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Abstract— W e consider the case of a stochastic supervision scheme in which the logarithm of odds ratio 
of the supervisor classification has a normal distribution and is independent of the feature vector. We 
consider the tw o-group m ultinorm al case with a common covariance matrix and compute the Efron 
efficiency of this supervision scheme, for various values of parameters of the feature distribution and 
the supervision distribution. W e in terpre t these efficiency values to draw conclusions on the worth of 
stochastic supervision.

Discrim inant analysis Stochastically classified initial samples Asymptotic relative efficiency 
Logistic-normal distribution

1. INTRODUCTION

Applications in  m e d ica l  d iagn osis  and  re m o te  sen sing  
have stim ulated  stu d ies  o f  pattern  r e c o g n i t io n  p r o b ­
lems with im p erfec t  su p e rv is io n . In a ser ies  o f  papers  
in Pattern R e c o g n i t i o n w e d e v e lo p e d  algorithm s  
for learning a m ix tu re  o f  tw o  /7-d im ensional norm al  
distributions w ith  a c o m m o n  covar ian ce  m atrix, 
under im p erfect  su p e rv is io n  o f  tw o  types: (i) d e ter ­
ministic but erro r -p r o n e  and (ii) stochastic; w e  also  
computed th e  e ff ic ien cy  o f  th e se  sc h em es  relative  
to perfect su p e rv is io n . In our s tu d ies  o f  stochastic  
supervision w e  u sed  th e  b e ta  d istr ibution  as a m o d e l  
for the su p e rv iso r ’s a sse ssm e n t .  In a recen t article,  
Titterington(5) p r o p o s e d  a log istic -n orm al m o d e l for  
the superv isor a s se s sm e n t ,  n a m ely ,  norm al d is ­
tribution for  lo g o d d sr a t io  o f  th e  supervisor assess ­
ment, sh o w e d  its flex ib ility  and  sim ilarity with our  
beta m o d el and  d e v e lo p e d  th e  E M  algorithm  for  
maximum l ik e lih o o d  es t im a tio n  o f  param eters . In 
this article, w e  stu d y  th e  E fro n  effic iency  o f  the  
T itter ington-m ode l-based  s tochastic  supervision  
scheme.

Let:
Z\ Supervisor a sse s sm e n t  o f  th e  probability  o f  a unit 

b elonging to  g ro u p  I;
W: l o g [ Z / ( l  -  Z )] ;
X: a p -d im e n s io n a l  fea tu re  vec to r .

Then, w e  assu m e that th e  distribution  o f  W  is 
normal w ith  m ea n  re sp ectiv e ly  in the groups
0 and 1. and with a c o m m o n  variance o 2 in the 
two groups. T h e  feature v ec to r  X  has p -d im en sion a l  
normal d istributions with m ean  vec tors  //(>, fX\ in 
groups 0 and 1 respectively  and  w ith a com m on  
dispersion matrix 2  in the lw o  8 r« u p s. Further, we  
assume that, in each g rou p . X  and Z  are

in d ep en d en t.  T h e  p rev a len ce  rates o f  the tw o  groups  
are jt0 and Jti respective ly . A n  initial sam ple o f N  
units is taken  from  th e  m ixture

Jt0f 0(x ,  z )  + JTj f iCx,  z )  (1 .1)

w here fo (x ,  z )  and f {( x , z )  are ob ta ined  as described  
ab ove.

E fro n ’s (6) efficiency is a m easure  o f  the inform ation  
contained  in an initial sam p le  unit taken according to 
a certain sch em e com pared  to a perfectly  supervised  
schem e; another w ay o f  look in g  at Efron efficiency  
is as the relative sam ple size required under a certain  
sch em e com pared  to perfect supervision to ach ieve  
the sam e estim ation  efficiency o f  the discriminant 
function coefficients based on the feature vector  X .  
T h e m athem atical definition o f  Efron efficiency and  
its derivation and uses in various cases  can be found  
in many references and h en ce  w e  avoid  go ing  into  
its details here— the definition and use in studying  
the efficiency o f logistic regression  can be found in 
E f r o n , u s e  in studying the efficiency o f u nsu per ­
vised  schem es in 0 ’N e i l l . (7) efficiency o f  error-prone  
determ inistic supervision sch em es  in K rishnan(2) and  
stochastic supervision sch em e s  with a beta  supervisor  
in Krishnan and N a n d y .<4)

It is easily seen  that the m o d el a b o v e  is an u nsu per ­
vised schem e based on a (/> +  1 )-d im ensional feature  
vector (X , Z.) w here the vector has norm al d istri­
butions in each group  with a c o m m o n  covar iance  
matrix; this com m on  covar iance  m atrix lias a special  
structure w hereby the covar ian ces  o f  X wi th I lie 
co m pon en ts  o f  X  are all zero . T his  is a specia l case  
o f  the unsupervised  sch em e o f  O ' N e i l l ' s . W h i l e  a 
great deal o f  effort w as required  to d er iv e  form ulae  
for the Efron effic iency  o f  the beta  su perv isor , under  
the 1 itterington log istic-norm al su perv isor  it 
becom es easy  o w in g  to the normal i ty  o f  { / . .  X ) .



The Efron efficiency based on a /;-dimensional 
feature vector is a convex combination of what Efron 
calls the intercept and slope efficiencies of the dis­
criminant boundary which are also interpretable
respectively as the efficiencies when p = 1 and 
/? = *.

Efron efficiency depends on and the Mahal- 
anobis distance between the two groups. We quote 
below O’Neill’s formulae for efficiency in the case of 
ap-dimensional vector, denoted Effp, with a distance 
of A between the two groups.

7lx
Let A = log— .

Eff„(jri, A)

q{jci , A)Effi(jri, A) + (p -  1) Eff„(7T], A)

q{jti, A) + (p -  1)
(1.2)

where 

q{n,, A)

Eff-

1 + niJr0A2
(1.3)

Eff,(7rL, A)

(1.4)

Effa:(7C1, A) = 1 -  fl0(l + jTToJTT] A2); (1.5)

where

H
(1 A - /4  — (jr0 -  j r , )A /2 '  

-(jzn -  j i t)A/2 l + 2 ^ (i^iA2

« , - r exp[-A2/8]( (̂x)
exp(Ax/2j + exp[-A*/2]

A  =
«o 

# 1 2̂

(1.6)

dx;

(1.7)

(1.8)

We denote our stochastic supervision efficiency 
based on a /^-dimensional feature vector by 5Eff 
although by O'Neill's notation it is EffpJ.) being 
unsupervised efficiency for a (p + 1 )-dimensional 
feature vector. Thus

.S'Eff,,(,!•,, A . <S) =  E f f , ^  , ( , t ,  , Y ).  (1.10) 

When d=  0.

S E ty jr , , A. 0) = Eff,,. , (.t, . A); .S'Eff, (jt, , A, 0)

= Eff:(,T|, A). (1.11)

In the following section we present a table and a 
chart of this .S'Eff for various parameter values.

2. COM PUTATION O F  EFFIC IE N C Y  AND INTERPRETATION |

j

We have computed .S'Eff, a n d  SEff* as given by 
the formulae derived above for various values of 
A and <5. Efficiency values for some selected values 
of the parameters are presented in Table 1. A sum­
mary of the efficiencies is presented in Fig. 1.

From Table 1 and Fig. 1. we notice that the results 
are similar to  w h a t  we o b ta in e d  fo r  th e  beta super­
vision in our earlier paper,1*’ n a m e ly  th a t :

1. Efficiency increases with supervision, i.e. with 
increasing d:

2. Efficiency increases with A, the distance 
between the two groups; ^

3. For n\ = (1.5, the dimension of the feature vec- , 
tor is immaterial; this also clearly follows from the | 
formulae for efficiency;

Table I. Asymptotic relative efficiency of normal dis­
crimination with stochastic (logistic-normal) supervision 

jr, =  (1.5

6
A = 

.S'Eff,
2
■S’Eff,

A = 
.S’Eff |

■ 3
.S'Eff,

A = 
5E ff|

4
SEff*

0 0.1008 0.1008 0.3594 0.3594 0.6589 0.6589
2 0.3072 0.3072 0.5467 0.5467 0.7716 0.7716
3 0.5467 0.5467 0.7201 0.7201 0.8652 0.8652
4 0.7716 0.7716 0.8652 0.8652 0.9376 0.9376

Ji, = 0.667

In our case the distance between the two groups 
on the basis of the (p + 1) dimensions denoted by V 
is given by

V2 = A2 + a2, (1.9)

where A is the distance between the two groups 
based on X  and 6 is the distance based on Z and

d~ = —r .  Thus the efficiency formulae in our case 
cr

are obtained by plugging in V as given by equation 
(1.9) instead of A in formulae for Eff as given above.

A == 2 A = 3 A == 4
5 SEff, SE ff, SEff, SEff., SEff, SEff.

0 0.0989 0.1211 0.3572 0.3819 0.6561 0.6722
2 0.3051 0.3305 0.5441 0.5642 0.7690 0.7805
3 0.5441 0.5642 0.7174 0.7311 0.8630 0.8702
4 0.7690 0.7805 0.8630 0.8702 0.9362 0.9397

=  0.9

A =  2 A == 3 A = 4
d SEff, S E ff, SEff, SEff* SEff, SEff*

0 0.0798 0.1994 0.3120 0.4896 0.6134 0.7481
2 0.2624 0.4384 0.4976 0.6570 0.7334 0.8345
3 0.4976 0.6570 0.6781 0.7957 0.8364 0.9031
4 0.7334 0.8345 0.8364 0.9031 0.9199 0.9548



F ig . 1. Eff o f  lo g is t ic -n o r m a l  supervisor for various values of parameters and supervision index.

4. .SEff, d e c r e a s e s  w ith  v a lu e s  o f  7i\ aw ay  from  i  
and 5Eff» in c r e a se s  w ith  th e  v a lu e  o f  tzx aw a y  from  
I; thus the s i tu a t io n  o f  u n e q u a l  p r e v a le n c e  rates o f  
the two groups n e e d s  a la r g e r  n u m b e r  o f  fea tu res  for  
the same d is ta n c e  b e t w e e n  g ro u p s;

5. For 6  =  0 ,  S E f f j  a n d  S E ff^  c o in c id e  w ith  th e  
corresponding e f f ic ie n c y  in O ’N e i l l ’s ^  tab les;  
clearly, <5 =  0 is th e  u n s u p e r v is e d  c a s e  a n d  h en c e  the  
SEff formula is th e  s a m e  as O ’N e i l l ’s fo rm u la  for  th e  
unsupervised c a s e .

The in terp re ta t io n  o f  t h e s e  e f f ic ie n c ie s  is sim ilar to 
that pointed o u t  in o u r  e a r l ie r  p a p e r .w  F o r  in sta n ce ,  
when the fe a tu r e  d is tr ib u t io n  p a r a m e te r  v a lu e s  are  
P ~ l ,  A  — 4 , Jt\ ~  0 .6 6 7  a n d  th e  log ist ic -n orm al  
supervision p a r a m e t e r  is  <3 =  3 ,  S E f f  =  0 .8 6 3 0 ; this  
means that for  t h e s e  f e a t u r e  d is tr ib u tio n  p a ra m e ter  
values, ab out 86  s to c h a s t ic a l ly  (<5) su p erv ised  
samples are e q u iv a le n t  to  1 0 0  p e r fe c t ly  su p erv ised  
samples.

Titterington(5) h a s  e s t a b l i s h e d  a  s im ilar ity  b e tw e e n  
the two m o d e ls  fo r  s o m e  p a r a m e tr ic  v a lu e s  o n  the

basis o f  equality  o f  tw o  m om en ts; he show s that the 
beta  m o d e l w ith  m  =  5, n  — 3 is similar to the logistic- 
norm al m o d e l  w ith  r) — 0 .5833 and o  — 0 .6112 result­
ing in 6  — 2 .2262; this is d o n e  on the basis o f  equating  
m o m en ts  o f  order r x — 0 .05  and r 2 — 0 .10. H ow ever ,  
if th e  first and seco n d  m o m en ts  are equated  w e get  
for the sam e b eta  param eters rj =  0 .5754  and o  =  
0 .5754  resulting in <5 =  1 .5736, in which case the tw o  
m o d els  lo o k  quite  different. T h e  values o f  r \  and r 2 

n eed ed  to  str ike a similarity b etw een  the tw o m o d els  
are d ifferent for d ifferent m  and n. H en ce  it is not  
easy  to con vert results o f  the beta m od el into those  
o f  th e  log istic-norm al m od el.  For the a b o v e  case  
w h en  th e  tw o  m o d els  are s im ila r , the effic iencies  are 
also fairly equal as sh ow n  in T able  2, w here  the  
efficiencies for th e  beta case  are co m p u ted  using  
the form ula in our previous article J 4) H o w e v e r ,  the  
p rob lem  rem ains as to h o w  to set up a co r ­
resp on d en ce  b e tw een  th ese  tw o  m od els .  In the case  
o f  the logistic-norm al m o d e l an in d e x  o f  s u p e r v is io n  
is naturally g iven  by 5. B ut it is not c lear  as to  w hat



Table 2. Comparison of asymptotic relative efficiencies of normal discrimination under logistic- 
normal and beta supervision models 

* , = 0.5

A = 2 A = 3 A = 4
Model SEff, SEff, SEff, SEff, SEff, SEff,

5 = 1.5736 0.2262 0.2262 0.4802 0.4802 0.7332 0.7332
6 = 2.2262 0.3572 0.3572 0.5852 0.5852 0.7931 0.7931

m  = 5, n = 3 0.3911 0.3911 0.5503 0.5503 0.7543 0.7543

x ,  = 0.667

A = 2 A = 3 A = 4
Model S E ff, SEff, SEff, SEff, SEff, SEff,

<5 =  1.5736 0.2242 0.2497 0.4777 0.4997 0.7305 0.7436
d =  2.2262 0.3549 0.3796 0.5825 0.6013 0.7905 0.8019

m  =  5, n = 3 0.3824 0.4015 0.5360 0.5654 0.7439 0.7648

II © sO

A = 2 A = 3 A = 4
Model SEff, SEff, SEff, SEff, SEff, SEff,

<5 = 1.5736 0.1878 0.3532 0.4304 0.6000 0.6921 0.8056
6 = 2.2262 0.3098 0.4874 0.5370 0.6889 0.7567 0.8565

m = 5, n ~  3 0.3976 0.4294 0.4776 0.6341 0.6824 0.8180

a suitable single index of supervision should be in 
the case of the beta model; as pointed out in Krishnan 
and Nandy,(4) this index will be a suitably normalised 
version of \m -  n\ and it is not dear what this nor­
malisation should be. A correspondence between 
the logistic-normal model and the beta model may 
depend on the answer to this question. We are work­
ing on this problem.

SUMMARY

We consider the problem of discriminant analysis 
when the supervisor’s classification is stochastic, and 
deal with the problem of efficiency of this supervision 
relative to perfect supervision. For this, we use the 
supervision model of Titterington,(5) who proposed 
a logistic-normal distribution for the supervisor’s 
probability of classifying an object into a group; he 
had suggested this as an alternative to the beta model 
we had earlier proposed.(3'4) Under this model of 
supervision and for the case of two p-dimensional 
normal populations with a common covariance 
matrix, we derive formulae for Efron efficiency of 
stochastic supervision, which is an index of the 
amount of statistical information contained in the 
stochastic supervision vis-a-vis perfect supervision. 
We present a table and a chart of this efficiency for 
various values of parameters of the two p-dimen-

sional normal populations and various levels of 
supervision. We interpret these values to show how 
the worth of a stochastically supervised sample 
depends on the supervision parameters and the par­
ameters of the feature distributions. Stochastically 
supervised initial samples are quite useful unless the 
supervision parameters are such that it is very close 
to a completely unsupervised situation.
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