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Abstract—We consider the case of a stochastic supervision scheme in which the logarithm of odds ratio
of the supervisor classification has a normal distribution and is independent of the feature vector. We
consider the two-group multinormal case with a common covariance matrix and compute the Efron
efficiency of this supervision scheme, for various values of parameters of the feature distribution and
the supervision distribution. We interpret these efficiency values to draw conclusions on the worth of

stochastic supervision.

Discriminant analysis
Logistic-normal distribution

1. INTRODUCTION

Applications in medical diagnosis and remote sensing
have stimulated studies of pattern recognition prob-
lems with imperfect supervision. In a series of papers
in Pattern Recognition’= we developed algorithms
for learning a mixture of two p-dimensional normal
distributions with a common covariance matrix,
under imperfect supervision of two types: (i) deter-
ministic but error-prone and (ii) stochastic; we also
computed the efficiency of these schemes relative
to perfect supervision. In our studies of stochastic
supervision we used the beta distribution as a model
for the supervisor’s assessment. In a recent article,
Titterington® proposed a logistic-normal model for
the supervisor assessment, namely, normal dis-
tribution for logoddsratio of the supervisor assess-
ment, showed its flexibility and similarity with our
beta model and developed the EM algorithm for
maximum likelihood estimation of parameters. In
this article, we study the Efron efficiency of the
Titterington-model-based stochastic supervision

scheme.

Let:

Z: Supervisor assessment of the probability of a unit
belonging to group 1;

W:log[Z/(1 — 2));

X: a p-dimensional feature vector.

Then. we assume that the distribution of W is
normal with mean —#. 1 respectively in the groups
0 and 1. and with a common variance o° in the
two groups. The feature vector X has p-dimensional
normal distributions with mean vectors wu,, #; in
pectively and with a common
in the two groups. Further. we
group. X and Z are

groups 0 and 1 71€S
dispersion matrix = l
assume that, in €ach

Stochastically classified initial samples

Asymptotic relative efficiency

independent. The prevalence rates of the two groups
are sy and or; respectively. An initial sample of N
units is taken from the mixture

o folx, z) + 7 fi(x, z) (1.1)

where fy(x, z) and f|(x, z) are obtained as described

above.
Efron’s(® efficiency is a measure of the information

contained in an initial sample unit taken according to
a certain scheme compared to a perfectly supervised
scheme; another way of looking at Efron efficiency
is as the relative sample size required under a certain
scheme compared to perfect supervision to achieve
the same estimation efficiency of the discriminant

" function coefficients based on the feature vector X.

The mathematical definition of Efron efficiency and
its derivation and uses in various cases can be found
in many references and hence we avoid going into
its details here—the definition and use in studving
the efficiency of logistic regression can be found in
Efron,© use in studying the efficiency of unsuper-
vised schemes in O’Neill.(? efficiency of error-prone
deterministic supervision schemes in Krishnan'*) and
stochastic supervision schemes with a beta supervisor
in Krishnan and Nandy.¥

It is easily seen that the model above is an unsuper-
vised scheme based on a (p + 1)-dimensional feature
vector (X.Z) where the vector has normal distri-
butions in each group with a common covariance
matrix: this common covariance matrix has a special
structure whereby the covariances of /7 with the
components of X arc all zero. This is a special case
of the unsupervised scheme of O'Neill's. ™) While a
great deal of effort was required to derive formulac
for the Efron efficiency of the beta supervisor, under
the Titterington logistic-normul
becomes casy owing to the normaldity of (7. \').
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The Efron efficiency based on a p-dimensional
feature vector is a convex combination of what Efron
calls the intercept and slope efficiencies of the dis-
criminant boundary which are also interpretable
respectively as the efficiencies when p =1 and
p==

Efron efficiency depends on mr; and the Mahal-
anobis distance between the two groups. We quote
below O’Neill’s formulae for efficiency in the case of
ap-dimensional vector, denoted Eff,,, with a distance
of A between the two groups.

Let A= log
(< = 10g —.
gﬂo

Eff (7, A)

gl A)Eff (1, A) + (p - D Eff. (7, A)
B q(”17A)+(p—1)

(1.2)
where
q(my, A)
(1, —%) [H - A]! <1, —%)’ Eft,
B 1+ 77y A? ; (13)
Eff, (7, A)
Ay A
=gy »
A\ A ' ? N
(1-3) - (1 -5)
Eff. (7, A) =1 —ap(l + mom, A?);  (1.5)
where
H 1:[ (1+A:/4 _(ﬂ(]"ﬂl)A/z].
—‘(.77:0 ~n|)A/2 1 +2ﬂ[)ﬂ:1A2
(1.6)
I S L .
"d_7 my explAx/2] + o exp[~Ax/2)
1.7
Ay a4y
A= . .
(a; (Zz) (1 8)

In our case the distance between the two groups

on the basis of the (p + 1) dimensions denoted by V
is given by

V2=AZ+62, (1.9)

where A is the distance between the two groups
based on X and ¢ is the distance based on Z and

4n?

8= - Thus the efficiency formulae in our case

are obtained by plugging in V as given by equation
(1.9) instead of A in formulae for Eff as given above.
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We denote our stochastic supervision efficiency
based on a p-dimensional feature vector by SEff,
although by O'Neill’s notation it is Eff,., being
unsupervised efticiency for a (p + 1)-dimensional
feature vector. Thus

SEff, (. A 0) = Eff, (7. V).

When o = 0,

(1.10)

SEff, (1, A.0) = Eff, (1, A): SEff (7, A, 0)

= Eff.(7,. A). (1.11)

In the following section we present a table and a
chart of this SEff for various parameter values.

2. COMPLUTATION OF EFFICIENCY AND INTERPRETATION

We have computed SEff; and SEff. as given by
the formulae derived above for various values of 7y,
A and 4. Efficiency values for some selected values
of the parameters are presented in Table 1. A sum-
mary of the efficiencies is presented in Fig. 1.

From Table 1 and Fig. 1. we notice that the results
are similar to what we obtained for the beta super-
vision in our earlier paper.** namely that:

1. Efficiency increases with supervision, i.e. with
increasing o:

2. Efficiency increases
between the two groups:

3. For &, = 0.5, the dimension of the feature vec-
tor is immaterial; this also clearly follows from the
formulae for efficiency:

with A, the distance

Table 1. Asvmptotic relative cfficiency of normal dis-
crimination with stochastic (logistic-normal) supervision

a, =05

A=2 A=13 A =4
&  SEff, SEff, SEff, SEff, SEff, SEff.
0 0.1008 0.1008 .3594 0.3594 0.6589 0.638%
203072 03072 0.5467 0.5467 0.7716  0.7716
3 0.5467 0.5467 0.7201 0.7201  0.8652 0.8652
4 07716 07716 0.8652 0.8652 0.9376 0.9376

7, = 0.667

A=2 A=3 A=4
6 SEffy, SEff. SEff, SEff, SEff, SEff.
0 00989 0.1211 0.3572 0.3819 0.6561 0.6722
2 0.3051 0.3305 0.5441 0.5642 0.7690 0.7805
3 05441 05642 0.7174 0.7311 0.8630 0.8702
4 0.7690 0.7805 0.8630 0.8702 0.9362 0.93%7

7w =09

A=2 A=23 A =4
8  SEff, SEff. SEff, SEff, SEff, SEfi
0 00798 0.1994 0.3120 0.4896 0.6134 0.748!
2 02624 0.4384 0.4976 0.6570 0.733a 08345
304976 0.6570 0.6781 0.7957 0.8364 0.9031
4 07334 0.8345 0.8364 0.9031 09195 0.9348
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Fig. 1. Eff of logistic-normal supervisor for various values of parameters and supervision index.

4. SEff, decreases with values of n; away from %
and SEff, increases with the value of 7; away from
7 thus the situation of unequal prevalence rates of
the two groups needs a larger number of features for
the same distance between groups;

5. For 8 = 0, SEff, and SEff. coincide with the
corresponding  efficiency in  O’Neill’s() tables;
clearly, 8 = 0 is the unsupervised case and hence the
SEff formula is the same as O’Neill’s formula for the
unsupervised case.

The interpretation of these efficiencies is similar to
that pointed out in our earlier paper.® For instance,
when the feature distribution parameter values are
p=1, A=4, x;=0.667 and the logistic-normal
supervision parameter is 6 = 3, SEff = 0.8630; this
means that for these feature distribution parameter
values, about 86 stochastically (J8) supervised
samples are equivalent to 100 perfectly supervised
samples.

Titterington(® has established a similarity between
the two models for some parametric values on the

basis of equality of two moments; he shows that the
beta model with m = 5, n = 3 is similar to the logistic-
normal model with n = 0.5833 and o = 0.6112 result-
ingin 8 = 2.2262; this is done on the basis of equating
moments of order r; = 0.05 and r, = 0.10. However,
if the first and second moments are equated we get
for the same beta parameters 7 = 0.5754 and o=
0.5754 resulting in 6 = 1.5736, in which case the two
models look quite different. The values of r; and r,
needed to strike a similarity between the two models
are different for different 2 and n. Hence it is not
easy to convert results of the beta model into those
of the logistic-normal model. For the above case
when the two models are similar, the efficiencies are
also fairly equal as shown in Table 2, where the
efficiencies for the beta case are computed using
the formula in our previous article.® However. the
problem remains as to how to set up a cor-
respondence between these two models. In the case
of the logistic-normal model an index of supervision
is naturally given by &. But it is not clear as to what
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Table 2. Comparison of asymptotic relative
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efficiencies of normal discrimination under logistic-

normal and beta supervision models

=05
A=2 A=3 A=4
Model SEff, SEff. SEff, SEff. SEff, SEff.
6 = 1.5736 0.2262 0.2262 0.4802 0.4802 0.7332 0.7332
8 =2226 0.3572 0.3572 0.5852 0.5852 0.7931 0.7931
m=5n=3 0.3911 0.3911 0.5503 0.5503 0.7543 0.7543
nt, = 0.667
A=2 A=3 A =4
Model SEff, SEff. SEff, SEff, SEff, SEff,
6 = 1.5736 0.2242 0.2497 0.4777 0.4997 0.7305 0.7436
& = 2.2262 0.3549 0.3796 0.5825 0.6013 0.7905 0.8019
m=5n=3 0.3824 0.4015 0.5360 0.5654 0.7439 0.7648
7 =09
A=2 A=3 A=4
Model SEff, SEff. SEff, SEff, SEff, SEff.
6 = 1.5736 0.1878 0.3532 0.4304 0.6000 0.6921 0.8056
6 = 2.2262 0.3098 0.4874 0.5370 0.6889 0.7567 0.8565
m=5n= 0.3976 0.4294 0.4776 0.6341 0.6824 0.8180

a suitable single index of supervision should be in
the case of the beta model; as pointed out in Krishnan
and Nandy,™ this index will be a suitably normalised
version of {m — n| and it is not clear what this nor-
malisation should be. A correspondence between
the logistic-normal model and the beta model may
depend on the answer to this question. We are work-
ing on this problem.

SUMMARY

We consider the problem of discriminant analysis
when the supervisor’s classification is stochastic, and
deal with the problem of efficiency of this supervision
relative to perfect supervision. For this, we use the
supervision model of Titterington,”® who proposed
a logistic-normal distribution for the supervisor’s
probability of classifying an object into a group; he
had suggested this as an alternative to the beta model
we had earlier proposed.®% Under this model of
supervision and for the case of two p-dimensional
normal populations with a common covariance
matrix, we derive formulae for Efron efficiency of
stochastic supervision, which is an index of the
amount of statistical information contained in the
stochastic supervision vis-d-vis perfect supervision.
We present a table and a chart of this efficiency for
various values of parameters of the two p-dimen-

sional normal populations and various levels of
supervision. We interpret these values to show how
the worth of a stochastically supervised sample
depends on the supervision parameters and the par-
ameters of the feature distributions. Stochastically
supervised initial samples are quite useful unless the
supervision parameters are such that it is very close
to a completely unsupervised situation.
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