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ABSTRACT

For the multivariate normal mean (vector) estimation problem,
some characterizations of the Pitman closest property of a general
class of shrinkage (or Stein-rule) estimators (including the so
called positive-rule versions) are studied. Further, for the same
model when the parameter is restricted to a positively homogeneous
cone, Pitman closeness of restricted shrinkage maximum likelihood

estimators is established.

1. INTRODUCTION

Consider a p-variate normal distribution with an unknown mean

vector §. Under a quadratic loss, the classical maximum likelihood
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estimator (MLE) is not admissible for p > 3, and shrinkage o
Stein-rule versions dominate the MLE 1in the sense of haviy
uniformly (in 8) a smaller (or at most equal) risk. Sen, Kubok
and Saleh (1989) have shown that a similar dominance result hold
under a (generalized) Pitman closeness criterion (PCC). and further,
for this, it suffices to take p 2 2. The POC is an intrinsic
measure of the comparative behavior of two estimators withou
requiring the existence of their first or higher order moments. &
the other hand, a characterization of the Pitman closest properi;
(PCP) of an estimator (even within a class) may require =
exhaustive pairwise comparisons with other estimators (belonging t
the same class), and thereby may generally demand additionl
regularity conditions. Actually, such a PCP characterization my
not universally hold. The usual transitiveness property whid
pertains to quadratic or other conventional loss functions may no
hold under the POC [viz.. Blyth (1972)], and hence, soe
non-standard analysis (specifically tailored for specific models)
may be necessary for such a PCP characterization. For some simple
(mostly, univariate) models, some success along this line has bes
achieved, only very recently, by restricting to suitable class of
equivariant estimators where equivariance is sought with respect
suitable group of transformations which map the sample space ontl
itself [viz., Ghosh and Sen (1989), Nayak (1990), and Sen (19%):
among other]. In genuine multivariate estimation problems, the
entire class of equivariant estimators may be too big to ensure tht
I

PCP characterization. For example, for the multivariate norm

dispersion matrix model, there is a gradation of various equivaria®
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estimtors of the dispersion matrix, and a (generalized) PCP
characterization may hold for certain subclasses, but not for the
mtire class [viz., Sen, Nayak and Khattree (1990)]. In this
respect, the results in Sen, Kubokawa and Saleh (1989) are only
partial, and there is a need to incorporate the PCP characterization
results for a more comprehensive account. Motivated by this query,
the first objective of the present study is to examine the PCP
characterizations of estimators of the multivariate normal mean
vector within a class of shrinkage .or Stein-rule estimators. As
will be seen that for some class of shrinkage estimators, such a PCP
holds while it may not do so for some other class.

Sengupta and Sen (1991) have considered some multivariate
normal mean models when the parameter is restricted to a positively
homogeneous cone, and they have shown that in the light of the usual
quadratic risks, the usual restricted MLE (RMLE) dominates the
unrestricted MLE (UMLE), but is dominated by appropriate restricted
shrinkage MLE (RSMLE). In view of the PC dominance results in the
lnrestricted model, treated in Sen, Kubokawa and Saleh (1985), it is
Quite natural to inquire whether parallel PC domiance results hold
for the restricted parameter space model too? This is the dual
tbjective of the current study.

Section 2 is devoted to the study of PCP characterization of
shrinkage estimators of multivariate normal mean vectors in an
Unrestricted setup. Section 3 deals with the Pitman closeness
d"minance of RSMLE over the RMLE when the parameter belongs to a
p"Sitively homogeneous cone. Some general remarks are appended in

the concluding section.



3554 SEN AND SENGUPT

2. PCP OF SHRINKAGE ESTIMATORS

Let X ~ Np(g, 02 V) where p is 2 2, 8 = (91 ..... Gp)' and OQam
unknown parameters and YV is a known positive definite (p.d.) matrix
For two estimators él and §2 of 8, and for a given positive definite

(p.d.) matrix Q, defining the norm ”5_¥”3 as (x-y) Q(x-y). we sz

that 91 is closer to f than g2 (in the norm H'HQ) in the Pitm:
sense if
Po.otlldy — Qllg < 12,-0lgh > 172,V 9.0, (2.1)

with strict inequalities holding for some 8. Note that (2.1) isa
equivalent representation of

Pg.otll — Qllg <y = @lig) 2 Py {16, - gy > ligy = Bligh. V 8.0

~ ~ ~

However, in (2.1), the "less than or equal to" sign may not be
generally replaceable by "less than” sign (unless the probabilit

) _ _ _ - in th
for the tie "91 QHQ H§2 gﬂg is null, for all @), and in the

~

context of shrinkage or Stein-rule estimators, we shall find (2.1

more convenient than its variants. In the particular model, choser

above, one may take Q = X—l, although Q may often be chosen fron

other extraneous considerations. Sen, Kubokawa and Saleh (1989

considered some shrinkage (or Stein-rule estimators of 8 of the forr

2 -1 .-
6§ =X - .2
0 X w(X,S)SHXHQ'V Q "V X, (2.2)

~

1

where S is distributed as 02 q xi, independently of X, xi has the

central chi square distribution with q degrees of freedom (DF), 0!

¢(x.s) < (p-1)(3p+1)/2p for every (X.S) a.e., p 2 2 and IXl,y

WO D

v l-1-1 2 . . 2
X'V'Q 'V 'X. If 0" is known, in (2.2). S has to be replaced by ¢

~
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Then, they have shown that

P, {05 - @l < IX-8N.} > 1/2, V (8. ey (2.3)

so that a SMLE g¢ dominates the MLE X in the Pitman closeness
reasure for all p > 2 and all shrinkage factors ¢(+) satisfying the
bounds stated above. An important member of this class of SMLE is
the simple James-Stein {1961) estimator for which ¢(X,S)

=b : 0 < b < (p-1)(3p+1)/2p. where the upper bound is modified in
the light of the PC measure as in Sen, Kubokawa and Saleh (1989) and
Keating and Mason (1988). The PC measure in (2.1) is a pairwise
reasure. If (2.1) holds for all §

€ € and 5, € €, for a suitable

2 1

class € of estimators, then 91 is said to be the Pitman closest
estimator (PCE) of 8 within the class €. Let us denote by € the
class of all SMLE {5W} where ¢ satisfies the inequalities 0 < ¢(X,S)
¢ (p~1)(3p+1)/2p. We are primarily interested in a characterization
of the PCE of 6 within the class € (or a suitable subset of it). In
Sen, Kubokawa and Saleh (1989), positive rule versions of the SMLE
%f (denoted by §+) were also considered, and it was shown that §+
dominates gw:b in the PC sense. There is a natural question whether
a PCE exists within the class of positive rule versions of SMLE? We
shall study this problem too.

To set the inquires in proper perspectives, let us first
consider the simplest situation where 02 is known, and without any
loss of generality, we may set V= Lp. In this setup, without any

loss of generality, we let Q= Lp, so that in (2.1), we need to use

the Euclidean norm N+l and (2.2) reduces to

2, = {1 - o(X. ) P2y (2.4)
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For the usual James-Stein (1961) version, we set ¢ = b (> 0), so

that (2.4) reduces to
2 o2 -
5(b) = {1 - b d“NKN"“}X. b > O. (2.3)

For the positive-rule version, we set

5 xh?/02,  1xi® < b o”
‘P(%)U ) = 2 2 (26)
b .kl > b o,
so that
sty = {1 - b P 2} X, b > o0, (2.7
where a' = (a V 0) max(a,0). It follows from Sen, Kubokawa and

Saleh (1989) that g+(b) dominates &6(b) in the Pitman closeness
sense, for all permissible values of b (> 0) (for which §(b)
dominates X in the same sense). This leads us to formulate the

following classes of shrinkage estimators:

(1) €5 = {&(b) : 0 <b < (p-1)(3p+1)/2p}

{8%(b) : 0 < b < (p-1)(3p+1)/2p}

.. +
(ii) %JS

and (iii) %¢ = general class in (2.4) with ¢ < (p~1)(3p+1)/2p.
Even within each of these subclasses, there may not be a Pitman

closest estimator. To illustrate this point, we denote by mp =

med(xi) and let
*Sé) = {2(b) : m <b < (p-1)(3p+1)/2p) (2.9)
%52) ={8() : 0<bm) (2.9)
Then, we have the following.

Theorem 2.1 g(mp) = gO is the Pitman closest estimator of § withil!

(1)
the class eJS .
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proof . Note that

: 9 - 2. -2 4
1a(b) - 81% = 1X - 617 = 2b oZUKITZ X' (X-8) + bTUKN " o,

or every b > 0. Therefore, by {(2.1), we obtain that for every

b2 mp, setting 02 =1,

{

Poiiie’ - @il < ua(b) - oI}

n

o
2D
—
—
on
o

|

3
-
%

2 2(b-m ) X'(X - 8)}

. 1
= Pgl{X'(X-8) < 5(b + m))

2

1 1

= < = H = = l18ll™~, 2.10
P)\{xp)\>)\+2(mp+b)}. A 3 [¢} ( )

. . 1,2

where the last step follows by noting that x'(x-0) = lix - §gll

- _leg ik
Noand X-58~4 (58 1) Note that

%(b + mp) > m for every b > mp, (2.11)

while by the subadditive property of ml())\) = median of )(i A [viz.,

Sen (1989)]. we have

n™ n@® yxom A vado. (2.12)
P P b

Hence, from (2.10), (2.11) and (2.12), we have

Po{H2° - 8l < I5(b) ~ BN}

[N

5. Ve bym, (2.13)

0

S0 that within the class ﬂgé). &

€stimator of Q Q.E.D.

g(mp) is the Pitman closest

Before we proceed to consider the dual class ‘852) we may note

that if in (2.8)., we replace mp by any a = mp - n, for some

"> 0, then in (2.10) and (2.11), % (b + a) can be made smaller than
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mp by choosing b sufficiently close to mp. Thus, for 8 = 0 (and a

neighborhood of 0}, A + % (a + b) will be less than méx), and hence
(2.13) will be < %. Thus, (2.13) can not hold for every 8, and

hence, the desired PCP does not hold. This explains why the class
(1) 0 0 . . .

£JS has the vertex § and that §  is the unique estimator of §

within this class to ensure the desired PC property.

Let us next examine the PCP within the class %Sg). Proceeding

as in (2.10), we have for every 0 < b < m-
0
Po{lg” - Il < ng(b) - oN}

1002

2 1 \
= 5 : = . 142
PA{XP’A 2A+ 5 (mp +b)}: A e (2.14;

T4
Now, we can use (2.24) of Sen, Kubokawa and Saleh (1989) anc

conclude that QO dominates 6(b) in the Pitman sense whenever

é(mp + b) is < (p-1)(3p+1)/4p, i.e.,

0 < b < (p-1)(3p+1)/2p - m = P ¢ (2.15}

where §p is a decreasing function of p; at p = 2, §2 = 0.386 and it
monotonically converges to 0.334 as p increases. In a similar
manner, it follows that on letting §g = (p2—1)/2p - Ep’ g(bg) is the
Pitman closest estimator of @ within the subclass {8§(b); 0 < b ¢ bg)
(C fgg)). However, g(bg) may not dominate QO (or any other §(b),
for b close to mp) in the Pitman sense, and hence, Q(bg) is not the
Pitman closest estimator within the class £(2)_ Similarly, we shall

Js

0 .
see that §  fails to dominate (in the Pitman sense) any other §(b)

when b is very close (from below) to m_. The proof of this rests on
the following result. Let Méx) and mék) be respectively the mode

and median of xi ' for A 2 O and p > 2.
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Lemma 2.1 For every p > 2 and A > O,

n™) () (2.16)

p p+2

Outline of the proof. Although (2.16) has been stated in Sen

(1989), the proof remains obscured due to a multitude of
typographical errors. As such, we provide here a more direct proof.
As in Sen (1989), we denote the d.f. and the p.d.f. of Xc21 A by

Gc(l)\)(x) and g((l)\)(x). respectively, for x 2 0, A > O and q > 1.

Also, let ééx)(x) -1 - Céx)(x). Then, as in Sen (1989). we have

=(7) A 2 A
(3/8N) Gé (Mé+%) = (3/3N) P, 2 M£+%)

1
2

- cék)(néi%) + 3w - géx)(néi;)(a/ax)Méﬁ%

) - ey eranmG)s

(1 - (aranm()y ()0, (2.17)

as ggg(ml(::%) = géx)(Méi\%)' Vp and A. Thus, we may proceed as in
(2.23) through (2.28) of Sen (1989) and conclude that for our (2.16)

to hold, it suffices to show that

Co_ A)
My = (/MM 5 <1, VA0 p22 (2.18)

. N ), () g N ) g
Wr)tlng a_)\ = ]()+‘)1(M}()+%)/g]()+%(nl()+%)‘ b)\ = gr()+()3(MI()+%)/gI()+l)1(MI()+%)

(and noting that by the log-concavity of g(())\)(°), b)\ < a,

VA > 0), and making use of (2.13) of Sen (1989), we have
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T PN S TXTI

e M{I-3(1-adl=(1-50-a)) - (1-a)

cSa (1) - 5a(l - by
cfu-La-an) (2.19)

whence (2.18) follows by noting that %(1 - 37\) is < 1, YA > O.

Now, by virtue of the inequalities

nM) o wM) ¢
P

SMp P + A m;()}\) <m + A, (2.20)

we note that for b sufficiently close tom , b < m

o
?\+§(mp+b):mp+?\—%(mp»b)
- méx) + (m 4 A - méx)} - %(mp - b). (2.21)

where the right bhand side of (2.21) is less than m, for A = O, but
can be made greater than mg\) for moderately large values of A.
Hence, although QO dominates (in the Pitman sense) §(b) (for b close
to mp) near A = 0, as A moves away from O, the opposite picture
holds. Hence, within the class ‘8(2), QO fails to be the Pitman

Js

closest estimator of 6. Nevertheless, as A increases,
A - mMy 2L - b)/{2 %50, and h -
(my + A= m™y - 5 () - B))/(2(p + 200} 5 0, and bence, using

the asymptotic (in A) normality of ()(12) A T mg\))/{2(p + 2?\)}%‘ we

conclude that (2.14) - % as N - ©. Thus, even when gO may not be

strictly closer than §(b), the (generalized) Pitman closeness

measure (distance) is quite small, so that even within the c1ass
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@gg), QO appears to be a natural choice. In this respect, %gg) can

be replaced by @IS as well.

Let us next consider the case of positive-rule shrinkage
estimators defined by (2.7). For an arbitrary b > O, note that (on

letting 02 = 1)

2

us* (o) - an® = wgn? rouxn®

2

¢ b) + (g - g + vrux

- 2bIXITZ X' (X - 8)} T(IXIZ > b), (2.22)

(where I(A) stands for the indicator function of the set A), so that
for 0 < b1 < b2. we have

+ +
(15 (b)) - Il < N5 (by) - 8M)

2 2 , 1 2
= I~ ¢ bl) + I(b1 XN < b2) I(X'8 2 5 (X - bl))

2 , 1
+ T(IXI™ > by) T(X'(X-8) < 5(b; + by)), (2.23)
so that

+ +
Pollle™ (b)) = @Il < g™ (by) — @Il

2 2 L2

= P{IXI® < by} + Plby < K™ Cby: X8 > 50KIT - b))

+ PL(IXIZ > bo: X'(X-8) < L (b, + b)) (2.24)
9, ~ 2 ~ ~ A =2 1 2 : -

In order that g+(b1) dominates g+(b2), in the Pitman sense, (2.24)
should be > 1/2 for all §. In particular at 8§ = 0, X'6 = O with

~ ~

probability one, so that the second and third terms in (2.24) drop

out. Thus,

+ +
PQ{HQ (b)) - 81 < U5 (by) - Ol le = 0}

2 2
= PQ{"XN (b} = P{x, < b}, (2.25)
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which is > 1/2 only when b1 is 2 mp. In a similar manner, at

8 =0, Pg{llg+(bl) - ol ¢ Ilg+(b2) - @I} > 1/2 for b, < b, only when

2

b1 < mp. From this perspective, an ideal choice of b1 is mp. i.e.,

the estimator

-1 - 62 m X2y (2.26)

~

But, then the question is whether the PCP holds for gO+ for the

entire class of positive rule estimators [of the type 2.7)] or for

suitable subclasses? For this, we consider the following:

%1) = {8°(b) : m, < b < by = (p-1)(3p+1)/2p}.

€2 - (6'®) : 0 < b < m ) e
JS ~ = Tl
+ +(1 2
€ = @Jé by ejé ) (2.28)

O+ +
Theorem 2.2 & (= & (mp)) is the Pitman closest estimator of 6

i thi +(1)
within the class 'er .

Proof. Note that for every b > mp, by (2.24),

O+

+
Pg{ng - 8l < 18" (b) - o)

_ 2 2 1,002
= Pg{u§u <m} o+ Pg{mp <UXIT <b, X8 2 5(NKNT - m))

2 . 2 _1
+ Pg{IXI” > b, X'8 > IXI° - 5(m + b))

_ . 2 1 2 2
= P (X -1 : _1
g(~ 8 2 X" - 5(m_ + b))} + Po{UXI™ < m. X'6 < XN S(m_+b))
_ 2 2 _1 IS P
Poim, < IXIZ < b, IXIT - 5(m + b) < X'0 < 5{IXI" -~ m))
- , 2 _ 2 1 , 2
= Pg{X'@ 2 IXIT - m} + Pg{IXI" - 5(m_ +b) < X'8 < WKN" - m 3

b
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,%U%uz Cm. X' < g® - 5(m + b))

Pyl < 1% < b, g - Hm + b) < X°8 ¢ =
hE'g 2 nxn? - m} + Pg{u§u2 Cmo. X0 < ixn - m )
oyl < g < b, 37 - m ) < X' € ixn? - m )
;pgwguz > b HKI% - m + b) X0 € g = m )
VRl nxn? - m )
SR < m o+ A} (= ngr)
=20l 3 <ol v fn e n - My
226y <atMy Gas nN e n v
.

5

This completes the proof of the theorem.

2
X" = m )

3563

(2.29)

Theorem 2.3 g is not the Pitman closest estimator of 6 within

closs Q}éz) .

Proof. Note that for every O < b < my

P — g1l < 15T (b) - ail)

~

=2 ¢ by + Po{b < nxn? ¢ m. ixn? - b > 2X'6}

~

2 1
*p (XN (X - 1
g{ﬂ, > mye X'(X-86)>2 2(mp + b)}

P X' (X= 1 2 e 1
g% (x-8) 25 (mp +b)} + pg{ugu <b, X'(X8) <5 (m, + b)}
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2 2

2
+ Pg{b CHIXIT < mp, Xl

- % (m)+b) <X C(IKI% - B)/2). (2.30)

Now, the first term on the right hand side of (2.30) can be
expressed as

2 1 1 2
Px{xp,x 2N+ 5 (mp +b)} (A= 3 hgn")

- p)\(xi_)\ > mI())\) s O em - ml())\)) -3 (m, - b)) (2.31)

where

(\) 1 _
myY <A4m, VA0 and 5 (m - b)>O. (2.32)

Consequently, noting that méo) = mp, we conclude that for every

b < mp, there exists a A, say Ab(> 0)., such that A + % (mp + b) ¢

m™, vV A ¢ A, and hence, (2.31) is » &, V A < A.. Actually, by
p b 2 b

virtue of Theorem 1 of Sen, Kubokawa and Saleh (1989), whenever

% (mp + b) < (p-1)(3p+l)/4p 1i.e.,

b

I~

(P-1)(3p+1)/2p - m, = (p-1)(3p+1)/2p - (p-1+np)

2 *
(p-1)(p+1)/2p - n, = (™ - 1)/2p - n, = bO, say, (2.33)

(where n,21/3, Vp22 and n l 1/3as p » »; n, = .45), (2.33)

exceeds 1/2, for all A > O. Thus, it suffices to consider only

values of b > b;. If 6% is the Pitman closest estimator of [/

~

within the class f}é2), then (2.30) has to be > %, for every
b < mp and A 2 0. VWe consider the case of b approaching mp from
below and denote this by m;. Then the third term on the right hand

side of (2.30) can be made arbitrarily small (and zero in the limit

b = m;). For the first term, using (2.16) we conclude that whenever

A Mf}i‘% 0 mf))‘)), P)\{xi,x XAy < P)\{x;)\ > mg\)} - 1/2.
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For this, proceeding as in (2.18)-(2.19), we have

1

W)

e p+)\a)\:p+}\—7\(l—a7\), (2.34)

where A(1 - a7\) is 2 0. V A > 0, and as A increases, A(l - a)\)
converges to 2. Thus, there exists an )\O(> 0). such that

N ¢ ; ; 1

Mp+2 < m + A, for every A 2 )\O, so that the first term is < 5 for
every A 2 )\O. Further, using the asymptotic (in A) normality of
2 L

(Gp =~ P = N/J2(p + 90))*  [viz.. Johnson and Kotz (1970)]. we

obtain from the above that as A increases,

— o %y, (2.35)

No—

2 -
P)\{)(p’}\ > mp + )\} =

To complete the picture, we consider the second term of (2.30). Let

Y= (Yl""‘Yp)' ~ ﬁ’p(Q.l) and let Q = E?=2 Y?. Then we may rewrite
{for b = m_)
POXNZ <DL XT(X-8) < m)
gURI™ < mp- XT(X0) <y
- 2 ~ 2 2 -
=P{Q + (Y, +}) <mp+?\,Q+(Y1+2)\) gmp}. (2.36)

Using Anderson’s (1955) lemma and some standard arguments, it is
easy to verify that (2.36) is nonincreasing in A{2> 0); at A = 0, it
is equal to 1/2 and it converges to O as A - ®, Moreover, (2.36) is
bounded from above by P{Q + (Y1 + 2?\)2 < mp} < P(Y1 < -2n + m:}

ﬂP{Yl < A} (for A 2 mg), so that as A increases, it converges to O
at an exponential rate in A. Comparing this with (2.35), we may
therefore conclude that for large A, (2.30) is strictly smaller than
% (albeit very close to 172). Thus, while for small to moderate

values of A, 80 dominates §'(b) (for b close to m). in the PC
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sense, it fails to do so for larger values of A. Hence, the PC
dominance of QO+ does not hold, and the proof of the theorem is

complete.

Theorems 2.2 and 2.3 imply that within the class ‘6}8

O+
no Pitman closest estimator. Nevertheless, &  emerges as a strong

there is

contender; it has the PCP over the subclass ‘€+(1) as well as a

Js
(2)
g

greater domain of ‘8} and even on the complementary part (of

+(2)
¢

S ). (4.30) is quite close to 1/2, indicating near attainability

of the PCP. In the above comparison, we may note that within the
class C}él), QO+ is Pitman closest while within C}é2), there is no
estimator which is Pitman closer than QO+ {(for all A), and hence,
QO+ is admissible in the PMC sense.

Let us note that with respect to a quadratic error risk, within
the class of Stein-rule estimators of the form (2.5), an optimal
choice of b is given by b = p-2 (=M](JO)) < mg, and for this, we need
P 2 3. Note that for p = 2, p - 2 = 0, and hence, QO dominates the
Stein-rule estimator (MLE) in the light of the PMC [viz., Sen,
Kubokawa and Saleh (1989)]. A natural query is whether such a
PMC-dominance is true for p > 3? The answer is in the negative.
Nei ther 60 nor & (p-2) dominates the other in the light of the
Pitman closeness measure, albeit both of them being admissible in
the same mode. To draw this conclusion, let us first note that
8(p-2) belongs to the class ‘652) [see (2.9)]. As such, if we
proceed as in (2.14), we have

Po{ne° - @i < us(p-2) - oM}

= Py\{’(;z,.x RN (m) + p-2)). (2.37)
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1 .
fote that mp > p-1 + 1/3 for every p 2 2, so that 5 (mp + p-2) is
yp-1 - 1/3. When A = O (or is close to 0). % (mp + p-2) + A\ is

gmlg)\) and hence, (2.37) is > 1/2, while as A increases,

_ ) *) (A)
(m_+ p-2) + N exceeds Mp+2 and, by (2.16), m < Mp+2,

P
A2 0, so that {2.37) is < 1/2 for large values of A (although it

< DOV

is very close to 1/2). A similar picture holds for g0+ vs. Q+(p—2).
But looking at (2.37) we may gather that for a part of the domain of
g, gO dominates §(p-2) in the Pitman sense, while for the
complementary part, the superiority of &(p-2) to QO is very
insignificant. From this picture, we may conclude that _QO emerges
om a good standing relative to the classical James-Stein estimator
too; a similar picture holds for g0+

The PCP for general g‘p in (2.2) depends heavily on the form of
¢, and in general, a PCP characterization for ¢ € {0 < ¢(X,s)

{(p-1)(3p+1)/2p} may not hold. Even for the subclass of estimators

of the form

5(b) = {1 - b SIXIT}X., b >0, (2.38)

2
{vhere qs/o“ ~ )((21. independently of X), the choice of b depends on q
as well as p, and within this class b = m, does not have the PCP.
To see this, we proceed as in (2.10), and obtain by parallel

arguments that for b ) mp,

o
Pg.o{1I8 -0l < lIg(b) - i)

2 1 -1 .2
P)\{Kp,k <A+ 5 (mp + b)g X

o (2.39)

It (2.39) has to be greater than or equal to 1/2 V A > O, we must
have
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2,2
P /x> < +b)/2} > 172, Vb >m.. 2.40
O{qxpxq_(mp )72} 2 ( )

p

1

Note that q p_ xi/xi has the variance ratio (i.e., F -)

P.q
distribution with DF(p.q). For this Fp q distribution, the mean is

q/(q-2). the mode is q{p-2)/p(q-2) and median which is larger than %

mp. Hence, allowing b to be sufficiently close to mp, we conclude

that the median of q xi/xi can be made larger than % (mp + b), so

that (2.40) does not hold. A similar treatment holds for the

analogues of Theorems 2.2 and 2.3. In fact, it is quite intuitive
2,2

t la by m = med / and consider the estimator
o replace mp y b.q (a Xp Xq)

.S;p,q:| =

However, the characterization of the

6(mp,q). Note that on defining F.S;p,q by Pr[q xi/p xi >F
.5, we have mp,q =p F.S;p,q'
PCP of this estimator within the entire class of §(b) in (2.38) (or
a subclass of it) requires more elaborate studies of some properties
of non-central beta distributions, and hence, we shall consider then
in a future communication. The simple proof of Theorem 2.1 or 2.2
or 2.3 may not work out in this case of unknown 02. Naturally, the

case of arbitrary X will be even more complicated to manipulate

properly.

3. PC DOMINANCE OF RSMLE

As has been mentioned in Section 1, when the parameter @ (for
the model X ~ Np(g,z)) belongs to a restricted domain (viz.
positively homogeneous cone), the RMLE fares better than the MLE and
the RSMLE dominates the RMLE in the light of the usual quadratic

error risk. This has been studied in detail by Sengupta and Sen
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[1991). A parallel picture in the light of the POC will be depicted
here.
For simplicity of presentation, we consider explicitly the

positive orthant model for which

=06 =RP=(0crP: 98>0} (3.1)

K~ & (8, 0 I}. For the case of NP(Q. 2), Z arbitrary (p.d.),.

closed expressions for the RMLE and RSMLE are given in Sengupta and
Sn (1990).  For the specific model, 3 = 02’1, we have much more
sinplified expressions. For any x € RP, let §+ =xVO0

={x, VO,..., xp V 0)'. Then the classical MLE of 6 is X, while for

8 confined to ©,. the RMLE is given by

~

+ 1
QRMzé :(XIVO,....XPVO). (3.2)

For every x € RP, let a(x) be the number of coordinates of x which
are positive, i.e.,

_ <P
a(x) = EJ.:1 I(xj > 0), (3.3)
S0 that a(?f) assumes the values O, 1,..., p. Then, the RSMLE of §,

tonsidered by Sengupta and Sen (1991). can be simplied as

2 + ot =2 2
QRSM ={1-[a(X) -2] WXt “ o

X' (3.4)
¥here [a—2:|+ = max[0, a-2], for a = 0,1,...,p. Note that for Xlzf
the mode is (p-2) and the median is m, (> p~1). In view of the

. 0
emphasis placed on &~ = g(mp) in Section 2, we shall consider, side

by side, an alternative version of the RSMLE, given by

73

2 ot~ 2.oF
QRSM = {1 o X i 7K, (3.5}

- C

a(X)
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where

¢ =m.2<k<p; ¢cy=c =0 (3.6)

Our contention is to compare (3.4) and (3.5) with each other and
with (3.2), in the light of the Pitman closeness criterion. As in

Sengupta and Sen (1990), we also consider the positive rule

versions:
4 + et =2 20+ ot
QRSM = {1 - [a(§) - 2] X'l 7o X, (3.7)
A3t + -2 2.+ _+
= - 3.8
QRSM = {1 Ca(g) X" o} X, (3.8)

and compare them with the other versions (under the PCC). In this
setup, we shall confine ourselves to § € 9+.

There is a basic difference in the setup of Sections 2 and 3.
In the unrestricted case, the MLE (X) or its shrinkage version g¢ is

equivariant under the group of (affine) transformations:
X->Y=BX, B non-singular. (3.9)

For this reason, we were able to choose B in such a way that EY = Bf
=7 = (n. Q'), where n2 = HQHQ. Such a canonical reduction may not
be possible for the restricted case:; the main difficulty stems from
the fact that the positive orthant 9+ does not remain invariant
under such a non-singular (or even orthogonal) B, although scalar
transformations on the individual coordinates does not alter 9+. In
the negation of this equivariance, it is not surprising to see that
the performance characteristics (be it in the quadratic risk or the
PC measure) of the RSMLE and RMLE may depend not only on l8ll but
also on the direction cosines of the individual elements. As such,

this picture when @ lies in the interior of 8 _(i.e.. 8 > 0) may not
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totally agree with the one when 8 lies on the boundary of 9+ (i.e.,

. = O for some j, 1 < j < p). However, the relative dominance

picture remains the same, although the extent may differ from the

edges to the interior of 9+. With these remarks, we consider the

following.

A* . N -
Theorem 3.1 For every p 2 2, QRSM dominates QRM in the PCC, and for

~

p2 3. QRSM dominates QRM in the PCC.

Prgof. We provide a proof for QESM only, as a similar case holds

for QRSM' Note that by (3.2),
N 2 + 2
8oy — 017 = X" - g1
=P {I(X, € 0)6% + I(X. > 0)(X, - 6.)%) (3.9)
j=1 J- J J J J
Similarly, by (3.5),
A a2 ot 2 2 4+, -2
"y ~ Q17 = X - 007+ <y oK
2.+ ot + -2
2oy o X - )X (3.10)
As a result,
PolilBgey = 81l < Oy - 61)
_ + et o 1 2
= P’Q((K 8)'X 2 5 Ca(g) o}, (3-11)
where we may note that whenever a(x) = O or 1, Ca(x) = 0, so that

(3.9) and (3.10) are equal. Hence, we may rewrite (3.11) a little

but more explicitly as

Pola(X) = 0 or 1} + pg{(§+-g)'§ 23 Cag)” 2@(X)<P). (3.12)

Each of the terms in (3.12) depends on 6 through the individual
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91 ..... Bp, and therefore a complete working out of (3.12) for a
general 8 (€ 9+) may require considerable manipulations. For
reasons explained after (3.9), we take 8 = (1, 0')', n 2 O, and for
this edge we provide a complete proof. The simple proof holds for
any of the other p-1 edges, while for higher dimensional subspaces
of 9+, one may require much heavier manipulations.

Dealing with a quadratic risk, some of these manipulations are
reported in Section 6 of Sengupta and Sen (1991), and in view of the
similarity, we shall omit some of these details. Also, for
simplicity of presentation, we take o = 1.

Let $(x) stand for the standard normal d.f. Then note that

Pe{a(ﬁ) =0 or 1}
= P . .
= Po{X < Q) + 3, PlX, > 0. X; <O V£

*(-n) 2—(p—1) + ¢(n)2_(p_1) + @(—n)(p_l)z_(p_l)

=27 P 1) o) + 1) (3.13)

Note that at n = 0, (3.13) equals to (p+1)/2p, and it monotonically
decreases with 1 (> 0) with limn_m (3.13) = 2—(p-1). As such, ifp
<2, (3.12) is > % V 11 2 0, and hence, the RSMLE dominates the RMLE

in the PCC. As such, in the sequel, we only consider the case of

p 2 3. In this case, for 2 ¢ a(')\(/) € p, we may identify the two

situations:

(i) X1 and (a-1) of the remaining (p-1) coordinates are
positive, which the rest (i.e., p-a) negative, and (ii) Xl and

(p—a-1) of the coordinates are negative and the remaining a are

positive.
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As such, we can write the sccond term of (3.12) as

p-1
p ~(p-a) B a 2 i S 0. 1<i<
%;2{[3_1 ] 2 P{XI(XI ) o+ >j:2 Xj > 5 S, Xj > 0, 1<{jca}
N o Pla gy ps™ k25 Lo x> 00 2¢<at)
a () Pj0 X525 b
(o~ p p-1 .
- o7(p 1) [ s [ ] POT X (X 2 5 e, X 0 0)
a=2 a-1 a-1,0
p-lorp-l 2 1
+ 2 [ J¢(~n) PIX] o 2 5 5}
a=2 a
-1 p-1
-1 [P 2 1
o (p _ by
[ > [ ] POGLo* (ymXp 2 5 50y % 2 0
a=1 a
Pl el p) 1
2 [ ] Px, o 2 5 c,) (). (3.14)
a=2 a

so that by (3.13) and (3.14), we rewrite (3.12) in the following way

(where ¢y =¢y = 0):

D=

e p-1 _
glp 1){ 1+ 21 (pal) ¢(—n)P{xz oo Lel
a- .

2 1
PP o XX ) 250 XD 0}]} . (3.15)
let o = G (L - Ply2 1 * = 1
a, Ga(2 Ca) = P{Xa,O > 5 ca} and a, = Ga(2 ca+1)' a>l, so
matal =1, @, > % for every a 2 2, a, > a:, Ya>l and
* 1
@, 2 5 Va2 2 Then, it suffices to show that for every a > 1,

. 2 1 1
Honda, + P, o * X (X ) 2 5¢,,;- X, >0} 25. ¥ 20. (3.16)
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As a, = 1, for a = 1, the proof of (3.16) is simpler, and hence, we

consider only the case of a > 2. Note that for n = 0, the left hand

side of (3.16) is

a

1 1 3% 1 * 1
at 2%+ " i(aaﬂl ) = a * i(aa+aa+1_2aa) > 2 (3.17)

a+l

NI

for every a > 2. Letting p = %n, we rewrite (3.16) as
s | 2 2
$(-ma, + 7 G (5 ey + 17— (17x)7) (x)dx

o — 1 2 2
+J5 G (5 ey * BT~ (1) T)e(x)ax

»* »* T ¥ = .1 2 32
= o+ (-m)a, - ax] - SQlal - T (5 cpyp + B - () D) Te(x)dx
o = 1 2 2 *
+ 0[Ga(§ Caep T H - (u+x)7) - aa]tp(x)dx. (3.18)
The last term on the right hand side of (3.18) is 1 in n (or u); its

lower bound, % ( - a:) (> 0) is attained at n = 0 (= p) and its

a
a+l

*
upper asymptote is %(1 - aa). The third term,

* - 1 r 2 . . . ;
,I'g[aa - Ga(§ Coyp tH - (n—x)“7)] ¢(x)dx is T in 7, is nonnegative
and its upper asymptote (as 7 - ®) is < 1 a:. Hence, as 1 - ®, the

2
right hand side of (3.18) converges to a limit 2 a: + 0 - % a:
1

+ %(l - a:) = 5 Let us consider the first order (partial)

derivative of (3.18) with respect to n. It is equal to
%* 1
—e(Mle,—a ] - g,(5 ¢, 1)L« (0)-¢(m)]
vl 2 2
+J5 Y 8.5 eppq + B Y e(uty) 0 (u-y) Jdy

+ g (3 o, )000) - Jommgl (5 e pq + H-())e(x)dx,  (3.19)
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yhere ga(x) = —(d/dx)aa(x) and gé(x) = (d/dx)ga(x). For a = 2,
(x) = - 1 g,(x) where g (x) = 1 e_%x is decreasing in x, and
) 2 &2 2 2 :
hence, (3.19) is bounded from below by

—o(m)(ay - o3) + ¢(n) £y(5 c3)

oo, %o v
=o(mfe C-e S-fe )
~Yc -%(c,-c,)
= p(me (1-3e > 2
e
= -p(n)e {1 - .919} = -.025 ¢(-7n). (3.20)

On the other hand, %(a2 + a3) = 0.733, so that for n > 0, a = 2,
(3.18) is bounded from below by 0.733 - .025 fg ¢(y)dy = 0.733 -

025 [¢(n) - %] 2 0.71 > % V 7n 2 0. Also, note that 1 c is

2 Ta+l

>a-2 for a = 2,3,4 and the opposite inequality holds for a > 5. As
. ool L2 . 1 D
such, noting that ga(§ ca+l) is 7 0 according as 5Chy 1572 2, a

similar proof works out for a = 3 and 4. Hence, in the sequel, we

0

< a-2). We define p

tonsider the case of a > 5 (for which 1 c A

2 Ta+l

1

0,2
by - a-2 — =
Y(ua) =a-2-35¢,,

(> 0). and note that for O { u ¢ ug.

2. Y2) is > 0, Yy < u, so that the third term in

vl

ga(i ca_'_1 + U
1

3. . V1

{3.19) is ¢ 0. On the other hand, in the last term, ga(2 41 t gy

- (u+x)2) 2 0, Vx 2 0, and hence, (3.19) is easily shown to be

legative. Since (3.18) is bounded from below by % (as 1 & ©), we

tomplete the proof by showing that (3.19) remains negative for all

u}ug (i.e., 72 772 = 2;12). For this, we rewrite (3.19) as
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~o(maTo(0)-o(m] g,(5 cqy) JT x £, cpyr* 1y — () D)o(x)dx

+ fg x ga(é Cae1 t p2 - (u+x)2) e(x)dx. (3.21)

%
For every p 2 0, let p: be defined by % c + u2 - (p+pa) = 0.

a+l
N hat w, f =0, i 1 to (1 % (¢ va3), and it i
ote that u_, for p = 0, is equal to (5 Ca+l) (< va-2), R E
. . . . * - >
decreasing in p, with hmu_,m B, = 0. Then, in the last term in

(3.21), the range (0,») can be replaced by (O.u:), and further
1 2 2
IO X ga(i ca+1 +u - (lJ-+X) ) ‘P(X)dx

= foa g(% €1 + p2 - (p+x)2) x(x)dx

I
n
<85 Chyp) Jo xo(x)dx
1 »*
= &(5 cy,1) [#(0) - #(p )] (3.22)

Finally, using the definitions of “2 and u:, it readily follows that

0
2, (3.23)

* ot <
u, < m for every m £ n

so that from (3.21), (3.22) and (3.23) we conclude that (3.19) is

>0,V n2m. Thus (3.19) is < O, V7 > 0. Hence, (3.18) being

0
> 1 at 7 = O and 2 1 at n > +», is 1
2 =2 ’ =2

completes the proof of the theorem.

for every m 2 0. This

We consider next the positive-rule versions in (3.7)-(3.8). By

virtue of (3.5) and (3.8)., we have

A*+— . + 9 P "*_ +,.2 2
Booy — 8 = -8 I(NX W <o ca(z)) * {Qpgy 8} TIXTNT 2 0 °a(¥))}’

(3.24)
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vhere (by virtue of ¢, = ¢, = 0) the first term on the right hand

0

side vanishes for a(X) = 0 or |. Hence, we have

1

~ 364 % X
PollBpgy ~ 1 < lgpgy ~ 01}
+ 2 2
= Pg{a()é) =0or 1} + Pg{a(z) 22, XN 2 ca(g)a }
+,.2 2 %
+ Pgla(®) 2 2. 1K1 <o Caqx)” "Orsw ~ O 2 ngny.  (3.25)

4s in the proof of Theorem 3.1. we consider there only the special
case of ' = (n, 0'). n > O. Then the first term on the right of
hand side of (3.25) is given by (3.13). so that (3.25) is 2 %

Y7, for p = 2. For p > 2, the second term is given by (for

g=1)

P (e _ _ © —
2 @G e + ) 1G 6, (e, ebemaxd). (3.20)

Similarly, the last term on the right hand side of (3.25) is given
by
PP o)

a’2 n

a=2

+ BTh 56 (e m® - (en)e(x-n)dx]) (3.27)

As such, we may proceed as in (3.18) through (3.23) and conclude

that (3.25) is 2 l ¥ n > 0. A very similar proof holds for the

2 5 2
case of QI;SM VvsS. QRSM‘ Hence, we have the following.
Theorem 3.2 For p > 2 0% dominates Oy in the PCC, and for
. = 7" ~RSM ~RSM ’
> A+ R -~ N
P23, QRSM dominates GRSM in the PCC.

By an adaptation of Theorems 2.1, 2.2 and 2.3, it can also be
shown that there is no PCE of 8 within the class of RSMLE (or their

Positive-rule versions) where in (3.5), we allow c, to be arbitrary.
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4. SOME GENERALL REMARKS

The Theorems presented in Sections 2 and 3 place the POC on a
comparable standing with the conventional quadratic risk criterion.
Moreover, the POC leads to the desired dominance results even for
p = 2, while in the other setup, we usually require that p > 3. In
this context, we have confined ourselves to simple shrinkage
estimators of the type (2.5) or (3.5). If instead of (2.5), we
would have considered (2.4), then in (2.10) (and elsewhere), instead
of the constant shrinkage factor b, we would have a ¢(X, 02), where
¢(*) is arbitrary and 0 < ¢(x, 02) < (p-1)(3p+1)/2p. This
arbitrariness of ¢(+) eliminates the possibility of using the simple
and direct proof of Theorem 2.2 (or the others), and a much more
complicated approach may be needed. Moreover, 1if the PCE
characterization does not hold within the class QJS on @}S’ it can
not obviously hold for a larger class generated by such ¢(+). The
results of Sen, Kubokawa and Saleh (1989) can, of course, be used to
strengthen the dominance results of Section 3 to the restricted
parameter space model- however, the PCE characterization will be a
trifle harder!

The results presented here are based on the fundamental
properties of (noncentral) chi square distributions some of which
were studied in Sen (1989). In a general context with possibly
unknown 02 and/or arbitrary ()}, the related distributional
problems may become untractable. Moreover, the role of noncentral
chi square distributions may have to be replaced by that of

noncentral beta or variance ratio (i.e., Fp q—) distributions. Some
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of these properties are under investigation now and will be reported
in a future communication. Finally, the results presented here
relate to underlying normal distributions, and they are exact in
nature. In an asymptotic setup (i.e., granted the asymptotic
normality of an estimator In of g). the current results pertain to a
much wider class, and in that sense, the results of the last section
of Sen, Kubokawa and Saleh (1989) directly extend to the restricted
parametric models in Section 3. However, we should then keep in
mind that like in the case of quadratic risks, the PC dominance then
remins perceptible only in a local neighborhood of the pivot. Of

course, this is in conformity with the usual asymptotic setup.
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