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A bstra ct

The problem of determining single sampling lot tolerance per cent 
defective (LTPD) inspection plans is considered under the fuzzy 
environment of satisfying the consumer’s risk closely. A solution 
procedure, under Poisson conditions, for the above non-symmetrical 
fuzzy mathematical programming model involving minimisation of 
a crisp objective function with fuzzy solution space is developed.
Numerical examples and a sensitivity analysis are included.

1. Introduction

We consider a producer’s final inspection of a series of lots under the 
industrial production process where each lot retains its identity such as lots 
of electronic equipment for a large computer or a missile. The producer 
wants to minimize the average to tal inspection for product o f process average 
quality and a t the same time wants to  be reasonably sure that lots of bad 
quality are not marketed.

In designing an attribute sampling plan for acceptance inspection, it is 
assumed that the producer knows his process average quality levelp1 under 
normal manufacturing conditions and that he occasionally produces lots 
of bad quality. The decision maker (DM) may then select lot tolerance 
fraction defective, p., (also called LTPD quality level), say p 2 >  pL and a 
risk P(pz) =  p  of accepting the lots o f this quality where P(p) is the operating 
characteristic (OC) of the acceptance sampling plan.

In industrial applications, a single sampling plan (SSP) is generally 
employed. A SSP is the following: From  each lot of size N , a random 
sample of size « is taken. I f  the number of defectives in the sample is less 
than or equal to the acceptance number c, the lot is^ccep ted ; otherwise 
the lot is rejected.



We consider the class of SSPs for which rejected lots are 100 per cent 
inspected. In the above class the classical m odel of Dodge Rom ig [6] 
LTPD  SSP is to find the sample size n and the acceptance number c satis­
fying the following crite ria :

where I(px,n,c) is the average to tal inspection (ATI).

We note that the above optimisation problem  (1) through (3) is a non­
linear integer programming (.KLIP) problem and  may be viewed as a non­
linear integer knapsack problem  (see Garfinkel and  Nem hauser [7]). Since 
it is a N LIP  problem, we have replaced the equality sign in (2), which does 
not change the solution. F or applications o f m athem atical programming 
techniques in designing SSPs, see Chakraborty [2,4,5].

In  industrial applications o f sampling inspection plans, one faces 
imprecisions, for example, in  the specification o f LTPD  quality, p.,, which 
is termed rejectable or unsatisfactory quality, and  in the requirem ent of 
consumer’s risk to be satisfied as close as possible to  (see C hakraborty
[3] and Hald [8]). Now all imprecisions cannot be treated  by random ness 
and modelled by using probability theory. From  the above, we see tha t 
the imprecisions are often fuzzy in character and  require to be modelled 
using fuzzy set theory. W hen the environment is really fuzzy in nature, 
modelling the problem with erroneous assumption of randomness produces 
sampling plans with appreciably larger ATI.

We consider the Dodge-Romig SSPs and assum e th a t the DM wants 
a sampling plan with consumer’s risk  is to  be satisfied closely. We model 
the problem  as a  Fuzzy M athem atical Program m ing (FM P) and derive a 
method for obtaining the solution. We may note th a t the  problem is non- 
symmetrical (see Zimmermann [10,11]) since the objective function (1) is 
crisp and the constraint (2) is a  fuzzy set.

We shall restrict our discussions for the industrial applications where 
pa^O .l, Pi/Pa<0.5 and n/iV ^0.1 such th a tP o isso n  distribution will provide 
sufficiently accurate approx im ation  fo r P(j>i) (P(p-d) fo r which binom ial 
(hypergeometric) d istribu tion  is involved. So P{p) — G(c, np) =

2  c~np (np)xjx\. F or extension to  the appropriate  distributions involved,
x = 0

Minimize I(px,n,c) =  n +  (N —n) ( I —-P(pi)), 

subject to  P(ps,n,c) <  0, 

and n, c >  0, integer, (3)

(1)

(2)

c.



for notations and explanation of the terms, see Hald [8] and Chakraborty 
[2,3].

2. Fuzzy Mathematical Programming Model

The Dodge Romig [6] SSP when the D M  wants to minimize the ATI 
at the process average /?, subject to satisfying the consumer’s risk clos'cly 
around (Sis to find non-fuzzy non-negative integer pair (n,c) which minimizes

f{p},n,c) — n -p ( N - n )  (1 ~G (c,np})), (4)

subject to G(c,np2) < f$. (5)

n. c >  0, integer. (6)

The symbol <  refers to fuzzified version of <  sign and means approxi­
mately less than or equal to or essentially Smaller than or closely around 
stated value.

Clearly the model is a nonlinear integer fuzzy m athem atical program ­
ming (NLIFM P) problem .For details of fuzzy set theory and FM P  problem, 
see Zimmermann [9, 10] and references in Chakraborty [3],

An optimum value of a crisp function over a crisp dom ain attains at a 
precise point, called an optimum decision. The decision models involving 
fuzziness, the optimum decision according to  Bellman and Zadeh [1, p. 150], 
is often considered to be a crisp set which contains those elements of fuzzy 
set decision attaining the maximum degree of membership. In the model
(4) through (6), the objective function (4) is crisp which is to  be minimised 
and it induces an order of the decision alternatives. The constraint (5) 
defines a fuzzy decision space. It is seen that the assumption of Bellman 
and Zadeh [I] about the symmetry o f objective function and constraint 
sets are not valid in this model. This is a non-symmetrical case and follo­
wing Zimmermann [10, 11], we will transform  the model to a symmetrical 
case so that we may solve the problem  by adapting the method given in 
Chakraborty [3].

Membership functions

Following Zimmermann [10, p. 231, 11, p. 104], we define:

Let R be a fuzzy feasible region, S(R) support of R  and R t  a —level cut 
of R for a =  1. The membership function of objective function (4) given 
solution space R  is defined as



f  1 if I(pi ,n,c) <  inf I. 'I
S ( R )  I

inf I ~ I ( P i ,n ,c )  j
/t<(n,r) -  i  -----„ ----- , ^  'n f /  <  /(/»«.«•<■> <  inf /, v.
' ,v j inf / — in f /  S(R) R>

| if inf / < / ( / ? , . » ,  c). ,
I. 0. /?, J

(7)

Assuming that the D M  specifies the upper tolerance limit of ft as fiL . 
following Chakraborty [3] we define the fuzzy set corresponding to fuzzy 
constraint (5) by the m em bership function

f 1, if P(Ps,n,c) < ]
\  . i f I ( 8 ,

L 0, if f t ,  < />(/>,,h.c). J

N ow symmetry is achieved between the objective function (4) and the 
constraint (5) and following C hakraborty [3] with minimum operator to 
aggregate the membership functions of fuzzy sets, we obtain the following 
model for the Dodge Rom ig problem :

f  inf I  — / (pu n,c) 1
Maximise [min j  _ ^ i_______________ A Ps>n’c\  __ i I — A],

>  0, int , inf /  — in f I  1' Pv — $
L Rx S{R ) J  (9)

subject to  inf I  I  (p^tt,c) <  inf /, (10)
5(H)

i5 <  P(j>2,n ,c) K  Pv, (H )
0 < A < 1 ,  (12)

n, c >  0, integer. (13)

This problem  can be rew ritten  in  the  equ ivalen t optim isation  p ro ­
blem: find n, c, A, which maximises A, subject to

inf /  —• /  (j?,,m,c)
_________

nf I  — inf I 
S(R)

i n f /  — i n f /  * (14)



(15)

and inequalities (ID) through (13).

Let /, =  inf /
Rt

and /„ =  in f I 
S{ R)

Then the above optim isation problem  (14), (15), (16), (10), (11), (12), 
(13) can be expressed as:

Find n. c. A. which maximises A. subject to

and inequalities (11), (12) and (13).

This is a non-fuzzy mixed integer nonlinear programming (NFMINLP) 
problem. Noting that the values o f A and / ,  can be found by solving two 
non-fuzzy optimisation problems, the above NFM JNLP problem can be 
solved by standard methods.

It is obvious that the values of / # and  It  can be obtained by solving the 
following two NLIP problems respectively, viz.,

Note that for a given c, I(p,n,c) is an  increasing function o f n, since for 
a fixed c, G(c,np) is a decreasing function of it. Thus for a fixed c, the 
minimum I(j>,n,c) will be for the minimum feasible n. Clearly the optimum 
n for the problem (19) through (21) for a given c is the smallest n satisfying

A( l x ~  /.) + l(Pi*n,c) < /,, 
A(/Sr; — ft) +  P(pi ,n,c) <  &/, 

/ „ < /  KPu'^c) <  A.

(17)

(18)

(16)

3. Solution Procedure and Examples

Min f(pj,«,c) =  n 4 (N —n) (.1 -G (c,npi)), 

subject to G(.c,npz) <  0,

«, c >  0, integer, 

and Min I f a ,  n,c) — n -r  (N ~ n )  (1 ~G(c,npi)),

t20)

(21)

(22)

(19)

subject to j8 <  Gic.npo) ^  Pu> 

n, c >  0, integer.

(23)

(24)



0(c,np2) ^  jS. Similarly the optimum  n for the problem  (22) through (24) 
for a given c is the smallest n satisfying G(c,npS) ^  /3, .

Let np — m  and (c) be the |3-fractile o f  the Poisson OC\ G(c.m). 
T he values of (c) are given in Table 1 of H ald  [8] for r 0(1) 3l> for ! I 
values o f and in T able 1 of C hakraborty [3] for c — 0(1)9 for 28 values 
o f ft. Tt is easily seen th a t the minimum n satisfying G(c.ttp) <  ft is given 
by

/i(c) =  | ~»i$(c)lp  " I (25)

where for a real num ber y, | r  } is the smallest integer >  y.

For each c, we can find n(c) and from the nature of I(pu n,c), the optimum 
solution for the problem s (19) through (21) as well as (22) through (24) can 
be obtained by direct search m ethod; see H ald  [8. p. 101].

Let the optimal solution for the problem (19) through (21) be (//„. cc) 
w ith I(pu  n°, c°)opt — and tha t for the problem  (22) through (24) be (n0. co) 
w ith I(pu  n0, c0)0pt =  h-

Finally we consider the problem  (16) through (18) together with (11) 
through (13). The solution procedure is similar with the difference that 
the set o f feasible tt's  fo r a  given c, is an  interval instead of a singleton. For 
a n  arb itrary  c, say ca, we obtain  the set of feasible tt's  satisfying (11 )by using 
Table o f m  ̂ (c). F or each tt o f the set, we calculate A =  Aj for (16) and 
A =  A2 for (17) and o b ta in  the minimum A of the two, i.e.. A — min 'A,, A2:. 
T he it which gives m axim um  of the minimum A’s is the optimum 11 for this 
c — ca. T he procedure is repeated for c’s near {c0, c°). and the S S P  giving 
highest value of A is th e  optim um  SSP (n*. c*).

The search can be curtailed by noting, say, Ac be the maximum A co rres­
ponding to c0 and updating  inequalities (16), (17) and (12). i.e.,

T(Pu'Uc) <  /< ,-A ,( /i- /„ )  =  T„\ (26)

^>(/?a>w >c) ^  Pii~~^o (fi— Pu) ~  ftu '

^ < A < 1 .  (281

This will result in  only a small number of feasible c’s. Also the cardi­
nality of the set of feasible n 's for each feasible c will be very small.

Numerical Examples

Example 1. We consider the example given in  Hald [8, p. 101 ]: jV = 2 ,000.



pt =0 .02 ,p t — 0.10, £ =  0.10. In  addition, let ^  =  0.15. The problem 
is to find the optimum LTPD SSP (rt*, c*).

Solution. Solving the optimisation problems, we obtain (n°, c°) — 
(93, 5) w ith /t =  115.93 and(»0,c 0) =  (85, 5) w ith /0 — 100.32. For c0 — 5, 
we obtain the set of feasible sample size n’s satisfying (11) as [fij, u2] — 
[85, 92] and obtain the optimum » for this £' =  c0 as n — 98 with =  
0.517 by constructing Table 1. Using \ a — 0.517, we find from (26), (27) 
and (28), 7(/>j,«,r) ^  107.86, P(p«,n,c) <  0.124 and 0.517 <  A ^  1.

For c — 4, sample size n’s satisfying (11) is [nl5 h2] =  [73, 79].

For c =  4, the set of n’s satisfying (11) and (27) is [77, 79],

However, for c =  4, the set of n’s satisfying (11), (26) and (27) is empty. 
Similarly for c =  6, the set of sample size n’s satisfying (11) is [98, 105]; 
satisfying (11) and (29) is [101, 105]. However, for c =  6, the set of feasible 
sample size is empty. Clearly the optim um  LTPD SSP is n* =  89, c* ~  5 
with I*(pi, n*, c*) =  107.86 with A* =  0.517. N ote also th a t P (p2, n*, c*) 
=  0.1219

In this particular example, the D M  takes an  additional risk o f 2 % for a 
lot being rejected against a saving o f 7 % inspection effort per lot.

Example 2: Same problem as in Exam ple 1 except N  =  5,000.

TABLE 1—OPTIMAL SAMPLE SIZE FOR c0- 5

» p (p») h p i) *i =  " r = T i? - A*“  A = m in  {Ai' Aa]

85 .1496 100.32 1.000 .008 .008

88 .1284 105.92 0.641 .432 .432

89 .1219 107.86 0.517 .562 .517

90 .1157 109.82 .0391 .685 .391

92 . 1041 113.86 0.133 .918 .133



TABLE 2 -OPTIMUM SAMPLE SIZE FOR DIFFERENT <•

n P(p3) l(Px) K  =  A—min{A„Ao}

100 .1301 122.22 .712 .398 .398

r> io i .1240 124.41 .564 . 520 520

102 .1180 126.66 .412 .640 .412

112 .1301 122.79 .673 .398 .398
7 113 .1249 124.38 .566 .502

rl 1 
O

1

114 .1192 126.00 .456 .616 .456

Solution. Here (n° ,0 ‘) - (118,7) with I x =  132.75 and

(«0> Co) = (98,6) w ith /. = 117.96.

Proceeding as in  Example 1, we search for plans with c’s near {6, 7} and 
check for each feasible n corresponding to  each c. From  Table 2, the 
optimum  LTPD SSP is « # =101, c * = 6, /*=124.41  and A* =0.520.

4. Sensitivity Analysis

£j!fec? o f Lot Size

Because of discreteness of c, the plan (n*, c*) which is optim um  for A’ 
will also be optimum for some neighbouring values of N. The optimum 
SSP (89, 5) for the problem  o f Example 1, is optim um  for all N  € [1399. 
2436], For a given set of param eters (pi,pz, /3 and  /3L,), it is seen th a t the 
optimum LTPD SSPs have the following properties: (J) c and n are increa­
sing functions of N , (if) ATI is increasing w ith N.  A typical example is 
given in  Table 3.

Effect o f Tolerance L im it o f  Consumer's Risk

F or a given set of param eters (N, Pi, p a> £*), as the tolerance limit jSt 
increases within reasonable limit, the optim um  decision number remains 
same and the optimum  sample size and  ATI decreases slowly. However, 
i f  j3y is increased appreciably, the optim um  decision number may also 
decrease by one unit. A  typical example is given in  Table 4.



TABLE 3—EFFECT OF LOT SIZE ON THE FUZZY LTPD SSPs 

(/>.,-0.02, 0.10, ft/= 0 .15)

A' c* n* H po) I 0 i ) A*

500 3 64 0.1189 81.93 0.508

1000 4 76 0.1249 94.05 0.502

1399 5 89 0.1219 101.93 0.502

1500 5 89 0.1219 102.92 0.515

1800 5 89 0.1219 105.88 0.516

2000 5 89 0.1219 107.86 0.517

2200 5 89 0.1219 109.83 0.518

2436 5 89 0.1219 112.16 0.495

5000 6 101 0.1240 124.41 0.520

10000 7 113 0.1249 136.02 0.502

TABLE 4-E F F E C T  OF TOLERANCE LIMIT ON THE FUZZY LTPD SSPs

(Ar= 2,000, P l=0.02, p ,= 0 .1 0 , f} =0.10)

Pu c* n* P(.P2) I(Pi) A*

0.11 5 92 0.1041 113.86 0.504

0.13 5 90 0.1157 109.82 0.477

0.15 5 89 0.1219 107.86 0.517

0.18 5 87 0.1352 104.02 0.560

0.20 5 86 0.1422 102.15 0.566

5, Concluding Remarks

In the classical Dodge Romig [6] model, one of the objectives of the 
DM of minimum consumer’s risk is achieved by fixing it a t a  specified value 
of (9 and then the second objective of minimum average am ount of inspec­
tion is achieved by minimizing this objective function subject to  the above 
constraint. In  the present model, the D M  specifies an interval [(1, Pv ] for 
the risk that may be taken for allowing the lot to be m arketed with a view



to reducing the amount of inspection per lot. This non-sym m etric fuzzy 
model is able to scale the objective function with the constraint so th a t a 
compromise solution is obtained and thereby reduces the am ount of inspec­
tion in comparison with the non-fuzzy model.

The model can be easily extended to  the case when the D M  can specif} 
the weight or cost per un it risk  per lot and that for reduced inspection per 
un it per lot. The D M  may also consider addition operator to aggregate 
the fuzzy sets and design the optimum SSP by maximising the weighted 
fuzzy achievement function (see Chakraborty [3]).

A cknowledgements

The author wishes to  express his ap p rec ia tio n  to Professor A.C'. 
M ukhopadhyay for generously giving many valuable suggestions. Thanks 
are  due to  the referees for valuable suggestions that resulted in substantial 
improvement of the paper.

R eferences

[1] B ellm a n , R . a n d  Z a d e h , L.A. (1970), Decision making in a fuzzy environment. 
Management Science, 17, 141-164.

[2] C h a k r a b o r ty , T.K. (1986), A preemptive single sampling attribute plan of 
given strength, Opsearch, 23, 164-174.

[3] C h a k ra b o r ty , T.K. (1988), A single sampling attribu te plan of given s tre n g th  
based on fuzzy goal programming, Opsearch, 25, 259-271.

[4] C h a k r a b o r ty , T.K. (1989), A group single sampling attribute p la n  to  a t ta in  
a given strength, Opsearch, 26, 122-124.

{5] C h a k ra bo rty , T.K. (1990), The determination of indifference quality level s in g le  
sampling attribute plans with  given relative slope, Sankhya, B, 52, 238-245.

[6] D o d g e , H.F. a n d  R o m ig , H.G. (1929), A m e th o d  o f  s a m p lin g  in s p e c t io n ,  fir/l 
Syst. Tech. J., 20, 1-61.

[7] G a r fin k el , R.S. a n d  N em h a u ser , G.L. (1972), Integer Programming, John Wiley. 
New York.

[8] H ald ,  A. (1981), Statistical Theory o f  Sampling Inspection by Attributes, A c a d e ­
mic Press, London.

[9] Z im m erm ann , H.J. (1978), Fuzzy programming and linear programming with 
several objective functions, Fuzzy Sets and Systems, 1, 45-55.

[10] Z im m erm ann , H.J. (1985), Fuzzy Set Theory and its Applications, Kluwer-NijfiotT 
Publishing Company, Boston.

[11] Z im m erm ann , H.J. (1986), Fuzzy set theory and m athem atical programming, 
in: Fuzzy Sets Theory and Applications, (eds.) A. Jones, A. Kauftnann and H.J. 
Zimmermann, 99-114, D. Reidel Publishing Company, Boston.


	A CLASS OF SINGLE SAMPLING PLANS BASED ON FUZZY OPTIMISATION

	T.K. Chakraborty

	1.	Introduction

	2.	Fuzzy Mathematical Programming Model



	\	. ifI (8,

	3.	Solution Procedure and Examples

	4.	Sensitivity Analysis

	5,	Concluding Remarks




