
adjacent background components of a point in its 3 X
3% 3 neighborhood was first proposed by Saha et al. [18].

The change in the numbers of black components, tun-
nels. and cavities within . 1 {(p) when p is deleted is useful
in manv image processing applications. The most naive
and trivial approach to detecting the change is to prepare
alook_up_table for all possible black/white combinations
nils 3 X 3 x 3 neighborhood which needs 2% bytes,
12 64 Mbyvtes of memory to store the look_up_table as
compared to the 8 Kbvtes needed by our approach. Only
for Class 9 does our algorithm ropo_para need the config-
uration of all the 26 points in the 3 X 3 X 3 neighborhood.
For Classes (-8 it needs the configuration of fewer points.
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	i(p5) = 1, v(ps) = 0, S(p5) = 0;
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