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Abstrace: A miodilied werdian of the wmual K-cetimation proldem e proposed, awd stample median is shown to be 2 sobution of Uhis
nroblem far o wide ramge of chostes of the soore funcoion. It exposes certain universality in the robustness of sample median in the
unfvariate s, aml this propemy continues oo hodd even in mulbivamiadte set-aps if we consider the multrvariate L-median, Some
interesting Fects related ta ilis “modified -estimation’ are discussed, and the consegoences of & amitsr modiBcation of the

tradlicional maximuan likelihood approach are explared.
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1. Introdsction

A well-known robustness property of sample me-
dian as an estimate of univanate location is (s
5309  breakdown point. Kemperman  (1987)
shewed that this property is retained by the L -
median of any finile measure on a Banach space.
In particular, it implizs that the spatial median
{or the mediancenter), which has been considerad
by several people (ep. Haldane, 1948; Cower,
1974; Brown, 1983, Ducharme and Milasewc,
197 ete ) analvzmg multivariate data, also has
055 breakdown point. While exploring the distri-
butional robustness of statistical procedures, Hu-
her (1981, Chapter 4, section 4.2) noted that for
mixdels arising from contaminations of symmmet-
tric unimodal densities, univariate median is the
universal solution for the “minimax bias problem’.
Bassett (1991} observed that univariate median is
the anly location estimate that is affine equivari-
ant, monctonic, and has 30% breakdown point,
and other estimates of univanate ocation can
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have at most any two of these three properties, In
this note, we will establish a property of sample
median that holds in wnivariate as well as multi-
variate sef-ups and cxposes a new aspect of ro-
bustpess in this popular location estimate. This
progerty of median has some intriguing connec-
tions with M-estimation technigues that are ex-
tensively discussed mrobust estimation teratore,
There are many different ways of defining the
median of o multivariate distribution. However,
thronghout fhis note, we will restrict ourselves o
only the L -median.

2. Modified M-estimation preblem and sample
median as its universal solution

Suppose that we have a set of Lid, d-dimensional
observations X,,..., X, and consider the stan-
dard M-estimation set-up in which a location
estimate 8, 5 defines as

(X, —d,)= min T p{ X —8). (1)

P peld ju

Here p is an appropriate nonnegative loss func-
tion. Alternatively, the M-estimate 8, can be de-
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fined implicitly as a solution of the estimating
equation

n

L (X;—8)=0, (2)
i=1
where ¢ (the score function) can be viewed as the
derivative of p. Note that for d > 1, both sides of
equation (2) are d-dimensional vectors, and
represents the usual gradient vector of p. Well-
known examples of such M-estimates are maxi-
mum likelihood estimates based on location mod-
els and the usual sample mean, the latter being a
solution of (1) when p is the squared error loss.
In sharp contrast with sample median, sample
mean has 0% breakdown point, and this lack of
robustness (i.e. a high degree of susceptibility to
even a single outlier) can be attributed to the
unboundedness of the ¢ function associated with
the squared error loss (see Hampel, 1974; Huber,
1981, Chapter 1, sections 1.4 and 1.5). In an
attempt to robustify M-estimates of location, vari-
ous bounded versions of the ¢ function have
been tried in the literature. Some illuminating
discussions on several estimates obtained as solu-
tions of (2) based on bounded ¢ can be be found
in Huber (1981) and Hampel, Rousseeuw,
Ronchetti and Stahel (1986). Stigler (1980), who
gave a fascinating historical review of robust M-
estimates, mentioned about Daniell Bernoulli’s
recommendation for certain bounded ¢ functions
to construct location estimates even in the eigh-
teenth century! However, some common techni-
cal difficulties associated with all popular M-
estimates constructed via equation (2) using
bounded ¢ functions are: (a) computational com-
plexities caused by the nonlinear nature of equa-
tion (2), (b) the need for having an appropriate
initial estimate of the scale parameter as bounded
versions of ¢ typically depend on the scale, and
(¢) the lack of objective guidelines regarding the
choice of . These problems turn out to be
particularly critical and hard to overcome in a
multivariate set up.

Suppose now that we have a univariate loca-
tion problem so that 8 is real valued, and let us
rewrite equation (2) as

Y U(X-0) = mean $(X,~0) =0, (3)

i=1 I<ign
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If we replace ‘mean’ by its long time competitor
‘median’ in (3), we get the following ‘modified
M-estimation equation’.
median ¢( X; —8) =0. G
1<ign
Note at this point that all of the popular ¢
functions that are used in the construction of
robust M-estimates of univariate location satisfy
$(0) =0, y(¢) > 0 only if >0 and ¥(¢) <0 only
if £t <0. As a matter of fact, frequently used ¢’s
are anti-symmetric functions. Hence, irrespective
of the specific form of ¢, a solution of (4) is
6, = median X,.
I<ign

Consider next multivariate observations and

the minimization problem

1 =n
min — Y p(| X, —0])

asR ;4

= min mean p(|X; - 8]). (5)
geR? 1<i<n
Here |- | denotes the usual Euclidean norm, and
p is a smooth increasing and nonnegative loss
function defined on the interval [0, ). Instead of
(5), as noted at the beginning of this section, one

. can also work with the estimating equation

1 n
=L p'(1 X, —01)U(X, - 6)
ni_
= mean p(1X,—e)U(X;—08)=0. (6)
sisn
Here p’ is the derivative of p, and for x € RY, we
define U(x)=|x|""x if x#0 and U0)=0.
Now, if (6) is modified as
median p'(| X; - 0|)U(X,—0) =0, (N
l<gign
where ‘median’ means the L -median mentioned
in the Introduction, we get a multivariate version
of the ‘modified M-estimation equation’. Kem-
perman observed that Y€ R is an L, -median
(which is unique in dimensions d > 2 unless all
data points fall on a single straight line) of a set
of observed data points Z,,..., Z, in RY, if and
only if one of the following two conditions holds.
(a) Y=Z, for some 1 <i<n and

\U(Z,-Y)+---+U(Z,-Y)|<1.
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(b) Y+Z, forall 1 <i<n and
\U(Z,-Y)+ - +U(Z,-Y)| =0.

This fundamental observation immediately im-
plies that the location estimate

én = median X

1<ign
is again a solution of (7) irrespective of the spe-
cific form of p. Note that

Ulp'(1 X, - 01)U(X, - 8)} = U(X,—6)

because p’(| X, —01]) is a real valued object act-
ing as a scalar multiple here. In particular, if p
arises as the negative log-likelihood associated
with a location problem (univariate or multivari-
ate), the median will be a solution of the ‘mod-
ified maximum likelihood problem’ for a wide
range of popular location models. In a sense,
what we are observing here points at a finite
sample ‘median unbiasedness property’ (i.e. the
fact that (X, — 8)s, where 1 <i <n, have their
median at the origin whenever (X;— 6)’s have
theirs at the origin) that holds for all commonly
used score functions.

3. Some concluding remarks

Instead of replacing (3) by (4) or (6) by (7) in the
previous section, one can also try to construct
location estimates by solving the minimization
problem

min median p(| X, - 81).

geR? l<ikn

Clearly, the above is a modification of (5). In view
of the monotonicity of p on the interval [0, %)
assumed in the previous section, estimates that
solve this minimization problem are ‘LMS’ (‘least
median of squares’) type estimates (see e.g.
Rousseeuw and Leroy, 1987), and they have some
close connections with the ‘SHORTH’ estimate
of location (see e.g. Andrews et al., 1972). Such
estimates have received a fair amount of atten-
tion in the literature, and it is well-known that
they are highly unstable in nature with a much

slower rate of convergence (see Rousseeuw, 1984;
Shorack and Wellner, 1986; and Kim and Pollard,
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1990) than the sample median, which is typically
n'/%consistent.

In the case of ii.d. observations X,,..., X,
with a common smooth density/mass function
f(x |6), where 6 is a real valued unknown (not
necessarily location) parameter of interest, our
‘modified maximum likelihood equation’ takes the
form

(X, 16
median f_(_’___) =0
1<i<n f(X, |9)

Here f’ denotes the derivative of f w.r.t. §. With
a fixed x, frequently occurring examples of the
function f(x|6) (the model likelihood) has a
maximum at 6 ={(x) (say) such that f(x[6) is
increasing in @ for 8 <¢(x) and decreasing in 6
for 6 > t(x). It is then obvious from our previous
discussion that for such an f, a solution of (8) is

(8)

6, = median 1( X,).
I<i<n

Note that #(X;) is nothing but the usual maxi-
mum likelihood estimate of 6 based on the single
observation X, and in many practical situations,
it will be quite easy to compute it. For instance, it
happens to be so if 0 is the location parameter in
a location model, or if it is the scale parameter in
the gamma or the Weibull model with a known
shape parameter. It is now immediate that for a
large class of models, the solution of the ‘mod-
ified maximum likelihood problem’ is the straight
forward median of the solutions of the standard
maximum likelihood problems associated with
different data points. Further, in view of the
monotonicity assumed in the model likelihood,
whenever the score function {f'(X;|Hf(X; |
6)}~! has a continuous distribution with a unique
median at zero, the distribution of #(X;) will have
a unique median at 6. Hence, if #(X,) has an
absolutely continuous distribution with density g,
the ‘modified maximum likelihood estimate’ 6,
will be asymptotically normally distributed with
mean = 6 and variance = (4n) " {g(8)} ~>.
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