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1. In t r o d u c t io n  : Let U denote a finite population of a known number 

.V of identifiable units labelled 1 Ar. Associated with each i is a 

real quantity ‘y;\ the value of a variable ‘?y’ oil unit i. Our problem is to

1 N '
estimate the population mean y =  — domain mean y l: —

i=i

where yD =  '^2v, ,N d is the number of units in a domain (subpopulation)

D  by a sample survey for which a sample .s is selected with probability p(a) 

according to a sampling design p. In this paper we shall consider that s 

is selected by simple random sampling without replacement, (srswor) or bv 

stratified random sampling. We assume that whenever i 6 .s, the true value yt 

of ‘j/’ can not be observed but a different value Y{, mixed with measurement



errors, is observed. A general treat men! for inference' problem under mea­

surement error models has been considered in Fuller (1987). Prediction 

finite population under error- in-variables superpopulation models has bee; 

earlier considered by Bolfarine (1991). Mukhopadhyay (1992).

In this paper we shall consider Hayes estimate's and m inimax estimav.- 

of population mean, Bayes estimates of domain mean in simple random sam­

pling without, replacement from a finite population. We shall also de::v- 

Bayes and m inimax estimates of linear functions of strata means and mi:.:- 

max choice of sample sizes in stratified random sampling.

2. Bayes and m inimax estimates:

Let A’ be the sample space of a random variable X  and /  =  { fu--. w £ 

be a class of probability distributions /  of X  indexed by a parameter _■ £ 

Q, the parameter space and g be a numerical - valued function defined c,\. 

fi whose value g(uj) we want to estimate. /  is a class of superpopulatio:. 

distributions of A’ . An estimate 6 is a non-randomised decision function 

which specifies for each .r £  A’ the value S(x) which is chosen to estimay 

g{oj). The loss involved in estimating g(cc) by S(x) is L(u>,6) and is ofte:: a 

squared error function (^(.r) — g(uj)) . The risk function R associated w:v.

6 is ExL(w,6) where Er denotes expectation with respect to probab:!:"’ 

distribution f w(x) of A’.

It is assumed that w has a prior distribution A(w) and Bayes estima'- 

with respect to (w rt) prior A is defined as the one for which the averse* 

risk f  R{iu,6)dX(w) is m inimum. If A is not known, one may use minima: 

estimate which is defined as an estimate 6 which minimises the maxima: 

risk suPu,.€n R(w,8).

The following theorems connect Bayes estimates and m inimax estimate-

Theorem 1 : If {An} is a sequence of a priori probability distributions aii1 

{rn} the sequence of associated Bayes risks and if rn —> r as n —> a  and i: 

there exists some estimate 6 for which the risk R(w,6) < r\/w then 8 is ?• 

m inimax estimate.

Theorem 2 : II 6, r are a minimax procedure and m inimax risk respectively, 

assuming that the observation X  follow any probability distribution /  6 f; 

and if /  D f 0 is a space of distributions for which the risk associated witli < 

does not exceed r then h is a minimax procedure and r the m in im ax risk to: 

all the distributions of J *  in / .

3 Models for an unstratified population :

We shall assume that the unknown true values y =  (yi,- • ■ ,j/aO are tin' 

realised values of N random variables. However, since both are unknown, wr 

shall make no notatioinal difference between y; and the random variable < 

which it is a realization.



Consider the following general class of superpopulation model distribu­

tions ^i of // =  (,1/1 . • • • . i/.v ) such that for given / / .£ i is a (list nbut ion in

1 v
hyperplaiies in l{s with ;/(=; - r r ^ J / i)  =  /( and

• != 1
v

-  /0 2 <  (A' -  1 ) ^ .  1 )
1=1

rr;a constant and /■. deonting (here and also subsequently) expect ion wrt 

superpopulation models (£, and others relevant from the context). The dis­

tribution of ) , =  { ),. i £  .s} is considered to be a member of t he class wit h

the property that the conditional distribution of V, given ?/, is independent 

and

( V;-1 ) =  //,. I (Yt |,(/t ) =  at (3.2 )

Let C di'note the' class of distributions {£ =  X Consider the subclass 

Co = {{u =  6 0 X ^ 20} of where ^io is such that given ft. II is dist ributi'd as a 

A-variate singular normal distribution with mean vector ft 1 n and dispersion 

matrix Y. having constant values of

cr„ =  —- 7̂—  <7 £ (Vi) and atJ =  -Na?(V i ± j )  (:{.:{)

l p = (1. • ■ ■ Opxi • £20 *s a pdf on Rn such that, the condit ion dist ribut ion of V,

given ?/, is independent, normal w ith mean and variances as stated in (.‘{.2 ).

We assume that /< is distributed a priori normally with mean 0 and vari­

ance 02. We shall obtain Bayes estimate with respect to this prior regarded 

as a member of the sequence {Ag} of prior distributions and obtain the lim it. 

if any, of the corresponding sequence of Bayes risk {r0} as 0 —> o, saw r. 

Then if we can find some estimate 8 for which the risk R((,.8) does not ex­

ceed r, w ithout assuming the normality of distributions, 8 will be a minimax 

estimate by theorems 1 and 2 .

We assume that the sample is drawn by srswor and the sample is (1.2.

4. Bayes and minimax estimates of y:

It follows that ys =  {y{, i £  s) follows a n-variate normal distribution

with mean fi l n and dispersion matrix having elements a lt =  ^ - a ^ V i)  

2
and <7,j — - j f  (Vi ^  j) . The conditional likelihood of Ys given fi is therefore,

*

a n-variate normal with mean ft l n and dispersion matrix having elements 

va =  + ^jf-vl(Vi) and crtj =  —j^(Vi ^  j) .  It is easily seen that Y s( =



^ E v- )is sufficient for //. The posterior distribution of ft given Ys is norma. 

i=i
with mean

E(ft\Ys) - ^,T =  S0 say !4.;

-i o2

N  — n

A'

and posterior variance

I 4.'2

V(v\Ys) =  --- =  ro (say) i4.:i
"  + W

Since (4.1) and (4.3) are independent of Ya, these are, respectively. Bayr- 

estimate of ft and Bayes risk of (4.1).

To find a m inimax estimate for ft, we consider if Vg tends to a lim it  

9 — > q . It is seen that
o'2

lim rg =  —  =  /• (sav) I 4.4
a n

By theorems 1 and 2 if we can find some estimate 6 for which the risk does no’ 

exceed r, for all (  £  C  without assuming the normality of the distribution?

as in £ i0 and £2o> then 6 is a minimax estimate. Trving 6 =  Ys(=  l im  f.
6 — ■;>

we see that the risk corresponding to 6 is, (denoting by Ep expectation v r  

sampling design p and E\ expectation wrt ^-distribution)

R(fi,Y s) =  EpE ( Y ,- fl)2

=  E . E ^ Y . - ^ y } }

2

=  [—  + y] + fJ2 — 2fiys)
n

CT2 N — n 1 N 

t = 1

, N  — n „
< --- h ---~—cr =  r. (4.5)

n nN

Hence Ys is a m inimax estimate of fi(— y).

5. Bayes estimate of domain total, mean.

Suppose we want to estimate the total yD — ^  j/;, mean yn =  Vd / N d

ie  d

a domain (subpopulation) D  of known size ND. Bayes estimate of yD is tho 

posterior mean,

S(yD) =  E(yD\Ys) = E{ ^  yt + ^  yt\Ys) (5.1

i€«nD iesnD



where = U — s. For this we have to find the posterior distribution of

m- > =  V2,-- •, Ar-
The model (3.3) implies that y' =  (?/,. ■ ■ ■ . V’;v _ i) is a (N — l)-variate non­

singular normal distribution with mean vector ft l.\-_i and (A’ — 1) x (A’ — 1 )-

dispersion matrix with elements atl =  and nXJ =  ^  j) .

Posterior distribution of y* given V’s is. therefore.

f{y‘ | Ys)a exp(— ̂ {(?y* -ft ^ - i )  + ~

(^•2)

where Y* =  (Yi, ■ • ■ ,y ’y_])' and D  is a. (Ar — I) x (A  — 1) -diagonal matrix 

It is seen, (5.2)

aexp[-^(y‘ - m)'M{y" - >»)] (5-3)

where

™ =  M ifi l.v-i + ^ ~ ‘ ^ ‘ 1 (5-4)

and M = Y,* 1 +D~\ Therefore, ?/' follows a (A  — l)-variate normal 

distribution with posterior mean in — (in ].■ ■ • , n(,v_i ) where

>»t =  —^ [ N f ia l  + (A  -  n)Yxa'2r -  {nYs -  V' ,)-— =  1.- ■ - ,n  (5.5)
A (7 Cf <7 .u

nij =  -J— IN f i t f  + at) -  nYsa% ]  =  n + 1. • • ■ , Ar - 1 (5.6) 

and dispersion matrix A/-1 (= ((<**_,))) with elements

<r* = A{(N - 1 )a\ + (N - n )a l} ,i = 1,- - • ,n (5.7) 

aij =  ~AarW ^  J =  1, •' • -n (5.8)

a lk  =  , k =  »  + i ; . . . ,  N  _  j (5 9)

°h  =  - i& $ s l , k ? l = n  + l r - - , N - l  (5.10) 

=  =  ;/ =  n + l , -- . , JV- l  (5.11)

where



A =  -----—---- 5- (5.12)
(a2 + ol)Na'

and a'2 is defined in (4.2). The posterior distribution of fi given the 

sufficient statistic Ys remains the same as stated in section 4. Therefore,

beivD) =  e \e { ^2 y< + l^ j]
t£snD \€snD

= E {TVNDy.a2u + N(ND - nlD)ficr] + nlDajYi 
A ct k

N  -  n + \ ) a 2u +  (A ' -  n) o] \  2 / n^Da]
+ na2Y,. |V, (5.13

where nm  denote? the number of units in sC\D. Bayes estimate of yp under 

N (0 ,62)- prior of ft and superpopulation models £o is obtained by using (4.1 

in (5.13).

6. Bayes and  M in im a x  p rocedures in  S tra tif ie d  R a n d o m  Sam p ling :

Suppose that the population is divided into L strata and the h-th stra­

tum  consists of a known number A/,(> 0) of units with true values y ^ i  — 

of the characteristic ‘j/’ (h =  1, A sample of prede­

termined size nh(> 0) is selected independently from the h-th stratum by 

srswor. When the analysis is made for a fixed sample we shall assume w ith ­

out loss of generality that s/, =  (h\, - ■ ■ ,h nh). We assume that yh,- "h e i. 

i G Sh, can not be observed but some other value Y^,, mixed with mea­

surement error, is observed. The sampled data is Ys =  (Ysi, ■ ■ ■ SL "h e ie  

Ysh =  {Yhi,i =  1, •' ’ ,»/.)• Let ch he the cost of sampling a unit in the hth

stratum. Our object is to find Bayes and m inimax estimates of a linear func.- 
L

tion F  =  ^2 o,hVh where y/, the population mean for the /ith stratum, (ih al'e

h=1 • j
known constants (which without loss of generality can be assumed to satisn
L

^2 a-h. — 1) and the loss function in estimating F  by 6 is
71—1

L(F, 6) — (8 — F )2 + Y2 chnh (6-1 i
h=1

We shall regard rih s as fixed for the purpose of finding the estimates. If S' 

be a m inimax estimate for given n^, we shall choose the so as to m inim ise 

the risk



/.

H(i-'.r) = /■• ' , , -- /•')* - V  I'i.n i. . (().■-)
/. 1

as a function of the ///,. As before we do not make any notational dillerence

between i//u and the random variable ol which it is a realised value.

Consider the following general class ol superpopulat ion model dist i i 
I.

butions (, = fi/, o f// =  fi/i. • • • . 1/1 ) when- ;//, - (///, i . ■ ■ ■ . y ,, ) such 

h = \
that for given ///,,£]/, is a distribution in hyperplanes ol I i' y , with //;,( — 

h '̂h 

Y l Uht/Xh) = Hh a<i<l E T im ,, — I1!,)2 <  '7,V Consider also the class ol distri- 
1 = 1 i=i

1.

butions £2 =  £2/1 °f K  such that the conditional distribution ol ) )u given 

h=l
are independent with

E ( Y h l\yh l ) =  iihi- V (  V/,,]'//i,) =  ((>.3)

I.et C = X £2}. Consider the subclass C\, — { =  sio x £211} of C
L

whereto = (1 hB-iih0 such that given ///,. ///, is distributed as a A/,- variate 

/i=1
singular normal distribution with mean vector ///, 1\- and dispersion matrix 

E/i =  ({<7 hi j)) where

Vhii =  1 <?2tk(V’ )-ah,> =  - T r l V' ± ./) (6-4)
A/, iV/1

s2/m is a pdf on R ^h such that the conditional distribution of >>„■ given ijtn 

are independent normal with mean and variance as in (6.3). Suppose that 

the prior distribution of is independent Ar((),02). It follows that. £10 im ­

plies that the distribution of ys — (y.s1, - • • ,])„!,)• Vsh — (Uh}-' ' ' - yhn,, ) is the

product of L distributions, the //th one being ///,-variate normal with mean 

///, and variance for each component and covariance — ̂  for each

pair of components. Again, the set Ys =  (K,i, - • • , V's/J of sample means is a

sufficient statistic for (fi 1 , • • • , fii) and hence for E.

Since the L pairs (//>l,Y's/l ) are independently distributed, it follows that 

the conditional distribution of /ih given Ysh is normal with mean

x h = Vsh,2 (6.5)

1 4- ^1 + nhe*

and variance



°'h
vh =  --- —77 (6.61

nh + °ir

where

_  „'2 1 ~ 1lh J l u: -
ah -  ff«k 77---°ch (u.i.1

J'h

Hence for given V,. the posterior distribution of F  is normal with mean

L

f>o(Ys) =  ahxh (6.S-
h-1

L

and variance ^  (lt vh - M K )  is Bayes estimate of F  and since the conditional 

k= 1
variance is independent of Ys. Bayes risk of (6.8) is

L L

1 0  ̂^'h * 'h ^ " Ch^h' 
h= 1 h—1

To find a m inimax estimate for F, we note that

l im r ,  =  Y ^ ahZr  + $ Z ckn *
9-,“ h=i nh h= 1

= E « ; { —  + (69)
h=i Uh nh.Nh /i=i

=  r say)

If we can find an estimator 8* for which the risk, whatever be £ £  C, does

not exceed r then by theorems 1 and 2, <5* a m inimax estimate.
L

Trying with 8*(YS) — V ' a/,K,/l(=  lim<5^(i/J)) we see that the risk corre­

a l  ê a ~
sponding to 8* is

=  EPE(S" - F )2 + ^  ChUh 
h-\

=  E PE \Y1 a h {y > h  -  f l h ) } 2 +  Y 1  Ch R h



since the strata are independent and by the result (4.5), using the models (j. 
L

Hence ^  is a minimax estimate of F  for given n̂ -
h= 1

7 Minimax strategy for choosing nh:

We now choose the nh so that the minimax risk for given n^ and the 

largest allowed variance (as in (6.10)) is minimised subject to the conditions 

that are positive integers (<  Nh). Such choice of nh, n ’ (say) is a minimax 

choice of as it satisfies

max R(F, S*(n)) =  min max R(F, S'(n))

when n" =  (7j “, • • ■, ?i^), n =  (n-i.---.ni) and 6* (it) means S is based on 

n. It follows that the m inimax choice of is given by Neyman’s optimum 

allocation.

Ial{°th + v2ch)

n ‘  =  V — ^ — •

In particular if F  =  y= =  Whyh, Wh =  ^ ,  n j  =  .
h = 1
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