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Abstract: We consider Bayes and minimax estimates of population mean.
Baves estimates of domain total. mean under simple random samphing from
a finite population when the trie values of the chavacteristic can not he
obzerved, but only the values mixed with some measurement errors are ob-
<erved. Baves and minimax procedures in stratified random sampling under
measurement error models have also been investigated.
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1. Introduction : Let U/ denote a finite population of a known mnmber
N of identifiable units labelled 1, ,1,- <+, N. Associated with ecach 7 s a
real quantity ‘y;’, the value of a variable ‘y’ on unit 7. Our problem is 1o

N

estimate the population mean § = szi‘ domain mean 7, = yp/N.
N4

where yp = Zyi,ND is the number of units in a domain (subpopulation)

€D
D by a sample survey for which a sample s is sclected with prohability p(s)
according to a sampling design p. In this paper we shall consider that s
is selected by simple random sampling without replacement (srswor) or by
stratified random sampling. We assume that whenever i € s, the true value y;
of ‘y’ can not be observed but a different value Y;, mixed with measurement
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errors, is observed. A general treatment for inference problem under mes-
surement error models has been considered in Fuller (1987). Prediction .
finite population under error- in-variables superpopulation models has bee:
earlier considered by Bolfarine (1991). Mukhopadhyay (1992).

In this paper we shall consider Baves estimates and minimax estimas=
of population mean, Bayes estimates of domain mean in simple random saz-
pling without replacement from a finite population. We shall also deriw
Bayes and minimax estimates of lincar functions of strata means and miv-
max choice of sample sizes in stratified random sampling.

2. Bayes and minimax estimates:

Let X be the sample space of a random variable X and [ = {f, 1w €
be a class of probability distributions f of X indexed by a parameter « <
Q, the parameter space and g be a numerical - valued function defined
0 whose value g(w) we want to estimate. f is a class of superpopulat
distributions of X. An estimate & is a non-randomised decision functio:
which specifies for each z € A" the value §(x) which is chosen to estimar
g(w). The loss involved in estimating g(w) by &§(z) is L(w,é) and is ofter «
squared error function (8(x) — g(w))’. The risk function R associated w

v
¥

§ is E.L(w,8) where E. denotes expectation with respect to probabili-
distribution f, () of X.

It is assumed that w has a prior distribution A{w) and Bayes estima-
with respect to (wrt) prior A is defined as the one for which the averav
risk [ R(w, &)dA(w) is minimum. If A is not known, one may use minin
estimate which is defined as an estimate § which minimises the maxim::
risk sup,cq R(w, ).

The following theorems connect Bayes estimates and minimax estimate:

Theorem 1: If {An} is a sequence of a priori probability distributions arw
{rn} the sequence of associated Bayes risks and if 7, — 7 as n — a and i
there exists some estimate 6 for which the risk R(w,8) < rVw then 6 is¢
minimax estimate.

Theorem 2: If §,» are a minimax procedure and minimax risk respectivelr
assuming that the obscervation X follow any probability distribution f € [:
and if [ D fy is a space of distributions for which the risk associated witht

does not exceed r then 6 is a minimax procedure and r the minimax risk fo:
all the distributions of X in f.

3 Models for an unstratified population :
We shall assume that the unknown true values ¥ = (yy, -+, yn) are thf
realised values of N random variables. However, since both are unknown. v

shall make no notatioinal difference between y; and the random variable <
which it is a realization.
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Consider the following general class of superpopulation model distribu

tons & of o= (.- yx) such that for given p. & is a distribution in
1 N
hyperplanes in Ky with y(= — y;} = p and
vpery s A yl v ,}::1'} ) = g anc
N
EDS (g = 1) < (N = D)ok, (3.1)
=1

7ia constant and I deonting (here and also subsequently) expection wrt
superpopulation models (& and others relevant from the context). The dis-
tribution & of Y, = {¥. 7 € s} is considered to be a member of the class with
the property that the conditional distribution of Y, given y; s independent
and
EY ) = ue V(Y = o} (3.2
Let (" denote the class of distributions {£ = £ x &}, Consider the subclass
(o= {& = &y x &} of C where £1g is such that given g ¥ is distributed as a
N-variate singular normal distribution with mean vector g 1 n and dispersion
matrix »_ having constant values of
N -

v So2(Vi) and 7y, = ~NoZ(Vi £ ) (3.3)

Ty =

I, =(1.--- i);xl. £y0 15 a pdf on K, such that the condition distribution of Y,

given y; 1s independent normal with mean and variances as stated i (3.2).

We assume that pois distributed a priori normally with mean 0 and vari-
ance 82, We shall obtain Bayes estimate with respect to this prior regarded
as a member of the sequence { g} of prior distributions and obtain the linit.
if any, of the corresponding sequence of Bayes rvisk {1y} as 6 — «, sav. .
Then if we can find some estimate ¢ for which the risk R(£,6) does not ex-
ceed 7, without assuming the normality of distributions, § will be a minimax
estimate by theorems 1 and 2.

We assume that the sample is drawn by srswor and the sample is (1.2
-,n).

4. Bayes and minimax estimates of i:
It follows that y, = {y;, 7 € s} follows a n-variate normal distribution &l

with mean g 1, and dispersion matrix ¥, having elements oy = E=1o2(vi)
N < ]

and o;; = —%,i (Vi # 7). The conditional likelihood of Y; given y is therefore,

a n-variate normal with mean u 1,, and dispersion matrix Z having elements

2

oy = ol + —]Y];—IUZ(VZ') and o;; = —%(Vi # j). It is easily seen that Y (=
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T
%Z Y;) is sufficient for y. The posterior distribution of g given Y§ is norn:a.
=1

i
with mean

. Y )
E(ulY,) = 1 50,2 = &g say (+.
e
N—n .
. o 12 2 2 )
where ¢ = o2 + v o (4
and posterior variance
. 2

V(ulYs) = ———5 = rg (say) (4.3

n 4+ 22

g2

Since (4.1) and (4.3) are independent of Y;, these are, respectively, Baye
estimate of u and Bayes risk of (4.1).
To find a minimax estimate for g, we consider if 4 tends to a limit &-
f — «. It is seen that \
limryg = — =1 (say) (4.4
f—a n

By theorems 1 and 2 if we can find some estimate & for which the risk does o
exceed r, for all ¢ € C without assuming the normality of the distributio:.-
as in &g and &y, then 6 is a minimax estimate. Trying § = Y (= lim ¢
o—r
we see that the risk corresponding to § is, (denoting by E, expectation w:
sampling design p and F| expectation wrt &;-distribution)
R(u,Y,) = E,B(Y, —p)?
B, B [BAY, ~ 7] 9)]

02 .
= B[4y 4 u = 2ug))
o2 N-—-n 1 N
= [ . E: s — )2
A P Dl
o2 N-n
< v =
s - + N e (4.5)

Hence Y, is a minimax estimate of w(= 7).

5. Bayes estimate of domain total, mean.
Suppose we want to estimate the total yp = Z y;, mean §p = Yp/Np of
. . N €D .
a domain (subpopulation) D of known size Np. Bayes estimate of yp is the
posterior mean,

8(yp) = E(yp|Ys) = B{ 3. wi+ > uilYs} (5.1

i€snD 1€3ND
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where 8 = U — 5. For this we have to find the posterior distribution of
vl =12, N
The model (3.3) implies that y™ = (y;.---. Yyv_y}) is a (N —1)-variate non-

singular normal distribution with mean vector g Ly_y and (N =1} x {V —1})-

. . . - . A - . 2 . .
dispersion matrix 3% with elements o;; = L\,iaf(\fz) and o, = =% (Vi # ).

Posterior distribution of 3™ given Y, is. therefore,

*~«1

Sy 1Yoaexpl=5{(y" —p lyo) 20" —pdn-a) + (X =y ) D7 (YT = 7))
2

where }:* = (Y}, -, Yyo1) and Disa (V= 1) x (N — 1) -diagonal matrix

(g%, a2). It is seen, (5.2)

1

aexp[~5(y'-7iz)’;1'[(y’ —m)] (5.3)

where
~1 =1

71? :111(1121'\',_1-*—/)‘1);‘) (54)
and M = Z"—I +D~". Therefore, y™ follows a (N — 1)-variate normal
distribution with postertor mean m = (.- -, ma_y) where

. o
i = [INuo? 4+ (N = n)Yio? — (Y, = V) ===l i=1.-.n (55)

2 2
ol + o,

1 P .
m; = W{Nﬂ(oz + (73) - n)“saf],] =n+1,-, N1 (5.6)

and dispersion matrix M ™! (: (o] ))) with elements

¥
03=A{(N—1)03+(N"")0e2}vi:1?""n (5.7)
0 =~Aoo it j=1,---,n (5.8)
oh = °—2L£(N‘1)”i':gv_"'”aﬂ, k=n+1,---,N-1 (5.9)

oh= -l p s =1, N -1 (5.10)

0202 .

O':IZ—--F]%BK’l:l’...,n;I:n+1,...’N-——l (5.11)
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0,2

= 5.12
(07 + o7)No" (512)
and o” is defined in (4.2). The posterior distribution of y given the
sufficient statistic ¥, remains the same as stated in section 4. Therefore,

s(ip) = ELEL Y. v+ 3 wilw Y}V

tesnD 1€3ND

1
= F [No” {NNppo2 + N(Np —mip)uol + mpoYs
(J)\7 —-n + 1)03 + (",\7 - ”)03 2v n]DUZ T e . oqc
( U§+03 +n0’e}, m—]\p H.f (3,13;

where n;p denotes the number of units in s N D. Bayes estimate of yp under
N(0,6%)- prior of y and superpopulation models & is obtained by using (4.1
in (5.13).

6. Bayes and Minimax procedures in Stratified Random Sampling:

Suppose that the population is divided into L strata and the h-th stra-
tum consists of a known number N4(> 0) of units with true values yrilt =
1,-+-,Ny) of the characteristic 'y’ (h = 1,---,L). A sample s, of prede-
termined size np(> 0) is selected independently from the h-th stratum by
srswor. When the analysis is made for a fixed sample we shall assume with-
out loss of generality that s, = (hy,---,hn,). We assume that yx,. when
i € s, can not be observed but some other value Y, mixed with mea-
surement error, is observed. The sampled data is Yy = (Yo, - Y, where

~

Yoo = (Yai,t = 1,--+,ny). Let ¢, be the cost of sampling a unit in the hth

~

stratum. Our object is to find Bayes and minimax estimates of a linear func-
L

tion F = Z anjy where g, the population mean for the hth stratum, a, are
h=1

known constants (which without loss of generality can be assumed to satisfy

L

> a, = 1) and the loss function in estimating F by ¢ is

n=1

L
LF,6)=(—-F)?+ 3 cumy (6.1
h=1

We shall regard ny’s as fixed for the purpose of finding the estimates. If ¢~
be a minimax estimate for given n;, we shall choose the n,, so as to minimise
the risk
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3
RUE&) = E b0 = Fy = Y e (6.2)

("

as a function of the ny. As before we do not make any notational difference
between yp and the random variable of which 1t is & realised value

Consider the following general class of superpopulation modet distri
I
butions £ = Hf”l of ¥ = (y1.-- ) wheve g = Gy oy, ) such
h=1 ~ ~ ~ ) ~ ‘
that for given pu €y is a distribution in hyperplanes of iy, with gy f=

N h <\vh

Z Uni /N = juy and 1;'2(1/;” — )" < ol Consider also the class of distri-
=1 =1

L
butions &, = H g, of Y, such that the conditional distribution of Y, given
. h:] . ~
yii are independent with

E(}v'}n‘yhx) = Yhi- \y(y'}uh”u) == ﬂ}-m (()S)

Let ("= {€ = & x &}, Consider the subclass () = {& = &u x &} of
L

where &9 = H E1hs-Ern, suich that given gy, is distributed as a Ny - variate

h=1
singular normal distribution with mean vector p, 1y, and dispersion matrix

22k = ((oni;)) where

~

Np—1
Ny,
Sany 18 @ pdf on Ry, such that the conditional distribution of Y given
are independent normal with mean and variance as in (6.3). Suppose that
the prior distribution of g, is independent N(0,0%). It follows that &, im-
plies that the distribution of ¥, = (ys1y- -, ¥st ) ¥sh = (Ya1s "+ Yan, ) 15 Lthe

Ohii =

2
o2 (Vi) opi; = —%(Vi £ ) (6.4)

product of L distributions, the hth one being ny-variate normal with mean

2

. — . a

i and variance ﬂ]bv—lafh for each component and covariance — 5 for cach
h

pair of components. Again, the set Y, = (Yy1, -+, Ysr) of sample means is a

sufficient statistic for (yq,---, 1) and hence for F.
Since the L pairs (j, Ysp,) are independently distributed, it follows that
the conditional distribution of j, given Yj, is normal with mean

Y,
ap = — (6.5)
1+ 2oy
nh

and variance
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0"2
h .
vy = - (6.6
Ty + 0"}
where \
1 2 Np—np 4 -
T = Oyp jvh ch (6" !

Heunee for given Y. the posterior distribution of /' is normal with mean

L
(5(,(39) = Z(th‘h (6.5

L

and variance Z @y 69(} ) is Bayes estimate of F' and since the conditiona!
h=1

variance is independent of Y. Bayes risk of (6.8) is

re = Z“hlh + Zchnh

h=1

To find a minimax estimate for F, we note that

L 7 L
mry, = Zai—h+2chnh
§—a h=1 iy h=1
L 2
27%h | Na— o2
= . cin 6.9
hizjla,, e }+Zhh, (6.9)
= r (say)

If we can find an estimator 6 for which the risk, whatever be £ € C, does
not exceed r then by theorems 1 and 2, 6* a minimax estimate.
L

Trying with §*(Y,) = Y  an¥uu(= gim 84(Y,)) we see that the risk corre-

sponding to 6* is

L
R(F,6") = E,E(§"—F)*+ Y. cana

h=1
L . L
= FEE[Y an(Yon — ) + Z ChTA
h=1
L nh I
< Z et t+ Z ChTih
h=



BAYES AND MINIMAX PROCEDURES 1901

since the strata are independent and by the result (4.5), using the models ;.
L

Hence Z a,Y,; is a minimax estimate of F for given ny.
h=1
7 Minimax strategy for choosing ny:
We now choose the n, so that the minimax risk for given nj, and the
largest allowed variance (as in (6.10)) is minimised subject to the conditions
that ny are positive integers (< N,). Such choice of ny, n” (say) is a minimax

choice of ny as it satisfies

max R(F,8"(n)) = minmax R(F,6"(n))

§i1€c T o Lec
when n* = (nj,---,nj),n = (ny, - -,ny) and §*(n) means & is based on
n. It follows that the minimax choice of ny is given by Neyman’s optimuin
allocation,
2/ -2 2
nr = ai (T, + 02)
k o
L N .
. . — . . i¥Yp < NZ(o?, 402 )
In particular if F =y~ = Z Wign, Wy, = o —bi—"j"—-lL
h=1 :
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