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Abstract

An application of empirical Bayes and Kalman filtering techniques is 
reported, using live data  from Indian Statistical Institute (ISI), Calcutta , to 
illustrate how initial small domain estimators may be vastly improved upon. 
A stratified two stage sampling procedure is adopted, allowing selection of 
first stage units with unequal probabilities but of second stage units with 
equal probabilities. Standard design-based estimators for domain totals 
are initialized based on domain specific survey data alone. Strength is then 
borrowed across domains and from past surveys. The resulting gains in 
efficacy are numerically demonstrated, through replicated sampling from 
official records.

1. Introduction
We consider sampling from a survey population to estimate totals of a 

variable of interest for several non-overlapping domains of different sizes. 
For improved small domain estimation, borrowing strength ‘across similar
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domains’ and ‘from past sample observations’ respectively by ‘empirical 
Bayes’ and ‘Kalman filtering’ techniques is a usual pratice. As model pos­
tulation is involved in applying these corrective techniques it is of interest 
to examine how the methods apply in practice. We bear in mind that so­
phisticated diagnostic tests are rarely applied in large-scale surveys. So, 
we undertake a case study presented below in brief. Owing to paucity of 
resources no survey could be undertaken but only easily accessible official 
records from our institute are utilized. Consequently the variables used for 
estimation and sample selection axe not very realistic. Yet the efficacy of 
the two techniques noted above is well-illustrated with our limited empirical 
exercise. We initiate with estimators of domain totals that use only domain- 
specific sample observations for the respective time points. Then we check 
that empirical Bayes estimators that borrow strength across other domains 
fare better. Finally we find that Kalman filter estimators that moreover 
use past data are even better. The models we postulate to apply these 
two techniques may appear too simplistic and not quite realistic. But the 
reason why we persist with them is that even with their limitations they 
yield fruitful results; with further refinements in the models possibly even 
better results may be forthcoming. But for simplicity and to derive quick 
results we do not explore more sophisticated models and techniques. In our 
view these techniques should be employed in practice in similar situations 
with prospects for good results.

2. Formulation of the problem and the method of solution

About 1200 workers, of ISI, Calcutta for adminstrative reasons are at­
tached to several different ‘units’. We consider an  ‘artificial’ problem of clas­
sifying them into several ‘domains’ in order of ‘monthly take-home pay’ of a 
worker and estimating the respective ‘domain totals’ of dearness allowances 
(DA) “earned by the workers in the aggregate” of respective domains on 
taking a sample of 200 workers from the institute as a whole. For sampling, 
the ISI ‘units’ are stratified as follows. Our available monthly data are for 
April through September, 1992. Every ‘unit’ with 50 or more workers in 
‘April 1992’ is supposed to constitute a separate stratum  and there are 9 
such strata; those with number of workers between 25 and 49 form the 
10th stratum which has 10 “units” and the remaining ‘units’ totalling 20 
together give the 11th stratum. Formation of stra ta  is thus with reference 
to April 1992 figures alone and is persisted with for the subsequent months. 
From the first 9 strata a sample of 120 workers is chosen with a propor­



tional allocation of sample-size. The workers for these respective strata are 
chosen employing the Rao, Hartley and Cochran (RHC,1962) scheme, nar­
rated in appendix below, with basic pay of worker as the ‘size-measure’ for 
sample selection. From the 10th stratum of 10 ‘units’ a sample of 5 ‘units’ 
is chosen by RHC scheme and from the 11th stratum of 20 ‘units’ a sample 
of 10 ‘units’ is chosen again by RHC scheme taking ‘number of workers in 
the unit’ as the size-measure for sample selection. From each of the first 
set of selected 5 ‘units’ a simple random sample (SRS) of 12 workers is 
chosen without replacement (WOR) and from each of the second set of 10 
‘units’ an SRSWOR of 2 workers is chosen. This gives a total sample of 
2 0 0  workers. For each of the 6 months, April-September in 1992, the same 
sampling scheme is followed; of course the total size N of the population 
and strata sizes Nh(h =  1, • ■ •, H =  11) vary across the months. Domain 
sizes Nd vary appreciably from 2 to 156 and so of course the domain-wise 
sample-sizes nd; d =  1, • - •, D. The number of domains D turns out 25. Lpt 
y, be the monthly DA of the ith worker, t =  1, • ■ •, N  and Idl =  1 or 0 ac­
cording as the ith worker belongs to the dth domain or else. We first derive 
an estimate Ydh of the ‘stratum-total’ Y& of the domain specific values of 
Vdi =  Vi hi for every stratum  h =  1, • • •, H  and every domain d =  1, • • •, D. 
Then aggregating the estimates across the strata we derive the respective 
estimated domain totals, which we denote by td (d =  1, • ■ ■, D  =  25 ). In 
the “Appendix” we indicate a formula for and for a variance estimator 
vd of td. Since td =  J2h=i Ydh, a formula for vd is obtained by summing the 
variance estimators of Y^, over h = 1, • ■ •, H ; formulae for the latter are 
given in the Appendix.

To improve upon td, we apply as follows an empirical Bayes procedure. 
Let x denote the ‘gross pay’ of a worker and Xd its total for domain d. 
Following the standard literature, noting Prasad and Rao (1990), Ghosh 
and Rao (1994) among others, we postulate the following :

td =  Yd +  ed such that ed ~  N(0,vd) i.e. ed is distributed ‘indepen­
dently’ normally with mean 0 and variance vd, for d =  1, • • •, D  ; further, 
let
Yd = f3 X d +  ed such that ft is an unknown regression coefficient and ed ~  
N(0,A), i.e. ed is distributed “independently of each other and of ed for 
every d” , with A as an unknown positive quantity. Here a common slope 
across the domains is assumed in oder to borrow strength from similar do­
mains. Independence assumption is for simplicity of resulting procedures. 
It follows that (td , Yd) has a bivariate normal distribution with mean vec­
tor (PXd , 0X d) and the dispersion matrix



(  A +  vd A \

V  ^  A J  '
So the “posterior” distribution of Yd given td is normal with mean t‘d = 

td +  PXd , the Bayes estimator of Yd and variance 
Let

Z j , t dX d/(A  + vd) - 

Y . l , X y ( A  + vd)

T h e n E ^ if o  -  0Xd)2/(A +  vd) follows Chi-square distribution with (D-l) 
degrees of freedom. Applying the method of moments, by itorat ion we solve 
for A, the equation

E S o -  p x dy-/(A +  vd) =  D - i

to find an estimator A for A. Then follows the empirical Bayes estimator 
(EBE), writing 0  for /? with A replaced by A in ft,

for Yd- Following Prasad and Rao (1990) we estimate its mean square error 
(MSE) by

Md = gu (A) +  92d (-<4) + 2gid (.4)
X2

writing 7 d =  ,gld (X) =  7dvd, g2d {A) =  (1 -  7a)2

U ) =  ^  i ^  Also iS the
value of gjd{A) with A replaced by A  for j= l,2 ,3 . Further we note the
model-based variance of /3 namely Vm{0) =  = 75—--- ----- r and estimate it

L t l  Xd/(A+Vd)

L*.i *il(A+vi)
For a further improvement upon m d using “past data” , we apply as 

follows the Kalman filtering technique as given, among others, by Mein- 
hold and Singpurwalla (1983) . By t =  0,1, ■ • •, T  with T as 5, let us denote 
the successive months April,May,...,September in 1992 and attach this time 
subscript t to previous symbols m d, /3, X d, Md, W  etc with obvious implica­
tions. Let us introduce further modelling to write (i)m<a =  j3t X& + 7)<a> 
(H)Vdt ~  N(0,Mdt), [iii)Pt =  A - 1 +  6  and postulate for simplicity that
{iv)77* is independent of &, (v)£t ~  N(0,W t), where Wt =  p

Z*,d=i JiitnAt+V6t>
(m)/3o ~  N(4>do, E<io), where <pdo =  Sdo =  using (i) above. Then the 

recursive steps of Kalman filtering are as follows :



Conditional on m^o, the distribution of f t  is normal =  ^do +
Wi) ; let mdl =  X& <]>&, A dl =  mdi — mdl =  X di {Pi -  4>da) +  Vdi ; then the 
conditional distribution, given m<*, , of (Adl, f t) ' is bivariate normal with 
mean vector (0, and dispersion matrix

(  -^di Rdi +  M di X di R ji \

\  X d i  R d i  R d \  J

Prom this follows that the conditional distribution of Pi/Adi i-e- of Pi given 
(mda,mdi) , is normal with mean

m d i + x d t t i u  * * = say >

and variance > say- Then the Kalman filter (KF) estimator

of Ydi is taken as K d\ =  X d: f t  and its measure of error as the estimated 
MSE namely X%: Vj = Md( 1) , say. This procedure is repeated to derive 
KF estimators K& for ( t =  2, • • • ,T )  and their estimated MSE’s M<*(t) 
in an obvious way. One may consult Meinhlod and Singpurwalla (1983).

We expect mdt to improve upon the initial and K& upon md To 
examine this theoritically is difficult. So, we examine the relative per­
formances of 95% confidence intervals (Cl) for Ydl respectively given by

(i)£dt ±  1-96 y/vdi, (ii)rntil ±  1.96 \Jm <ii and (iii)Kdt ±  1.96 ĴMd(t) based on 
the usual assumption of normality of the distribution of a pivot like

Y & -Y *

\JM(Ydt) ’

writing Y& for an estimator of Yu and M(.) for its MSE estimator. For this 
we report a numerical exercise, carrying out a simulation, with R =  10,000 
replicates of samples drawn in a manner described already, calculating the 
above three C l’s I  - III.

The following criteria are considered for evaluation of relative perfor­
mances of the CI’s constructed as (I)-(III), writing £ r as sum over the 
replicated samples.

(1.) ACP  (Actual coverage percentage) =  the percent of replicates for 
which a  Cl covers YA - the closer it is to 95, other things remaining 
in tact, the better.



2. ACV  ( Average coefficient of variation) =  ^ E r the smaller it 
is the better as it reflects the length of Cl;

3. R E  (Relative efficiency). Define

P M S E f a )  =  (Ydt ~ Ydtf

(a) R E  of mdt vs tA is and (b) similarly of K dt vs i*, (c)
vs mA; the larger the values of (a), the greater the advantage with 

EB method; likewise for (b) - (c).

We present the numerical findings in 2 tables in the next section, se­
lectively for a few domains and for the 2 months of June and September, 
1992.

3. N um erical F indings on  C o m p ara tiv e  P e rfo rm an ce s  of 
P ro ce d u re s

Values are given for and K& successively, separted by commas.

Table 1
Relative performances for the month of June

Domain Domain ACP 102ACV RE
size total(Rs.) I II III I II III (a) (b) (c)

60 44213.13 88.5, 99.0, 98.4 29.5, 29.1, 19.1 6.7, 12.6, i.y

117 83787.00 71.0, 99.2, 99.6 20.1, 17.8, 11.3 12.6, 40.1, 3.2

154 119838.70 76.4, 99.1, 99.6 16.5, 13.6, 9.7 11.3, 26.7, 2.4

143 125171.00 85.7, 99.4, 99.7 18.8, 13.8, 9.3 13.6, 40.8, 3.0

115 117177.00 91.6, 98.4, 99.0 21.4, 14.7, 10.1 7.6, 19.5, 2.6

103 119669.00 89.9, 97.3, 97.0 23.0, 15.0, 10.5 6.5, 11.0, 1.7

115 142675.11 90.3, 97.7, 97.9 20.7, 13.2, 9.6 6.7, 11.2, 1.7
66 101343.00 85.0, 93.5, 92.8 28.2, 17.6, 11.3 4.4, 7.7, 1.8
67 108094.00 87.4, 95.2, 91.9 26.8, 16.5, 11.7 5.1, 6.1, 1.2
38 60396.00 85.0, 91.4, 86.1 39.0, 26.6, 16.1 3.4, 4.6, 1.4



Table 2
Relative performances for the month of September

Domain Domain ACP 10 2ACV RE
size total(Rs.) I II III I II III (a) (b) (c)
30 24545.00 90.8, 94.2, 96.4 43.1, 45.5, 17.1 2.9, 13.5, 4.6
80 57622.00 78.2, 99.3, 100.0 25.0, 24.2, 11.4 9.4, 100.7, 10.7
156 124307.00 76.3, 98.9, 100.0 16.6, 13.6, 9.0 11.8, 45.5, 3.9
146 119680.00 79.4, 99.2, 100.0 17.7, 14.1, 9.1 12.8, 56.6, 4.4
107 99483.00 88.8, 99.5, 100.0 21.6, 16.3, 10.2 9.4, 42.9, 4.5
130 140299.00 90.8, 98.2, 99.0 20.0, 13.1, 9.2 6.7, 18.5, 2.7
106 127003.00 90.9, 98.8, 99.0 21.5, 14.5, 9.6 9.2, 18.6, 2.0

80 115944.00 87.0, 94.7, 94.9 26.9, 16.1, 10.4 5.0, 9.1, 1.8
63 95144.00 86.2, 94.1, 93.0 28.0, 18.4, 11.1 4.0, 7.2, 1.8
52 79870.00 82.6, 91.1, 87.0 34.2, 21.7, 13.5 3.7, 5.3, 1.4
54 99590.00 82.4, 90.9, 87.8 36.5, 18.7, 11.6 4.5, 7.1, 1.6

4. Comments and Recommendations

If three criteria are acceptable then an obvious conclusion from the 
two tables given in section 3 is that, though the models are postulated 
drastically without even trying to check their validity, one should employ 
empirical Bayes estimators starting with initial designed-based estimators 
expecting appreciable improvement and also employ Kalman filtering for a 
further improvement in situations treated as above.

5. Appendix

A NOTE ON RAO, HARTLEY, COCHRAN (RHC) SAMPLING 
STRATEGY AND ITS MODIFICATION IN TWO STAGE SAMPLING

If a sample of size n is to be taken from a population of size N  to 
estimate the total Y of values j/„ (1, ■ • •, N) of a variable y when ‘normed’ 

size-measures (o <  p, < 1, p, =  1, i =  1, • • ■, JV) are available, then 
RHC’s method of sampling is as follows. The population is divided at 
random into n  groups of sizes Ng (g =  1, • • •, n; 0 < Ng < N, Ns =  N).



From each group one unit is then chosen with a probability proportional to 
values of p, for the units falling within the group; selection is independent 
across the groups. Writing yg,pg for yx and p,-value of the unit chosen from 
the g- th  group and cg for the sum of the p, - values over the units falling in 
the g -th group and for the sum over the n  groups, the RHC estimator 

for Yis

tR =  ^ sVst s '
An unbiased estimator of the variance of tR is

To control the variance of tR an appropriate choice of Ng for each g is -  

if it is an integer; otherwise take some of them as and rest as +1 
subject to Y,g Ng =  TV.

If the unit i consists of Mi second stage units (ssu), one instead of ascer­
taining yx may estimate it by taking an SRSWOR of size m, (0 < m, < Mi, 
i =  1, ■ ■ ■ ,N), employing the expansion estimator y,. Writing .s',, for the 
sample variance, using divisor (m, — 1), an estimator of variance of y, based 
on selected ssu’s is

v{y ,) =  Mi (M, -  m,) —  .
rrii

In such a case one may take

in = Y.ysci
g Pg

instead of tji as an estimator for Y. Then a standard unbiased estimator of 
the variance of tR with obvious notations is

v (in') =
\ p 9 J  r  9 p s  '

For our application as reported in sections 2 and 3 this procedure is followed 

separately within each statum treated a s a population a n d  y, is replaced 

throughout by ydi and thus formulae for td and vd of sections 2 and 3 are 
derived.
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