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A B S T R A C T

A well-known estimator for the shape parameter of a two-parameter 

Weibull distribution from a failure-censored sample involves a preliminary test of 

a null hypothesis concerning the parameter. Kfficiency of the resulting 

testimator varies with the chosen level of significance of the test. We present an 

alternative procedure with a higher efficiency over this lor each significance level 

under various circumstances. Appropriate choice of significance level is also

We consider estimating the shape parameter ii of the cumulative 

distribution function (<:<)f)

for the random variable X  said to have the Weibull (1939, 1951) distribution. 

For this, data are supposed to be provided as the first r ordered observations Xj. 

i =  1, , r on X in a sample of size n obtained through a failure-censored life 

test. Equivalently, yj =  Cnx|> 1 — 1» ... , r (£n is natural logarithm) are the first 

r ordered observations on Y  =  0nX which follows the extreme-value distribution 

with a cdf

discussed.

1. IN T RO D U C T IO N



where b =  1//J, u =  t nB.

W riting  W| =  (vj — u)/b, Tr =  -  £  (,V| - yr). N =  -  E £  (wj — wr), an

T 1 1
unbiased estimator b =  for b is given by Bain (1972) who noted tliat

T =  2N b /b  approximately follows the chi-square distribution with 2N degrees

of freedom (df). Then, (N —1)/T r and (N —2 )/T r are respectively approximately

unbiased and biased estimators of f3 with approximate variance /32/ (N — 2) and

mean square error (MSE) /?2/(N  —1). Singh and Bhatkulikar (1977) considered

applying the UMP (uniformly most powerful) level-a (0 <  a <  1) test of the

null hypothesis HQ: /? =  1 against the one-sided alternative H: p >  1 using the

statistic T r noting that (i) X  has the exponential distribution when 0 — 1 and

that (ii) values of /? below 1 are rare in practice. Based on this preliminary test

they recommended the estimator /? for ft given as

/? =  K — 1^ + 1, if Aa < 2Tr <  co 

i.e. if H0: 0 =  1 is accepted at level of significance a

=  r£-, otherwise.
1 r

Here c is taken as either ( N — 1) or (N — 2), K(0 <  K <  1) as a constant 

purported to'control the value of E{8 — 0 )2 and \Q is such that Prob^xfuj <  Au 

=  a , i.e. Xa  is the lower 100a% point of the chi-square variable with df 2.N 

and the error in approximating the distribution of 2Tr under H0 by that of 

is neglected. Clearly the magnitude of the mean square error (M SE) E(/3 —/J)2 

varies with a  but Singh et al (1977) do not consider a criterion for the choice of 

a  except illustrating numerically how the M SE varies with a. So, in what 

follows we consider three alternative approaches to probe into this problem of 

taking account of the effcct of a on the M SE and thereby suggest a more 

efficient choice of an alternative testimator.

First, following Ohtani (1987) we propose the following alternative to the 

above preliminary test estimator (PT E ). Our estimator for 6 is

S) =  k (^-  -  l )  + 1, if L <  2Tr <  oo

=  £-, if 0 <  2Tr <  L 
1 r

taking c as in Singh et. al (1977), K and L as positive constants to be suitably



chosen to control the magnitude of the MSE E (0 — 0 )2. l-'ollowing Srlovc, 

Morris, and Radhakrishnan (1972) and Adke, W aikar, and Schuurmann (1 9 *0  

we call it a testirnator because the estimator 0  like 0 involves a prior test. 

Though 0 is not essentially different from 0 we show below numerically that L 

can be chosen in particular ways so that for several choices of r, K , and a  for a 

fixed n illustrated by Singh et al (1977) the MSE(/3) turns out less than the 

corresponding MSE(/j). This really emphasizes the need for appropriate rather 

than conventional choice of a  in practice in employing Singh et aJ’s (1977) 

estimator.

Recently, Pandey, Malik, and Srivastava (1989), modifying Singh et al's 

(1977), have given another testirnator involving a test of H0: 0 — 0 q (allowing 

Jq different from 1) against the two-sided alternatives !17: 0 ^  0q and studied 

the right choice of a considering a range of values o f p =  A modification of

0
Pa.ndy et a l’s (1989) for a possible improvement is being examined by us as a 

separate piece of investigation.

I  P E R F O R M A N C E  O F  T H E T E S T IM A T O R

Respectively to c =  (N —1), (N —2), 0 (0 )  will be written as 0 ^ ( 0 ^ ,

* 1 r D ~~ 1
;2(/?2)- W riting  J(a ,p ) — ~~\ /  exp( — t ) t  d t, for 0 <  p, a <  oo, their 

* (P) a
biases and MSE's work out as

B ias(/j1) =  /J(K — 1) [ J (X Q, N — 1) -  b J (X a , N )] (2.1)

M S E (3 i) =  32 ( ^ 2  -  J (X a , N - 2 )

- 2 W r  j(X q >  n - 1 )  -  b2 J ( x “ ’ N )} )

-here X a  =: \a /'2b. Assuming N >  2, ... (2.2)

Bias (/ jj)  and M S E (01) follow from (2.1), (2.2) replacing there by L. Bias 

•nd MSE formulae for /?2> 02 f°H°w similarly but are not shown here to save 

!pace. W riting  0^ — (3/2, noting

j ( A ’ p ) =  ~ F(j>j ^ exp W *

begets A  M S E ( ^ )  =  0* exp (-  L 0X) LN3 (1-K).



(4/?! + K — 1) [L - 2 (N - 1 )] L _  2(N ~ l) (k  + l)  
4,31 + (K  —1)

r(N)

Two roots of M SE(/3j) =  0 are

L i =  2 (N - l) (K  + l) / (4 /? 1 + K — 1), L2 =  2(N —1).

W riting

A =  (1- K )(4 /31 + K - l ) / r ( N ) ,

one has

M S E ( ^ )  =  -  A exp( — L ( l n _ 4 (L - L 1) (L - L 2) (L /91- N  + 3)
9L

Ln _ 3 (2 L - L 1- L 2)) .

To maintain parity with Singh et al (1977) we restrict to 0 >  1 for which

L 1 <  L2. Noting that MSE(/51) | <  0 and M S E (^1) | ^ _ ^  >  0 it
d L l d L 2

follows that MSE(y51) has a local maximum at L =  L j and a local m inim um  at

L =  L2- Since it is not possible to find a global m inimum of MSE(/?1)

particularly because (3 is unknown we consider the following three ways of setting

an appropriate L. Our findings for /?2 are course similar.

First we consider the minimax regret choice. The regret function for /?j, 

following Ohtani (1987) is

Regret ( ^ )  =  M S E (^ )  -  min MSE(/?j) | L =  0 , M S E (^ )  |

for j =  1, 2. The minimax choice of L is that L which gives the smallest value 

among the largest of the regret values over variations in b. In practice one may 

calculate Regret (/?j) for various choices of b and L and get an approximate 

solution for the minimax value. Following this we find the minimax choice of L 

to be L2 for n =  20, r =  4, 6, 8, K =  2, 4, 6 but do not show the details to save 

space. The value of a corresponding to this m inimax is easy to obtain. 

Secondly, we consider the average m inimum risk function approach. Following 

Ohtani (1987), the average risk function of is taken as

A R ^ j )  =  jlV lS E C ^) -  m in j^M SE(^j) | L —g> M S E ^ )  | L =  Lj j  d/?.



To minimize this wo solve the equation

0 =  ±  A U(/? L) =  / “  ^  M S E ( ^ )  d/J 

=  |L —2(N — 1)| f ° °  p "  exp (-L^1) LN~ 3(l- K ){A 0 l + K - l )
1/2

{
_  2( N — 1)(K + 1) 

4i3l + k - l
j d / ? i  .

So, one solution is L =  2(N —1) =  L2. Another root is difficult to find exactly 

and an approximation to that is numerically found not quite useful as it 

corresponds to a close to 1 indicating that the testimator is effectively the 

original estimator (N —1)/T r, the shrinkage estimator K + 1  hardly

allowed to be used since the H0: /? =  1 is virtually rejected most of the time. 

Obviously the second course cannot lead to gain in efficiency. So we will take L2 

as the choice of 1, minim izing the average risk. It is easily verifiable likewise that 

L =  2(N —2) gives the m inim um  average risk for /?2. Thus the minimax and 

average risk minim ization approaches coincide in this problem.

Thirdly, wc consider a thumb rule keeping in view that (a) b 1 ( <  L2) is a 

local maximal and L2 is a local minimal point of MSE(/&1) and that (b) our 

purpose in this paper is to show that our testimator competes favorably with 

Singh et a l’s (1977) and hence we need to evaluate their performances under 

comparable circumstances keeping our procedure as simple as possible. So, we 

prescribe the following thum b rule for the choice of L especially because with this 

we achieve an appreciable gain in efficiency over Singh et aTs (1977) in numerous 

situations illustrated in table II below.

Our thumb rule, to compare against when a is the chosen level of 

significance for the latter, is

a n d

l) L — 2

11) L  — (A^ -}- L 2)/2 if L 1 Aq. L 2 

h i) L  — L 2 if Aq L 2 .

Here the multiplier ~ is rather arbitrary but we use it as it gives good gain in 

efficiency in the cases illustrated in Table II below. Some other positive



T A BLE  I

Showing efficiency of /?j (j =  1, 2) for the minimax regret and 

m inimum average risk approaches.

n = 20

Efficiency e(/?j) Efficiency e0 2 )

K K

r L2 b .2 .4 .6 L2 b .2 .4 .6

(

4.33 .2 

a =  .33)

100.01 100.00 100.00 2.33 .2 

(a  =  .09)

187.26 186.89 186.52

.4 100.99 100.75 100.51 .4 217.17 208.97 200.99

4 .6 105.43 104.19 102.87 .6 296.26 263.32 234.02

.8 111.89 109.47 106.63 .8 435.13 351.67 282.52

1.0 116.66 114.28 110.52 1.0 605.06 471.91 345.28

(

8.88 .2 

o =  .38)

100.00 100.00 100.00 6.88 .2 

(a  =  .20)

129.06 129.06 129.05

.4 100.33 100.25 100.17 .4 132.52 131.67 130.81

6 .6 105.43 104.15 102.81 .6 160.76 152.45 144.36

.8 118.75 114.57 109.96 .8 233.22 202.41 174.37

1.0 131.76 126.73 119.15 1.0 333.18 278.18 218.16

(

13.78 .2 

a =  .40)

100.00 100.00 100.00 11.78 .2 

(a  =  .25)

116.98 116.98 116.98

.4 100.08 100.06 100.04 .4 117.58 117.43 117.29

8 .6 103.84 102.93 101.98 .6 132.11 128.33 124.53

.8 120.03 115.40 n a 4 3 .8 188.25 168.18 149.33

1.0 140.28 133.56 123.68 1.0 280.52 238.79 191.35

multiplier may as well be employed if gain in efficiency is achieved. Similar are 

our choices to study /?2 versus /?2. By efficiency of an estimator for /? with 

MSE(-) we mean e =  (N 2̂)lvfsE ( ) ' Efficiency for the minimax regret and 

equivalently for the m inim um  average risk choice of L are shown in Table I.

For comparison we take n =  20 and several r, K , a  as illustrated in Singh 

et al (1977) and following the rules (i) - (iii) work out the MSE(/5j), and present



TABLE II

Efriciency of /?; a n d  ji^ t,hc latter within parentheses in various situations, n =  20.

•*i
a =  .01 $2

r b .2
K
.4 .6 .2

K
.4 .6

.2 99.51

(82.32)

99.64

(87.12)

99.76

(91.77)

183.92

(161.92)

184.40

(167.72)

181.87

(173.64)

.4 108.80

(90.08)

116.52

(95.33)

117.45

(98.99)

210.12

(191.90)

204.12

(192.00)

198.03

(190.98)

4 .6 162.04

(115.55)

158.30

(116.55)

142.77

(113.90)

311.37

(282.92)

280.80

(257.53)

247.54

(232.16)

.8 233.5* 

(143.71 j

203.48

(141.24)

164.51

(129.12)

567.23

(454.98)

426.66

(365.44)

318.40

(290.12)

1.0 302.23

(179.56)

211.24

(163.32)

180.53

(141.92)

1039.27

(705.63)

660.14

(522.76)

410.53

(365.07)

.2 99.95

(85.08)

99.96

(88.90)

99.97

(92.70)

128.71

(111.65)

128.80

(115.90)

128.88

(120.23)

.4 95.29

(68.28)

96.53

(77.35)

112.10

(86.34)

123.35

(91.24)

124.89

(100.43)

126.36

(110.04)

!) .6 164.19

(9.9.21)

180.93

(107.25)

166.93

(110.38)

168.06

(135.37)

174.52

(138.88)

167.89

(138.92)

.8 416.71

(176.14)

324.35

(166.08)

218.46

(145.85)

436.49

(265.64)

331.75

(229.78)

240.09

(191.87)

1.0 973.11

(293.88)

165.29

(236.55)

248.85

(178.51)

1527.41

(554.27)

648.74

(392.58)

331.19

(264.15)

/> 100.00

(96.34)

100.00

(97.33)

100.00

(98.27)

116.97

(113.08)

1 16.98 

(114.11)

i 16.98 

(115.10)

.4 96.37

(60.54)

97.32

(69.65)

98.24

(79.69)

110.99

(72.73)

112.52 

(82.10)

114.04

(92.68)

8 .6 128.37

(80.65)

160.50

(91.80)

164.50

(100.09)

117.12

(96.43)

138.80

(105.54)

145.74

(112.71)

.8 420.06

(169.09)

348.74

(164.68)

232.58

(146.92)

368.66

(211.22)

301.44

(193.24)

222.64

(167.86)

1.0 1708.19

(372.98)

567.46

(278.09)

268.56

(195.28)

2136.27

(571.31)

676.54

(384.60)

316.31

(248.98)



T A H I . K  II (Cont inued)

F.fficiency o f and j i i the latter within parentheses in various situations, n =  20.

a =  .05 3 2

r b .2
K
.1 .6 .2

K
.4 .6

.2 99.86

(95.83)

99.90

(96.93)

99.93

(97.99)

186.96

(185.57)

186.66

(185.63)

186.37

(185.69)

.4 99.44

(91.85)

99.01

(94.35)

99.77

(96.57)

216.19

(213.00)

208.29

(206.09)

200.57

(199.23)

4 .6 119.71

(101.83)

120.49

(102.61)

116.88

(102.56)

295.07

(291.81)

262.62

(260.76)

233.66

(232.71)

.8 156.57

(117.50)

147.50

(115.01)

133.11

(111.05)

434.26

(432.56)

351.26

(350.58)

282.36

(282.12)

1.0 190.95

(131.91)

171.46

(126.85)

146.53

(119.23)

734.84

(609.44)

536.58

(474.24)

370.15

(346.22)

.2 99.99

(98.85)

99.99

(99.15)

99.99

(99.45)

129.01

(128.07)

129.02

(128.32)

129.03

(128.57)

.4 9S.34

(83.02)

98.78

(87.43)

99.20

(91.79)

129.82

(117.35)

129.68

(120.40)

129.51

(123.38)

6 .6 101.07

(91.27)

130.66

(95.29)

130.19

(98.23)

155.74

(143.19)

149.11

(141.00)

142.39

(137.82)

.8 250.04

(125.60)

221.81

(122.81)

176.12

(117.06)

326.29

(227.26)

269.58

(200.70)

212.53

(174.38)

1.0 478.17

(172.26)

324.69

(157.99)

211.53

(138.82)

835.18

(369.80)

495.96

(299.87)

295.76

(228.01)

.2 100.00

(99.99)

100.00

(100.00)

100.00

(100.00)

116.98

(116.98)

116.98

(116.98)

116.98

(116.98)

.4 98.87

(93.80)

99.16

(95.42)

99.45

(96.99)

115.75

(113.36)

116.07

(114.29)

116.39

(115.21)

8 .6 98.19

(89.27)

98.84

(92.52)

99.36

(95.45)

125.75

(120.78)

123.87

(120.39)

121.77

(119.61)

.8 295.18

(115.28)

265.32

(113.72)

200.08

(110.45)

299.17

(179.29)

257.40

(163.41)

202.70

(147.16)

1.0 935.96

(163.22)

457.69

(151.27)

247.18

(134.81)

1278.48

(296.08)

570.47

(248.52)

296.66

(196.07)



Efficiency of f)- hik

'FABLE II (Continued)

1 fi: the latter within parentheses in various situations, n =  20.

•h a = .10 /"?2

r b 2
K
.4 .6 .2

K
.4 .6

.2 99.0r> 99.97 99.98 187.26 186.89 186.52

(99.03) (99.28) (99.53) (187.24) (186.87) (186.51)

.-I 100.'2-! 100.18 100.14 217.17 208.97 200.99

(96.28) (97.34) (98.32) (217.09) (208.91) (200.95)

1 .6 104.17 103.51 102.44 296.26 263.32 234.02

(101.97) (101.96) (101.62) (296.14) (263.25) (233.98)

.8 135.13 130.12 121.74 435.17 351.69 282.53

(112.37) (110.30) (107.46) (435.05) (351.63) (282.50)

1.0 159.59 148.52 133.14 60.5.27 472.03 345.32

(121.73) (118.51) (113.51) (605.24) (472.01) (345.32)

.2 100.00 100.00 100.00 129.05 129.05 129.05

(99.80) (99.89) (99.93) (128.98) (129.00) (129.02)

.4 99.40 99.50 99.72 131.77 131.12 130.45

(92.4 1) (94.70) (96.34) (128.58) (128.76) (128.91)

C .6 102.91 102.36 101.68 159.08 151.32 143.69

(95.14) (97.09) (98.58) (153.98) (147.95) (141.71)

.8 194.(53 180.75 154.46 231.55 201.49 173.93

(117.50) (114.95) (110.98) (228.16) (199.82) (173.23)

1.0 338.39 260.70 188.56 623.14 421.45 273.76

(146.91) (138.77) (127.04) (339.63) (282.09) (219.98)

.2 100.00 100.00 100.00 116.98 116.98 116.98

(99.99) (100.00) (100.00) (116.98) (116.98) (116.98)

.4 99.57 99.68 99.79 116.98 116.99 116.99

(93.80) (95.42) (96.99) (113.36) (114.29) (115.21)

8 .6 100.69 100.64 100.51 129.44 126.45 123.37

(89.27) (92.52) (95.45) (120.78) (120.39) (119.61)

.8 233.55 218.49 177.68 185.10 166.36 148.41

(115.28) (113.72) (110.45) (179.29) (163.41) (147.16)

1.0 636.68 381.05 228.29 912.77 493.30 279.35

(163.22) (151.27) (134.81) (296.08) (248.52) (196.04)



TA BLE  II (Continued)

Efficiency of /?•, and /?j the latter within parentheses in various situations, n =  20.

h a =  .50

r b .2
K
.4 .6 .0

K
.4 .6

.2 100.00

(100.00)

100.00

(100.00)

100.00

(100.00)

187.26

(185.77)

186.89

(185.77)

186.52

(185.77)

.4 100.99

(100.59)

100.75

(100.45)

100.51

(100.31)

217.17

(190.06)

208.97

(189.08)

200.99

(188.03)

4 .8 105.43

(104.33)

104.19

(103.37)

102.87

(102.32)

296.26

(219.69)

263.32

(211.85)

234.02

(203.46)

.8 111.89

(110.71)

109.47

(108.58)

106.63

(106.04)

435.17

(290.43)

351.69

(264.84)

282.53

(237.52)

1.0 116.66

(116.12)

114.28

(113.82)

110.52

(110.20)

605.27

(406.93)

472.03

(354.21)

345.32

(291.32)

.2 100.00

(100.00)

100.00

(100.00)

100.00

(100.00)

129.06

(129.05)

129.06

(129.05)

129.06

(129.05)

.4 100.33

(100.22)

100.25

(100.16)

100.17

(100.11)

132.52

(129.76)

131.67

(129.59)

130.81

(129.42)

6 .6 105.43

(104.61)

104.15

(103.54)

102.81

(102.41)

160.76

(143.94)

152.45

(140.46)

144.36

(136.79)

.8 118.75

(117.51)

114.56

(113.67)

109.96

(109.39)

233.22

(195.21)

202.40

(178.46)

174.37

(161.26)

1.0 131.76

(131.33)

126.73

(126.38)

119.15

(118.91)

333.18

(291.24)

278.18

(251.70)

218.16

(205.26)

.2 100.00

(100.00)

100.00

(100.00)

100.00

(100.00)

116.98

(116.98)

116.98

(116.98)

116.98

(116.98)

.4 100.08

(100.35)

100.06

(100.04)

100.04

(100.03)

117.58

(117.12)

117.43

(117.09)

117.29

(117.05)

8 .6 103.84

(103.34)

102.93

(102.56)

101.98

(101.74)

132.11

(125.18)

128.33

(123.26)

124.53

(121.25)

.8 120.03

(119.00)

115.40

(114.66)

110.43

(109.97)

188.25'

(168.62)

168.18

(155.52)

149.33

(142.19)

1.0 140.28

(139.98)

133.56

(133.32)

123.68

(123.52)

280.52

(261.66)

238.79

(226.62)

191.35

(185.28)



the efficiencies <• (,-^ , e(/^j), j  =  1, 2, showing the latter values within the 

parentheses below the former ones in Table II.

Calculating M SE (ijj), Regret (/?j), j  =  1, 2, for n =  20, r =  4, 6, 8, 

K = 0.2, 0.1. 0.0. trying several pairs of (b, L)-values we work out the minimax 

values of L which equal L2 and w’hich agree with the m inim um  average risk 

values of L also and note the corresponding a-values and then present the 

corresponding efficiency values in Table I below.

3 . CO N CLU SIO N S

Interestingly, when a =  0.50, Singh et al's (1977) procedure is almost as 

efficient as the ones based on m inimax and equivalently the m inimum average 

risk procedure but the latter is also much less efficient for lower cr-values 

especially when b is close to 1 but not so if b is away from unity and more 

importantly the latter's efficiency never falls below’ 100% whereas that on the 

former does so when a is low and b is away from unity. But our thum b rule 

produces gain in efficiency right through for every a and every b and especially 

so when o is low and b is close to unity and the main purpose of this paper is 

just to demonstrate this. It is easy to report the value of a  corresponding to 

each choice of L according to our thum b rule but we do not show this here to 

save space.
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	T	1	1

	j(A’ p) = ~ F(j>j ^exp W*

	A = (1-K)(4/31 + K-l)/r(N),

	d L	l	d L	2

	l) L — 2



