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The computation of various geometricaland topological properties of objects, as 
well as the inter-relationships among them, is useful and important in image process­
ing and computer vision problems. Many of these properties and relations are ill- 
defined and presented here are some approaches to define them ;usinjg fuzzy , set 
theoretic concepts. It is assumed that the objects are segmented into a two-tone 
mask from a grey tone image. The properties considered are bigness, position, con­
vexity, circularity, elongatedness, straightness and angular orientation. The relation­
ships considered are relative position, relative orientation, degree of surroundedness 
and the degree of betweenness. A man-machine interaction based on these proper­
ties is also proposed and illustrative examples of the results of executed algorithms 
are presented.

1. Introduction
The general approach to image understanding and description consists of three 

stages:

(a) segmentation of the image into regions or objects of interest;
(.b) evaluation of properties of individual objects and description of relationship 

among various objects;
(c) real world indentification of scene.

In this paper we assume that stage (a) is faithfully completed and concern ourselves 
with stage (b) only. O ur long term goal is to generate a description in a language 
very similar to natural language so that m an-m achine com m unication^ possible. 
Hence, we concentrate here on properties that can be visually perceived and verbally 
described.

Our input is a set of object masks contained in the rectangular image frame. For 
simplicity, we consider that the objects are topologically simply connected. Also, we 
assume that the individual object properties do not affect and are not affected by the 
relationships among objects. Thus we avoid some complex Gestalt principles as well 
as the problems of geometric illusion.

The individual object properties we are interested in include size (such as bigness), 
position in the image frame (say, at the middle), convexity, circularity, symmetry, 
elongatedness, straightness and the degree of horizontal/vertical'orientation? The 
relational properties among objects may include relative position (siich as, A to the 
left of B), relative orientation (say, A is parallel to B), degree of surroundedness (A is 
partly surrounded by B) and degree of betweenness (A sits between B and C). Rosen- 
feld (1982) pointed out the problems of defining these properties and relationship.



One approach to solving the problems is to assign fuzzy truth values to these proper­
ties. O ur work is motivated by this idea.

The fuzzy set theoretic approach has been used by Chaudhuri and Dutta 
Majumder (1980) in obtaining a polygonal approximation of a closed curve as well as 
in symmetry analysis. Thus, we have not tried to analyse these properties again here. 
Of the other work reported here, a related paper is due to Koczy (1988) who proposed 
a method of describing the relative position of two objects by a fuzzy degree. We 
have given an alternative and generalized approach to this problem. In fact our 
motivation is to give fuzzy definitions to all the properties listed above so that the 
machine can follow and carry ou t simple instructions in human-like language such 
as ‘pick a few elongated objects’ or ‘place object A  above object B\

This paper is organized as follows. The concepts‘of fuzzy and ultrafuzzy subsets 
are introduced and a method of creating an ultrafuzzy set from a fuzzy set is described 
in § 2. The individual object properties and their fuzzy membership evaluation ap­
proaches are discussed in § 3. Section 4 deals with the problems of relational proper­
ties between objects. The problems of m an-m achine interaction using these 
membership values are approached with examples in § 5. Some scope for further work 
is presented in § 6.

2. Fuzzy and ultrafuzzy subsets: a note
Consider a set of objects U. A fuzzy subset (Zadeh 1965) of U may be defined in 

terms of some properties of objects in U. Let the property be bigness of the objects. 
Then the fuzzy subset called big objects can be considered as a mapping fibig from U 
into [0 ,1]. For any object A e U ,  /ibig(/l) is called the degree of membership of A in 
/ i b jg .  When a functional* form can be given to n b-ti{A), it is called a membership 
function. As shown below in (1), jubig can be expressed as a  monotonic function of the 
area of the objects.

A crisp (i.e. ordinary, non-fuzzy) subset of U can be regarded as a special case of 
fuzzy subset, where the mapping fibig is into {0,1}. Suppose, we are given an object 
A x and asked the question ‘Is A l big?’. Then we should transform the fuzzy subset 
into an ordinary subset by thresholding the membership of A l . If jUbigO î) is greater 
than the threshold, then we call the membership of A x to the ordinary subset to be
1 and our answer to the above question is ‘yes’; else, the answer is ‘no’.

One of the reasons for using the fuzzy approach is its ability to express natural 
language-like properties. Thus, one may use the linguistic hedge ‘very’ and define a 
fuzzy subset as ‘very big objects’. A simple way of doing it is proposed by Zadeh:

/^veryb igC ^) C /^big(^-)3 

He also proposed the definition of hedge ‘more or less’ as

/^m ore or le s s b ig ( -^ )  C /^ b ig ( -^ ) ]

We can extend these to superlative hedges like ‘extremely’ and ‘very approximately’. 
Thus,

/^ex trem ely  big C ^ )  C /^b ig (-^)D  

/^vxry approx im ately  b i g ( ^  )  C/^big )1

Another basic purpose of using a fuzzy subset is its ability to quantify vagueness and 
ambiguity. However, once the membership function is defined, it maps the set of



objects precisely into [0 ,1 ] and no ambiguity is encountered in further analysis. To 
make the fuzzy model more realistic, the concept of an ultrafuzzy subset (Zadeh 1983) 
has been introduced. The membership of a given object in an ultrafuzzy subset lies 
in an interval, rather than being single-valued. A typical example is given in Fig. 1 
for the fuzzy subset ‘big objects’, where bigness is defined in terms of area. It is clear 
that the ‘membership interval’ will be less, i.e. the ambiguity in defining a big object 
will be less when the area is too small or too big while the ambiguity will be maximum 
at some intermediate value. We can construct such an ultrafuzzy subset using the 
following steps.

(a) Use (1) in § 3 to find fibig(A). For simplicity, let it be p..
(b) Decide the maximum thickness of the membership function tmax and the value

(d) Find the normal to the tangent of the membership curve at ji. Cut the normal 
on both sides by a distance t/2.

In the following sections, the methods of finding fuzzy membership are only 
described. Using the above procedure, ultrafuzziness can also be embedded. One way 
to make a hard decision under> an ultrafuzzy environment is to choose randomly a 
membership value within the membership interval of the object under consideration. 
The chosen membership is then thresholded to give, say ‘big’ or ‘not big’ hard 
decisions.

3. Individual object properties
There exist many size, shape and topological properties of an object which can 

be given fuzzy interpretation. Some of these properties are described below.

3.1. Bigness
Bigness may be graded in terms of the area S(/l) of an object A. If B is an object 

which is certainly big, i.e. its membership to the set of big objects /ibig(5) =  1, then a

*

Area

Figure 1. Membership function for an ultrafuzzy set.

H = Ho where the thickness is t = t, 
(c) Define t as



simple relation may be

f [S(A)/S(B)]' H S(A )^S (B ) ,  p ^ l

11 otherwise

The term /? is used for controlling the crispness of the membership function. In all 
the following relations we assume that /? ^  1 unless otherwise stated.

3.2. Circularity and convexity
The definition of circle given in terms of its quadratic equation classifies an object 

to either ‘circles’ or ‘non-circles’. However, human perception of circularity seems to 
be gradual rather than abrupt. The degree of circularity may be given a fuzzy member­
ship value Hc(A), a simple measure of which is

VC(A) = L4nS(A)/G2(A )y
c

where G(A) is the perimeter of A. However, it is a poor measure for a circular object 
with an uneven border. A better measure is as follows. Let 0 be the ‘centre of mass’ 
of the object whose coordinates are

x(0>~ d i ) £ , x(p)- r (0>=d r ) rZ y(p>
and let m and 5 be the mean and standard deviation of the distance of border points 
of A from 0. Then, we may define

Vc{A) = [\-{dlm)2y (2)
v

Similar definition can also be given for fuzzy grade of ellipticity.
Convexity also has a strict definition, but one can give a gradation of convexity. 

Let H(A) denote the convex hull of A. Then H(A) — A  may be called the convex 
deficiency of A. The fuzzy grade of convexity is defined as

/*«>( ) S(H(A)) \

In general, a non-convex object can be represented as a convex set and its convex 
deficiency. Proceeding in this way, a concavity tree (Sklansky 1972) of the object can 
be created and at each concavity node, a fuzzy degree of convexity may be attributed.

3.3. Elongatedness
Elongatedness is another property that should not be binary truth-valued and a 

fuzzy gradation of elongatedness is more appropriate. This grade may be found in 
terms of S(A)/G2(A) as in the case of circularity but it is not a good measure if the 
object contains a noisy border.

An alternative definition is based on the width W(A) of the object A. An object 
is elongated if its area is much larger than its width. The fuzzy degree of elongatedness 
is defined as

" » - [ - = g r
However, evaluation of width is a difficult task. One idea due to Rosenfeld (1982) is



V... >
Fuzzy set theoretic interpretation

to use shrinking of the object in a digital grid. Loosely speaking, shrinking strips the 
border pels of the object in each iteration. The width may be termed as twice the 
number of shrinking iterations necessary so that the object vanishes completely.

More generally, one can define thickness from the skeleton (Blum 1967) of the 
object. There exist approaches (Zhang and Suen 1986) for obtaining connected skel­
eton. For each skeletal pixel, the thickness may be defined as twice the smallest 
distance of the skeletal pixel to the border of the object. The average of these thick­
nesses over all skeletal pixels may be termed as the thickness of the object. However, 
the skeleton is very sensitive to noise and the noisy end branches should be deleted 
before processing. Also, an object may have different elongated parts and it may be 
useful to find the degree of elongatedness for each part. Then a tri e structure of 
elongated parts may be created similar to the concavity tree stated a t ove The topic 
is being investigated in detail and useful results will be communicated in a separate 
paper.

3.4. Degree o f straightness
If an object A  contains only one elongated part then it may be meaningful to find 

its degree of straightness. Consider the centre of mass O and find a line through 0  
so that the squared sum of distances of all points in A is minimum. This line is called 
the ‘major axis’ of A —more detail is given by Parui and Dutta Majumder (1983). 
Next, find the smallest rectangle R  with sides parallel and perpendicular to the major 
axis so that i e f i .  The degree of straightness may be defined as

~F S (A n R )  ■
(5)S(R)

where F is a factor dependent on elongatedness of A. We can define

f l  if /«<.(/!) >  t 
F = <

[ fie(A) otherwise

where 0 <  t <  1 is a pre-defined threshold on elongatedness.

3.5. Degree o f  (horizontal or vertical) orientation
Again, the degree of horizontal or vertical orientation is more meaningful if the 

object A is elongated and straight. For an object with zero thickness, i.e.,a line, the 
problem is simple. Find the angle 8 of the line with the horizontal direction and 
define the degree of horizontal orientation as

r 201?
/*ho04)= 1 - — [6 a)

while the degree of vertical orientation may be defined as

(A) (6 b)

For an object with finite thickness, the angle 6 is measured between its major axis 
and the horizontal direction. Equation (6) is then used for the degree of horizontal 
(vertical) orientation (Fig. 2).
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(fl) (b)
Figure 2. Evaluation of degree of horizontal/vertical orientation, (a) For a line, (b) for an

extended object. ♦

3.6. Position o f  an object in an image frame
Let A  be an object in the image frame and we want to describe its position with 

respect to foe frame. In particular we want to fill in the blank of the phrase ‘A  is at 
the ... of the image frame’ by words like ‘middle’, ‘right’, ‘left’, with possible hedges 
like ‘more or less’, ‘extreme’, etc.

3.6.1. Middleness
Let 0  be the centre of the image frame and O' be the centre of mass of A. It is 

intuitively understood that an object (especially convex) A  can be said to be at the 
middle if the euclidean distance d(0, O') between 0  and O' is very small (Fig. 3(a)).

• ____________ Upper____________

S1a

Lower
(a) - (b)

Figure 3. Position of an object in the image frame, (a) Degree of middleness, (b) degree of
leftness, rightness, etc.

We consider middleness as a fuzzy membership value nmi{A) and define it in terms 
of d(0, O') and the length of the diagonal L of the image frame

r  2 d (o ,o ')y
/Ani (*̂ ) I ( )

It may be noted that this definition makes nmi(A) invariant under rotation of A with 
respect to the image frame, which is desirable. Another definition of nmi(A) is possible 
but this one is simole and it rives results consistent with hum an visual iudeement.



3.6.2. Leftness, rightness, etc. »
Suppose that nmi(A) is very low. Then it is necessary to test if A  is to the ‘left’, 

‘right’, etc. of the image frame. A simple approach is as follows.
Partition the image frame into four quadrants as shown. If A  is in one quadrant 

as in Fig. 3{b) then it has non-zero degree of membership to the ‘left’ and ‘upper’ 
directions. To find fuzzy membership to the ‘left’ direction Hie(A), find the normal 
distance of each point P of A  from the left side image frame d{P, I) and average 
them as

=  i  I  d(P,D (8)
o(A) PeA

If M is the length of each side’of the image frame then

J h - ^ T  ifWuKM/2
I 0 otherwise

Similar definitions can be given to memberships in other directions. Let fiup(A) denote 
the membership to upper direction. The membership to upper-left direction //up-ie(^) 
can be found from nup(A) and nle(A). It is clear that /iup_ie(/l) should be high if

(a) both jule(^) and nup(A) are high and 

(,b) \HiM ) - H uP(A)\ is low.

A function that may be used is -

, u  _  l * l M )  +  Hup(A) [~ \ f t M )  ~  ftupM I 

Mup- lel j 2 L max

= 0 i fAile(^) =  AiupU ) =  0 (10)

The second relation is used to avoid a 0/0 problem of first relation.
These definitions do not make fi's rotation invariant of A. In fact, it is not desir­

able. In practice, an object may have parts in all the four quadrants of the image 
partition leading to a non-zero contribution of membership to different sides.

3.6.3. Filling the phase
To fill the gap in the phrase ‘A  is at the ... of the image frame’ the word X  should 

be chosen for which

fix {A) = max {hi(A)} (11)
i . ........

where i denotes le, up, up-le, mi, etc. Suppose X  = le, then we accept that A is a t the 
‘left’ of the frame. Next, we may test if we can use the hedge ‘very’ before ‘left’ by 
testing if nfe(A) ^  Tu where Tw is a pre-defined threshold. Embedding ultrafuzziness 
is also possible by the approach described in § 2. .

Relative properties
4.1. Relative positions o f  two objects

For simplicity, consider two point objects A  and B. We try to quantify the prop­
erty ‘B to the X  of Al where X  denotes ‘left’, ‘right’, ‘above’ and ‘below’, by fuzzy



membership value denoted by fix (B, A). A simple solution is to draw a horizontal or 
vertical line through A  to denote the X-direction and measure the angle 9 that AB 
makes with the X-direction at A. If 0 = 0 then we expect that fix (B, A) =  1. If \9\ >  n/2 
then hx (B, A) =  0. A function that monotonically maps 0 ^  |0 |<  n/2 into [0, 1] can 
be used for nx (B, A). It may be ensured that filett(B, A) = /iright(/4, B).

When A and B are not point objects and have finite area, then the problem is 
more difficult. An attempt to extend the above method may be as follows. Find 
HX{P, Q) for all points P  e  A  and Q e  B  and make an aggregate over all fix (P, 6)s. 
One possibility is

A) =  1 - - X  X  nx {P, Q) (12)
peA QeB ■

where S(A) and S(B) are areas of A  and B, respectively. It may be seen that 
0 <  iix (B, A) < 1. However, the definition has the disadvantage that i*x (B, A ) ^ l  even 
when B ist‘visually’ to the left of A. In  addition, it is computationally expensive. An 
alternative and simple method is described below.

Enclose the object A  by the smallest rectangle with horizontal and vertical sides. 
Extend the sides in both directions. As shown in Fig. 4, B  may be situated (a) entirely 
outside the rectangle (as B t and B2), (b) entirely within the rectangle (as B3). Draw 
diagonals to the rectangle and hatch regions as shown in Fig. 4. Note that parts 
inside the rectangle are also hatched. The cross-hatching refers to regions where 
memberships to two neighbouring positions e.g. ‘left’ and ‘below’ are non-zero. Find 
the area of B that falls under the X-region. Let this be SX(B). Find the centre of mass 
Ox(B) for each x  for which SX(B) is non-zero. Let X  denote ‘left’. Find the distance 
of Ox(B) from the horizontal bisector of the rectangle. Let this be dx(B). Then the 
degree of membership of ‘B to the left of A' may be denoted as

dx(B) S(B)

We can define membership to a composite direction such as ‘left-below’ using (5).

(13)

Figure 4. Relative position of two objects.



4.2. Degree of betweenness •
We want to decide to which degree an object C is in between two objects A  and 

B. To do so, let us first define the zone of betweenness. Consider two lines P &  and 
P 2Q2 each of which touches both A  and B at one point only. The resultant enclosed 
region excluding A and B is called the zone of betweenness (JB) described in Fig. 5(a). 
Several situations that may occur while testing betweenness are shown in Figs 5(a)-5(d). 
Consider Fig. 5(a) where the object C is entirely within the JB  while D is partly within 
the JB. So we expect that the degree with which C is between A  and B is unity while 
the degree of D should be less than 1. However, in Fig. 5(b) we would expect that the 
degree of betweenness (DB) for C is 1 although it has parts outside JB. N ote that the 
region Cx is on the outer side of P ^  while C2 is on the outer side of P2Q2.

Figure 5. Different situations for the degree of betweenness. In (a) the zone of betweenness is 
enclosed by the thick and dotted lines. *

There may be more than one object sitting within the JB  of A and B. In  Figs 5(a) 
and 5(d), the DB of object C is not affected by that of object D. But in a situation like 
Fig. 5(c), object E is obscured by object C and hence E is not between A  and B. 
Similarly, C is partly obscured by D and E and hence its DB should be less than 1.

A measure of fuzzy DB should be able to capture the ideas behind all such 
situations and yet it should be as simple as possible. However, one should take care 
of two special cases.

Special case 1
Consider Fig. 6. In this case we would expect that ndb(C, A, B) =  0. Rather 

liab(A, C, B) should have a non-zero value. However, nib(A, C, B) will be less meaning­
ful than the degree of surroundedness of A by C. So, before calling the routine to 
compute ndb(A, B, C) it is wise to call the routine for finding the degree of surrounded­
ness for each pair from {A, B. C }. If in each case, the degree is low, then the routine 
for fidb(A, C, B) may be called. The problem of surroundedness will be discussed later.



Figure 6. Special case of degree of betweenness.

Special case 2
Consider Fig. 7. In these situations the lines P j Q i or P2 Q2 intersect, or they cannot 

be drawn. Again the degree of surroundedness plays a more prominent role than DB 
in such cases. Although DB can be found by some complex means, we leave it for 
discussion in a separate paper.

Figure 7. Other special cases for degree of betweenness. In (b) the JB  cannot be drawn
properly.

A simple algorithm for finding DB may be as follows.

Step 1
Find the JB  of the objects A  and B by defining lines P t Q1 and P2Q2. If the lines 

intersect or if they cannot be drawn (as in Special case 2), stop.

Step 2
Test whether C is the only object lying partly or totally within the JB. If C is the 

only object, continue. Else, go to Step 4.

Step 3
If C is the only object, then: if C lies entirely within JB, let /idb(C, A, B) =  1; if C 

extends beyond the JB  on one side as in the case of object D in Fig. 5(a) then find the 
area S(C —Cj) of the portion that is inside the JB. Define £idb(C, A, B) = 
[ S (C -C 1)/S(C)]'!. If C extends on both sides beyond the JB  as in the case of Fig. 5(b)



then find the areas S(C j) and S(C2) of the portions C t and C2 outside the JB. Let 
S0 =  min {S(Ci), S(C2)} and Sin =  S(C) -  S(Ci) -  S(C2). Then define

^ { Q A B ^ K S ^  + lSJISiC)-}!1 (14)

Stop.

Step 4
(If there exist objects other than C within the JB). Find the lines that touch the 

objects at one point and cut the lines P i P 2 and Qi Q2 in equal proportions. As shown 
in Fig. 8

P1 6162

Find parts C\,C°2,...,C°n oi C that are segmented by the lines of extreme extent of 
other objects within the JB. Find Sin as in Step 3 and make Sin<=Sln — 'L”=l S(C"). 
Use (14) to find /xdb(C, A, B). Stop. 5

a ,

Figure 8. Situation when more than one object lies in JB.

4.3. Degree of surroundedness
Classically, we consider (complete) surroundedness as follows. Let A  and B be 

two objects and let F be the border of the image frame in which they are situated. If 
A surrounds B, then we cannot go from any point of B to any point of F without 
crossing A.

According to this crisp definition, A 1 surrounds B l while A ( does not surround 
Bh i = 2 ,..., 5 in Fig. 9. But a person who is not familiar with this definition, will 
perhaps describe the objects as follows

A 1 completely surrounds B 1 
A 2 does not surround B2 
A 3 partly surrounds B 3 
A 4 completely surrounds B 4 
A 5 and B s partly surround each other

If a linguistic description as above is necessary, the surroundedness should be given 
a fuzzy grade of membership. Let us see how it can be done.

Consider any point P  in E. Draw lines through P. If there exist at least one line



through P that meets A  a t two border points in opposite directions without crossing 
the interior of A  then P is said to be surrounded by A. Notice from Fig. 9 that the 
point Q does not satisfy this condition and hence Q is not surrounded by A. Consider 
the case of a digital image where a point is replaced by a pel. Find the pels of B  that 
are surrounded by A. If n is the number of pels out of a total N,  these are surrounded 
by A, then we define the degree of surroundedness fids(B, A) as

Hds{B-A) = ^ J  (15)

A computationally more complex definition may be as follows. For each P  find the 
angle a,(p) over which any line drawn through P  meets A at two points without 
crossing its interior. Then the degree of surroundedness of P is a(P)/n. Then fiis(B, A) 
may be modified as

f a ( B ,^ )  =  ^ ( P ) / (  N « ) J  (16)

where 0 <  a.(P) <  n.
The following properties can be readily observed

(a) A does not surround B or vice versa if A  and B  are convex, but the converse 
is not true.

(b) If A  and B partly surround each other then both A  and B are non-convex.
(c) If A  completely surrounds B then A is non-convex.

It may be useful to distinguish the surroundedness relation of the pair A lt from 
that of A 4, B4. To do so, we say that B x lies in the ‘hole’ of A x.

4.4. Degree o f  (parallel) alignment
For two straight lines in space, it is easy to define the degree of (parallel) alignment 

between them. Let Q be the angle (smaller of the angles) between the lines. If 0 =  0



then the lines are perfectly parallel. If 0 = n j l  thqn the lines are perpendicular to each 
other. The fuzzy degree of parallelism  may be defined as

J i p3(A ,B) = l  1 - 2 6 / n V  (17)

Note that npa{A, B) =  /*pa(B, A).
For objects of finite area, especially if the objects are compact or if the objects are 

non-convex and have several elongated branches, the degree of parallelism is more 
difficult to define. One solution to  the problem is to define the major axis through 
the centre of mass as in § 3.4 for both the objects and find the angle between them. 
The above equation then gives the degree of parallel alignment.

V

Figure 10. Determination of angle for parallel/perpendicular alignment.

5. Man-machine interaction
In the preceding sections we saw how an object shape property and an inter­

relation among objects can be quantified. Let us now try to find some application in 
man-machine communication. Suppose there are several objects A lt A 2, A „  in an 
image frame and the machine is asked to execute one or more of the following 
instructions.

(a) Sort all the big/convex/elongated/straight objects.
(b) Pick the objects from the m iddle/left/right... etc. of the image frame.
(c) Place an object At to the left/righ t/... of another object A}.
{<d) Place A t to the left/right/ ... and in parallel/perpendicular to Aj.
(e) Place A t between Aj and A k.
( /)  Place A t so that it is maximally surrounded by Aj.
(g) Pick the object to the left of A h
(h) Pick the object between A t and A}.
(i) Pick the object surrounded by Bj.

Other combinations of instructions may also be generated for execution. Depending 
on the situation, an instruction m ay not be followed. For example, in ( / )  above, if Aj 
is convex, it cannot surround A t. Similarly, in (e) A} and A k may be so close that At 
cannot be placed in between them. Let us now see how the above instructions can 
be executed.

To execute (a), the fuzzy degrees of bigness/elongatedness/ straightness are found 
and the objects are sorted according to the decreasing order of magnitude of member­
ship values. If an ultrafuzzy set is used, a random number generator is used to  choose 
a value within the membership interval of each object and then the sorting is done.



To execute (b), the non-zero membership valued objects are chosen and ordered 
in decreasing order of magnitude of membership. The ultrafuzzy model is tackled as 
above.

To execute (c)-(f), the placement is made to a place where the fuzzy grade of ‘to 
the xxx of’ relation has maximum possible membership. If placement is not possible, 
a message is returned. For (c) and (e) only translation is allowed while for (d) and (/) 
rotation and translation are allowed.

To execute (g)-(i), the membership of the relation of all objects are found and the 
object with maximum membership is picked.

While execution of (a)-(b) as well as (g)-{i) are rather straightforward, execution 
of (c)-(f)  requires some placement planning similar to the path planning of a robot. 
In our experiment we assume that there exists sufficient space for placement and no 
complicated planning is required.

To examine how well the above definitions work, a set of sixteen objects are taken 
in an image frame. The objects are numbered 1, 2 ,..., 16 as shown in Fig. 11. Most 
of the objects are arbitrarily shaped except those numbered 5, 15 and 16 which 
resemble the outline of English numerals 7, 5 and 2, respectively. The image frame is 
sampled into 256 x 256 cells and the objects are digitized accordingly. Ordering of 
these objects according to fuzzy grade of several individual object properties are 
presented in the Table.

The properties such as leftness, etc. refer to the image frame. Here simple proper­
ties such as bigness are not shown. Also, objects with rightness, upper-rightness are 
not shown in the Table.



Property Rank in decreasing order

Middleness
Leftness
Upper-leftness
Elongatedness
Straightness
Convexity

10, 11, 7, 8, 12, 6, 4, 13, 9, 3, 2, 5, 15, 16, 14, 1
1, 9, 14, 13, 6, 2, 7, 15, 10, 3, 4 (others need not be counted)
1, 6, 2, 7, 9, 10, 3, 4 (others need not be counted)
16, 15, 5, 6, 12, 4, 3, 1, 8, 7, 10, 2, 9, 14, 13, 11
7, 3, 4, 12, 1, 2, 10, 9, 8, 5, 6, 11, 14, 13, 15, 16
2, 9, 10, 7, 1, 3, 4, 12, 14, 13, 11, 8, 6, 5, 16, 15

Let us now investigate the relational properties among objects. Consider the case 
of the relation ‘to the left of’. The pairs (1,2), (2,3), (1,5), (2,5), (3,5), (4,5), etc. satisfy 
the exact ‘to the left of’ relation. Suppose it is asked to find all the objects to the left 
of object number 7. The answer is 9 ,13 ,1 ,14 , 6 (partly), 2 (partly). The answer ‘partly’ 
refers to the fact that fuzzy membership in the relation is less than 1. Similarly, among 
all triplet of objects, the ‘degree of betweenness’ is maximum for 1 sitting between 10 
and 12. For parallelism, 3 and 4 are most parallel followed by 3 and 7, while for 
surroundness 6 partly surrounds 7. In fact, the degree of surroundedness for any 
other pair is zero.

It may be observed that these results agree well with the visual perception. Some 
experiments were made for placement of objects by invoking instructions such as (c), 
(id), (e) and (/). For example, when asked to pick an object to the left of object 7 in 
Fig. 11, object 6 was picked. Thus, the results were satisfactory for objects of simple 
shape as in Fig. 11. However, it is necessary to examine the algorithms for more 
complex shapes and objects with noisy borders.

6. Conclusion
Recognition and description of shape and relational properties of two-dimen­

sional simply closed outlines using fuzzy set theoretic concepts are proposed and 
implemented on some artificially generated figures. The expressions are simple and 
yet capture the basic notion of the shape properties. Here, the relations between two 
or among three objects have been defined but can be extended for more than three 
objects, e.g. ‘A sits among B u  B2, ..., Bn\

The work may be useful in computer vision and scene analysis problems. It is 
interesting to note how these properties and relations may be extended to grey tone 
objects. In addition, it may be useful to extend the work for three-dimensional objects.
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