
Statistics & Probability Letters 18 (1993) 153-161 
North-Holland

Sooner and later waiting time problems 
for Markovian Bernoulli trials
K. Balasubramanian
Indian Statistical Institute, New Delhi, India

R. Viveros and N. Balakrishnan
McMaster UnUersity, Hamilton, Ont., Canada

Received August 1992 
Revised January 1993

Abstract'. The waiting time problems introduced by Ebneshahrashoob and Sobel (1990) for independent trials are generalized to 
Markov correlated Bernoulli trials. A new waiting time problem arising due to mixed quotas is also discussed. A learning model is 
used as illustration.
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1. Introduction

In many applications involving Bernoulli trials, the quantity of interest is the waiting time for a given 
num ber, a run o r o ther specific p a tte rn  of events to occur. T hese variates arise naturally  in the setting up 
o f (sequential) acceptance sampling plans in quality control (Schilling, 1982). O th e r applications are 
found in the design of certain clinical trials in biomedical experim entation. H ahn and Gage (1983) 
presented  an application to the m odeling of the starting-up reliability of pow er-generation equipment. 
See Viveros and Balakrishnan (1993) for the corresponding statistical analysis. An application to the 
m odeling and assessment of the occurrence of a num ber of defective fasteners adjacent to  one another in 
an assembly process was given by F ed e r (1974). It should be m entioned here that w aiting time problem s 
in general have a long and rich history; see, for example, Feller (1968).

An interesting class of waiting tim e problem s was proposed recently by E bneshahrashoob and Sobel 
(1990) (to be referred  as ES subsequently). The associated stopping criteria take into account both 
individual sequences of successes and  failures observed in the trials as the experim ent progresses. ES 
Perform ed a probabilistic analysis o f the  associated waiting tim es under the assum ption that the 
Bernoulli trials are independent and identically distributed.

Most of the literature on discrete waiting times is based on the assum ption th a t the  outcomes from 
different trials are independent events. A  different point of view is taken in this article by perm itting the
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Bernoulli trials to  exhibit some degree of correlation. The type of correlation allowed is M arkovian and 
is characterized by the  param eters p 0, p , and p 2, defined as

p 0 =  P r (O , =  5 ) ,  p l ='Pr{Oi = S \ O i_ 1 = S )  and p 2 =  P r (0 ,  =  S  | 0 ,_ ,  =  F ) ,  (1)

w here O, is the  outcom e of trial i ( i > 1), and S  and F  denote  success and failure, respectively. Let
<1 j =  1 ~Pj ,  j  = 0, 1, 2.

A  simple waiting tim e problem  u n d er this correlation structure, namely the analogue of the  negative 
binom ial distribution, is discussed by Viveros, B alasubram anian and B alakrishnan (1993) (to be referred  
as VBB subsequently). Also, the waiting tim e problem  discussed by H ahn and G age (1983), which is 
based on a run quota of successes, has been  extended to  M arkovian Bernoulli trials by Balakrishnan, 
B alasubram anian and  Viveros (1993) (to  be referred  as BBV subsequently). O ther relevant references 
th a t will be of in terest to  the readers in this regard  are R ajarshi (1974), W ang (1981), G erber and Li 
(1981), Schwager (1983) and B envenuto (1984).

The m ain objective of this article is to  extend to  the  p resen t correlation structure  the waiting time 
problem s proposed by ES. Thus, the results obtained by ES can be deduced as special cases from  the 
distributional results derived here. A part from  the extension itself, the  m ethods of analysis pu t forward 
in this article differ from  those of ES.

For the  sake of com pleteness, it is convenient to  associate with each of the  stopping rules considered 
in the rem aining sections the  random  vector Z =  (S 0, F 0, S u F u S 2, F2) w here S0 =  1 or 0 depending on 
w hether the  initial trial is successful o r not, F 0 =  1 -  S 0, S x ( F ,) is the  num ber of successful (unsuccess­
ful) trials for which the  previous trial is successful, and  S 2 (F 2) is the num ber of successful (unsuccessful) 
trials for which the previous trial is unsuccessful. T he variates of prim ary in terest are

X  = S 0 + S x + S 2, Y =  F 0 +  F 1 +  F 2 and W  = X + Y ,  (2)

which are the  to tal num bers of successes, failures, and trials, respectively. Usually, W  is regarded  as the 
waiting tim e variate.

T he waiting tim es to  be discussed will arise by setting quotas on both  runs and frequencies of 
successes and failures. The ‘sooner cases’ refer to  situations in which experim entation stops as soon as 
one of the quotas is reached (Sections 2 -4 ), while the  ‘la te r cases’ bring the experim ent to  a halt when 
bo th  quotas are com pleted (Section 5).

2. Run quotas

T he waiting tim e problem  to  be addressed in this section belongs to  the  ‘sooner cases’ and arises when 
im posing a quota  on runs of successes and failures. M ore specifically, M arkovian Bernoulli trials, as 
described in Section 1, are perform ed sequentially until e ither c consecutive successes or d  consecutive 
failures are observed, whichever event occurs first.

Proposition 1. The jo in t probability generating function  ( P G F ) o f  Z is

4>z(to> Mo> Mi> 12> u2) = £ ( f o ° Mo 0f iS l M f l f 2 2u 2 2 )  =  ( A + B ) / Q ,  ( 3 )

where

A  = ( 1 - p lt l ) { p xt l ) c~ l ^ p 0t0{ \ - q 2u 2) + q 0u 0p 2t 2[\  -  (<72u 2) d ' 1]} ,

B  =  (1 - ^ 2u 2)(<?2u 2) d' 1{g0w0( l  - / V , )  + p 0t0q 1u l [l  -  ( i V ! ) " ' 1]} ,

Q = (1 - / V O O  -<?2w2) - P 2t 2<?iMi [ l  -  O i ^ ) C-1] [ l  -



Proof. Sequences of outcom es term inating  in c consecutive successes, containing exactly k  subsequences 
of failures and with the first trial being successful, can be described as

S S S . . . S  F F . . . F  SS .  . . S  FF.  .. F

J i '2 h

S S . . . S  F F . . . F  S S . . . S ,

‘k ik c

w here 0 <  /j <  c — 2; 1 <  ia <  c — 1, a =  2, 3 , . . . ,  k;  1 <  d  -  1, a = 1, 2 , . . . ,  k;  and k  >  0. The net 
contribution  A xk to the jo in t P G F  of all such sequences is

^ u = / V o [ 1 + ^ V i  +  ( / V i ) 2 +  ••• + ( / V i ) c-2]

X q ^ u \ l + q 2u 2 + ( q 2u 2) 2 + + ( q 2u i ) d~ 2\ 

x p 2t 2[ l + p lt l + ( p i t r f  + ••• + ( / V i ) c~2 

X q xu \ \ + q 2u 2 + ( q 2u 2) 2 + " ■  + ( Q 2u 2)

x p 2^ [ l + P i ^ i  +  ( p ^ i ) 2 + ••• + ( p ^ i ) c~2]

+<72w2 +  ( q 2u 2) 2 + ••• +(<72« 2) rf_2]

=  / V o P 2 t 2 -
1 - p l t l

A dding all of these contributions gives

-q 1u 1
l - q 2u 2

A \ = L  A u  =Pot o(Pi t i ) c ( i  - p \ h ) ( l  ~ q 2u 2) / Q ,  
k = 0

w here Q  is as in (3).
Similarly, the  to tal contribution to the  jo in t P G F  of term s beginning with a failure and ending with c 

consecutive successes can be shown to be

A 2 = q0u 0p 2t2( p it l ) c \ \ - p it i ) \ \ - { q 2u 2) d ' ] / Q .

By symmetry, the corresponding contributions 5 ,  and B 2 from sequences ending with d  consecutive 
failures and beginning with a success or a failure, respectively, are easily derived. The jo in t PG F is then 
obtained as A 1 + A 2 +  B x +  B 2 =  ( A  +  B ) / Q  w here A  = ( A t + A 2)Q and B  = ( 5 ,  +  B 2)Q.  □

Evaluating 4>z  of (3) at the  appropriate  values gives the m arginal P G F ’s of X  and W.

Corollary 1. The P G F ’s o f  X  and W, defined in (2), are

x  ' ( ! ~ P \ t ) t c + q ( ~ ' {q<\ ( i  - P i t )  + P 0q ^ [ i  ~  ( p i O c_1]}

( 4 )

( 5)<!>w ( t ) = E ( t w ) = ( C  + D ) / R ,



where

C =  (1 - p xt ) p \ - h c{ p 0( \ - q 2t )  + q0p 2t [ l  -  (<72O rf-I]}>

D  =  ( !  -<hO<]2~l t d{ ‘]o(1 - P i O  +PoQi t \ l  -  ( P i t ) C~ l]}>

R  =  0  - P i O ( !  - < 7 2 0  - 9 i P 2 f 2 [ !  -  ( P i O ' " 1 ] ! 1  ~  ( 9 2 0 d ' " 1 ] -  D

In  view of the symmetry in the  p resen t waiting tim e problem , the m arginal PG F of Y  is easily 
obtained from  (4). Two particu lar cases of (5) are of interest. First, replacing p Q = p x = p 2 = p  in (5) gives 
the result of ES (form ula (2)) for the independent case. Second, letting d  —* °° in (5) yields the PG F of 
the to tal num ber of trials until a run  of c consecutive successes is observed, a result derived by BBV 
(form ula (4)).

M ost o f the  im portan t features of W  can be deduced from  (5). For instance, evaluating at t =  1
gives the  expected waiting tim e which, after some simplification, reduces to

t i w = E ( W )

=  (1 ~P 2 P i~1)(1 - g  1^2- 1 ) + P 2 - P 1  +  { P 2 - P o ) q \ P \~l {1 - q i ' 1 ) -  ( P i - P o ) P 2<l2~ 1( 1 - p V 1 )

i\P2[i -  (1 - p r ' X 1 -<?2-1)]

A gain, note th a t replacing p (t= = p 2 = P in (6) gives the  expected waiting tim e obtained by ES 
(form ula (3)) for the  independent case.

A lternatively, (5) can also be used for the  calculation of probabilities about W.  Recall tha t the values 
of the  probability mass function (PM F) of W, f w (w)  = Pr( W  = w ), w >  0, are precisely the coefficients of 
(5) w hen expanded in powers of t. W riting (5) as R(j>w { t ) = C + D  yields a simple way of calculating 
/ ^ ( w )  recursively by equating the coefficients of identical powers of t on both  sides. This m ethod yields 
the  recurrence relation

f w ( w )  = a w + ( p x + q 2) f w ( w  -  1) +  ( p 2 - p 1) f w ( w  -  2) -  q l p 2p c1~ lf w ( w  -  c -  1)

- Q i P 2Q i ~ lf w ( w ~ d - 1) + <liP2P \ ~ 1<l2~1f w ( w  ~  c ~  d ) ,  (7)

for w  >  1 w here C + D  = H wa wt w. T hese relationships are in fact com plete and may be used system ati­
cally to  com pute all probabilities of W  in a simple recursive m anner for any specified c and d.  N ote that 
/n /(w ) =  0 for w < min{c, d).

3. Run and frequency quotas

T he ‘sooner case’ of in terest in this section arises w hen a run quota is im posed on the successes and only 
a frequency quota  on the failures. Specifically, M arkovian Bernoulli trials from  structure (1) are 
perform ed sequentially until e ither c consecutive successes o r d  failures in total are observed, whichever 
event occurs first. It may be no ted  th a t this case has not been dealt with by ES in the independent case.

A rgum ents sim ilar to  those employed in the  proof of Proposition 1 can be used to derive the joint 
P G F  of Z for the p resen t waiting tim e problem . The result will be sta ted  w ithout proof.

Proposition 2. The jo int PG F o f  Z  is

<f>z(t0 , U0, f j , u u  t2, u 2) = P o ?o ( P i f i ) C_1 + A B d- 1 + p 2t 2( p lt l ) c~ l A ( l - B d~ 1) / ( l - B ) ,
( 8)



where

A = q 0u Q+ p 0t0q lu l [l  -  ( p l t l ) c~ l] / {  1 - / V i ) >

B  = q 2u 2 + p 2t 2q ]u \ l  -  ( p ^ , ) ^ 1] / ^ 1 ~ p '**)'  D

Corollary 2. 77jf marginal P G F ’s o f  X ,  Y  and W  are

<f>x ( t )  = C D d l  + p \ ~ 1t c[ p 0 + P 2C(  1 - D d~ l ) / ( 1 - D ) ] , (9)

4>y(t) = p 0p cr 1 + P 2P ci ~ la t [ l  -  ( b t ) d~ l\ / {  1 - b t )  +  abd~ lt d, (10)

<f>w ( t )  = t dC D d~ 1 + p p + P 2? c [ l  -  ( ? D ) " “ ' ] / ( 1  -  t D) } ,  (11)

where

C = q0 + p 0q lt [ l  -  ( p , 0 C_1] / ( 1 - P i O .  D  = q2 + q l p 2t [ l  -  ( p xt ) c~ l\ / { \ - p xt ),  

a =  1 — p Qp \ ~ l and b = \ —p 2p \ ~ l . □

N ote th a t letting c -* oo in (11) gives = G H d~ x, w here G  — q 0t + p 0q 1t 2/ ( l  - p }t)  and H  = q 2t
+  q l p 2t 2/ (  1 — p\ t ) ,  which is the P G F  obtained by VBB (form ula (2)) for the  negative binom ial analogue 
u nder M arkovian Bernoulli trials. Also, the  corresponding results for the independent case can be 
obtained from  (9)—(11) by replacing p 0 = p l = p 2 =p;  this case has been considered in a general 
m ultinom ial set-up by Sobel and Ebneshahrashoob (1992) recently.

Again, many features of X ,  Y  and W  can be deduced from  the P G F ’s ( 9 ) - ( l l ) .  In particular, it can be 
seen from (10) tha t the PM F of the to tal num ber of failures Y  assumes the explicit form

f Y(0)  = p c1~ 1( p 0 + p 2a) ,  f Y ( y )  = p 2p [ ~ xa b y~ \  l < y < r f - l ,  f Y( d ) = a b d~ \
( 1 2 )

w here a and  b are as in (10).
R esults for the case when a run  quota on failures and a frequency quota on successes are im posed can 

be ob tained by symmetry.

4. Frequency quotas

The last of the  ‘sooner cases’ to  be addressed re lates to  the  situation in which frequency quotas are in 
place on both  successes and failures. In  this ‘sooner’ case, M arkovian Bernoulli trials are perform ed 
sequentially until e ither a to tal of c successes or a to tal o f d  failures is com pleted, whichever event 
comes up first.

As far as the  analysis is concerned, this case is closely re lated  to  the negative binom ial analogue for 
M arkovian Bernoulli trials discussed in Section 2 of VBB. A lthough conceptually sim pler than the 
previous cases, the  jo in t P G F  of Z here  does not assum e a simple form.

Proposition 3. The jo in t P G F  o f  Z  can be described as

4>z(t 0, Uq , t j, u j , t2, u 2) = Y j ( aH terms o f  degree at m ost c +  d  — 1 in 4 1) +  ^ 2)) , (13)



where

&S? U0’ Ul ’ 12 ’ u 2)

</,Z) =  ^ Z )( f0> M0> t \ ,  Mj, 12, W2) =

/V o  + 

<7oMo +

#0M0^2^2 

1 ~  <72M2

p 0t0q xu x 

1 - p , * !

/ V l  +
q lu l p 2t 2 

1 — <?2«2

p 2t 2q lu l

l - p 1t 1

c — 1

rf-1
□

A lthough form al expressions for the m arginal P G F ’s of A', Y and H7 can be derived from  (13), the 
authors found it useful to  explore o ther avenues. T he analysis will focus on the waiting tim e variable W.  

A  simple way of com puting the PM F of W  is by m eans of the relationship

f w ( w ) = f Nc{ w ) + f Md{ w ) ,  w = w 0, w 0 + 1 ,. (14)

w here w0 =  min{c, d), and N c and M d are the num bers of trials needed  to  com plete a to tal of c 
successes and a to tal of d  failures, respectively. N c and M d are  analogues of negative binom ial variates 
for M arkovian B ernoulli trials, and several ways o f com puting the ir P M F ’s have been discussed by VBB 
(Section 2).

F or the  independen t case ( p 0 = p l = p 2 =p) ,  N c and M d have standard  negative binom ial distribu­
tions, thus (14) yields the apparently  unnoticed identity

c + d — 1

p cq '~ c
c + d — 1

E
i = d

« - n
d - l )

q dp ‘~d 1.

R egarding the calculation of m om ents of W,  no closed-form  expressions appear feasible in this 
approach even for the independent case. However, since the range o f W  is finite, any desired m om ent 
can be ob tained num erically once f w (w)  has been  calculated using (14). See Section 6 for an illustration. 
It should be m entioned here  tha t Sobel, U ppuluri and Frankowski (1985) have given explicit form ulas for 
the m om ents of W  (in the  independent case) in term s of D irichlet integrals o f Type 2.

5. Later cases

A ssociated with each of the  ‘sooner cases’ in Sections 2-4 there  is a ‘later case’ obtained by stopping the 
experim ent w hen bo th  quotas are fulfilled. For instance, for the  case of run  quotas discussed in Section 
2, the corresponding ‘la ter case’ will arise w hen stopping the experim ent upon com pletion of both  a run 
o f c successes and a run  of d  failures.

In  relation  to  the probabilistic analysis, all the relevant aspects can be deduced from  the results 
already derived for the  ‘sooner cases’. This claim finds justification in a duality, already noticed by ES for 
independen t B ernoulli trials, betw een each ‘sooner case’ and the corresponding ‘la ter case’. This duality 
comes about by recognizing tha t a ‘sooner case’ arises as the union of two events while the associated 
‘la te r case’ relates to  the  corresponding intersection. As far as the calculation of the jo in t PG F of Z is 
concerned, this duality implies that

f t z d' = 4>i£z'°) + 4>£zd )-< l> & \

w here (b(s z l) and t i ^ z  * are  the P G F ’s of Z for the ‘sooner’ and ‘la te r’ cases, respectively. N ote that 
$ sz°)( $ s z <)) 's the  P G F  of Z w hen the quota is im posed only on the c successes (d  failures). A  similar 
relationship holds for the m arginal P G F ’s of each variate X , Y  and W. This also yields a corresponding 
relationship for the factorial m om ents of the  variates.



6. Illustrative example: A learning model

As noted  by VBB, the  correlation  structure  (1) is nothing bu t a 2-state M arkov chain w ith state space 
{5, F), transition m atrix

and with initial distribution v l =  ( p 0, q0). Therefore, any practical situation giving rise to such M arkov 
chains will provide an application for the results discussed in this article. F urther, arbitrary discrete 
M arkov chains could be exam ined under this theory by p roper grouping of states.

Bush and M osteller (1951) proposed the following m odel for represen ting  individual learning to make 
the correct response to  a certain  stimulus. T he description and in terp re ta tion  given here  have been taken 
from  Bailey (1964, p. 51). Let S  be a correct response and F  an incorrect one. If it can be assum ed that, 
in a series of successive trials, the response at any trial depends only on the response at the previous 
trial, then  the  series can be rep resen ted  by a 2-state M arkov chain. H ere  p x and p 2 are  the chances of a 
correct response following, respectively, a correct one and an incorrect one. W hen p x =  p 2, each 
response is independent of the previous one; w hen p x <  0.5 and p 2 > 0.5, there  is a tendency to  oscillate 
from  one response to  the  o ther; and  when p x > q 2, there  is some kind of preference for correct 
responses. See Bailey (1964, pp. 51-53) for a M arkov chain analysis.

Consider the case p x = 0.7, p 2 = 0.4 and the  initial distribution p 0 = q0 =  0.5. Some inclination to 
respond as in the previous trial is noted  in this subject, with a random  guess at the initial trial. Consider 
the  total num ber of trials W  perform ed until e ither a run  of 5 correct responses or a run  of 3 incorrect 
responses is com pleted, whichever occurs first. Thus, this is a ‘sooner case’ of the  type discussed in 
Section 2 with c = 5 and d = 3. Some values of the PM F of W,  as calculated from  recursion (7), are 
reported  in Table 1. R ecall tha t f w ( w ) =  0 for w < d.  N ote th a t the  chance tha t the experim ent stops by 
the  sixth tria l is P r( W  <  6) =  0.522 or 52.2%, while the  chance th a t the  experim ent has to  go beyond the 
20th trial is P r( W >  20) =  0.027 or about 3%. The m ean waiting time, as calculated from  (6), is /jlw =  7.8 
trials.

A s a num erical illustration of the  ‘sooner case’ based  on frequency quotas discussed in Section 4, 
consider the waiting tim e W  until e ither a total o f c =  15 correct responses or a total o f d  = 7 incorrect 
responses is com pleted, whichever comes up first. T he PM F of W  has been calculated using (14) and the 
results are  reported  in Table 2. O ne should realize in this case that the m inim um  value for W  is 
min{c, d) = 1 and the maximum value of W  is c + d  — 1 =  21.

N ote tha t since Pr(W  >  16) =  0.5, the subject will be relieved from  the experim ent, on an average, by 
trial 15 half the  time. The m ean and the standard  deviation of the waiting tim e are readily com puted

Table 1
PM F of the waiting time W  for the learning model under run quotas in the ‘Sooner case’ with c = 5 and d  =  3, when p 0 = 0.5, 
p x = 0.7 and p 2 =  0.4

w f w M w f w (w) w f w M w f w M w f w M w f w M

3 0.180 7 0.097 11 0.040 15 0.018 19 0.008 23 0.003
4 0.054 8 0.061 12 0.032 16 0.014 20 0.006 24 0.003
5 0.179 9 0.057 13 0.026 17 0.012 21 0.005 25 0.002
6 0.109 10 0.049 14 0.021 18 0.009 22 0.004 > 2 6 0.010



Table 2
PM F of the waiting time W  for the learning model under frequency quotas in the ‘sooner case’ with c = 15 and d  =  7, when 
p 0 = 0.5, p x =  0.7 and p 2 =  0.4

w f w M w f wiw ) w f w (w) w f w (w) w

7 0.023 10 0.056 13 0.069 16 0.072 19 0.086
8 0.035 11 0.063 14 0.068 17 0.076 20 0.091
9 0.047 12 0.067 15 0.070 18 0.081 21 0.094

from  Table 2 to be i j l w =  l £ = 7 w f w ( w )  =  15.2 trials and a w  = [E ^ =7(w -  f i w ) 2f w ( w ) ] l / 2  = 4.1 trials, 
respectively.

7. Conclusions

T he waiting tim e problem s discussed by ES have been  generalized here  to  the  case w hen the Bernoulli 
trials are  correlated  in a M arkovian fashion. It should be m entioned here  th a t fu rth er generalizations are 
also possible. Extension of the work of ES to the  case w hen the population is finite will be of great 
in terest in acceptance sam pling fram ew ork as lots are of finite size. The problem  w here the probabilities 
o f success in d ifferent trials do not rem ain constant will be quite relevant in start-up  dem onstration 
testing in an industrial setup; here, the probabilities of success change since the experim enter takes 
corrective action on the  equipm ent being tested  w hen the first failure (or after a certain  num ber of 
failures) occurs. See, for example, H ahn  and G age (1983) and BBV. Problem s involving m ulti-stage 
accep tan ce /re jec tio n  criteria  based on run  and frequency quotas may also be studied  and some work in 
this direction has already been done by Sobel, E bneshahrashoob and Lin (1989). R esults p resen ted  in 
this paper can also be extended to  h igher-order dependence models. W ork on some of these problem s is 
currently  in progress.

Acknowledgements

T he authors thank  the  reviewers for helpful suggestions and comments.

References

Bailey, N.T.J. (1964), The Elements o f  Stochastic Processes 
(Wiley, New York).

Balakrishnan, N., K. Balasubramanian and R. Viveros (1993), 
Probability models and inference for start-up demonstra­
tion tests under correlation and corrective action, submit­
ted for publication.

Benvenuto, R.J. (1984), The occurrence of sequence patterns 
in Ergodic Markov chains, Stochastic Process. Appl. 17, 
369-373.

Bush, R.R. and F. Mosteller (1951), A  mathematical model 
for simple learning, Psychol. Rev. 58, 313.

Ebneshahrashoob, M. and M. Sobel (1990), Sooner and later 
waiting time problems for Bernoulli trials: frequency and 
run quotas, Statist. Probab. Lett. 9, 5-11.

Feder, P.I. (1974), Problem solving: Markov chain method, 
Indust. Engg. 6, 23-25.

Feller, W. (1968), A n Introduction to Probability Theory and 
its Applications (Wiley, New York).

Gerber, H.V. and S.R. Li (1981), The occurrence of sequence 
patterns in repeated experiments and hitting times in a 
Markov chain, Stochastic Process. Appl. 11, 101-108.

Hahn, G.J. and J.B. Gage (1983), Evaluation of a start-up 
demonstration test, J. Qual. Technol. 15, 103-105.

Rajarshi, M.B. (1974), Success runs in a 2-state Markov chain, 
J. Appl. Probab. 11, 190-192.

Schilling, E.G. (1982), Acceptance Sampling in Quality Control 
(Dekker, New York).

Schwager, S.J. (1983), Run probabilities in sequences of



Markov dependent trials, J. Amer. Statist. Assoc. 78, 168- 
175.

Sobel, M. and M. Ebneshahrashoob (1992), Q uota sampling 
for multinomial via Dirichlet, J. Statist. Plann. Inference 
33, 157-164.

Sobel, M., M. Ebneshahrashoob and J.Y. Lin (1989), Applica­
tion of Dirichlet integrals for curtailm ent problems in 
sampling inspection, Naval Res. Logist. 36, 215-238.

Sobel, M., V.R.R. Uppuluri and K. Frankowski (1985), Dirich­

let integrals of Type 2 and their applications, Selected 
Tables in Mathematical Statistics, Vol. IX  (Amer. Math. 
Soc., Providence, RI).

Viveros, R. and N. Balakrishnan (1993), Statistical inference 
from start-up demonstration test data, J. Qual. Technol. 
22, 119-130.

Viveros, R., K. Balasubramanian and N. Balakrishnan (1992), 
Binomial and negative binomial analogues under corre­
lated Bernoulli trials, Amer. Statist. (Revised).


