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ABSTRACT
Assuming a super-populaticn model the expected
vVariance of the generalized difference estimator

(Basu,1971) based on the nearest proportional to size
sampling design introduced by Gabler(1987) is shown to be
less than that of the same estimator based on an arbitrary
Sampling design from which the former design is realized.

The former strategy is also shown to fare better than an
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unbiased ratio-cum-generalized difference estimator based
on the nearest proportional to size sampling design in the
sense of having less expected design variance under the

same model.

1.INTRODUCTION

Consider a finite population U of size N and let
yxizl,..”N)be the values of a variate y under engquiry.
our problem 1is to estimate the the population total

N
Y = E’Q on the basis of a sample of a fixed size n drawn
t=1

from the population with a probability po(s).

Gabler (1887) has introduced the nearest proportional

to size sampling design p*(s)defined as

%
p (s)= [ z 7&] p_(s) (1.1)
e s

where Kis (i=1,...,N) are all positive and are given

by

where
fe) [=] o
Ty Ty2 ML PR
(=] o o
Tes T2 Tan

Uo =
o o o
Tns TNz N
_ T L S »* T o) =,
A=A A and [T =Q3,--...7) > 1,C7,.2"s

being the first order inclusion probabilities for the units
for the sampling design p(s) [?*(s) ]and “i?s being the
second order inclusion probabilities for the pairs of units

for the design po(s).
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Gabler(1887) has also discussed how to realise p'(s)

starting from an arbitrary fixed sample size(n) design
. X . .

?,(s) and has called such a design a q ps design which

Noox
satisfies E'“t = n.
i=1
N

Let t, = z Vi %, 6, be a generalized difference
, X iSh
LES il N
. X :
estimator (Basu,1971) based on such a 3 ps design for some

real numbers Sitzl,...,N. known or otherwise. Qur purpose

>

here is to investigate whether t: fares better than the
same estimator based on the original design po(s) viz.

N

t = z v."% + Ve

2 . 1
. o] 1=1
VES T‘L

As the classical ratio estimator is known to Dbe
unbiased under the Midzuno-Sen sampling scheme (Midzuno,
1952; Sen, 1953) and as 7 ps design is a proceeding of the
¥idzuno-Sen sampling scheme, we may consider the following

ratio-cum-generalized difference estimator

2 v.~%,
N
[o]

S M 8.

3 E A 1=1
i

LES

which is also unbiased under p*(s).
The motivation for introducing the above
ratio-cum-generalized difference estimator is eventually to

compare its relative efficiency with that of t1 and tz.
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2. A MODEL AND THE RESULTS

To compare the relative efficiencies of the
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above

strategies we postulate a super~population model ¥

specified by

2
E (y) =286, Vo (v = E (v~ 8 = o

mn
and Cm(yi s yj)= Em(yi-ei)(yj—ejﬁ 0 v ooixj,

where O;S are any positive real numbers V .

T

2

Writing Ep*( Vp* Yas an operator for the expectation

. . . - »*
(variance) with respect to the sampling design p , we have

the following theoren

Theorem 1. Under the model M, we have

Em VP* (ta) =z E_ VP* (tp

(2.1

Proof. Following Godambe and Thompson (1877), we can write

- 4
Em VP* (ti) - Ep*vm<t1)+Ep*Am(t1)—vm(Y)

where Am(ti) = Em(ti)—Em(Y).

Now under the model M, we have Am(ta) = 0 and hence
N
A I
EmVp*(ti) = }:oi[ - 1] (2.2)
A i=1 LR

Similarly we may check that

~. | Po(s)
E V» (t ) = Ea. . = -
m p 3 1 02 257\,
YELOmy st h

By Cauchy-Schwarz inequality it follows that

(2.3)
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P, (s)
E: A po(s) }:po(s)
- LES - tsti =28
2 KR (2.4)
T't

How,
Em Vp* <t3)_Em Vp* (tx)

: pP,(s)

1
= ——’20
. Tli.

by using (2.4).

\%

Remark 1. The eguality holds when Z Kiis constant for all
i€s

s with po(s) >0 1.e when k.L = ;—Ll ¥ i which satisfies

ENq,? = 1 and in that case t  concides with t_.
L% 1 3

Let us now consider a simplified form of the sabove
nedel (to be called model M ) when o? =0'27\.-ﬂ(,)~"f-where o is
1 1 vty
& positive real number.

Writing E [V ]'as an operator for expectation
o [

(variance) with respect to the sampling design P,> We have
the follwing theorem.

Theorem 2. Under the model Mi,we have

v

5, V. [tz] E, V* [ti] (2.5)

Proof. We have

£, v, ()

I
[\/]z
Q
N
—
[

=

—
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so that
E V [t}— E V*[t]
P 2 i
[o]
N

1=1
N
because in[ -n: - “?]
=1
N N
= Z)\Jt -1 as Z)\J? =1
i=1 1=1
N
= inz p (s) - 2+1
i=1 s>i
- Z[ Z ~ ]p*<s> - ZZ 2 (s) + 1
s LES S
2
DS EXCEEY DI RO
s LES S L1E€s
2
= }:[ E: A= 1] p,(s) = 0.
s i€s

N
#* .
Remark 2. We may note that the quantity Z)\i[-“t - TI?} 15
i=1
) *
the directed distance from the design p_ to the design p

as introduced by Gabler(1887).

Remark 3. Here the equality holds when Z 7\L = 1 for all s
ies

*

with po(s) >0 i.e when 7\_l = %V i in which case M

coincides with TI? resulting no difference between t1 and

t.2.
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Under another simplified version of the above model M

(to be called model M_) when o =09 ‘ where o is a
2 1 O.Rw.-n\. o

positive real number, we have the following thecrem.

Theorem 3. Under the model Mz, we have
E V> [ta] z E, Vpo[tz] (2.6)

Proof. We have

e, () - 5, v, (o)

n -
p,(s)
Vs
t O [e]
L=1 T],;
\.

N
> Zo_z L ——i} by using (2.4)
! T

|+

i=1 T‘

N

_ 2

- OOZ[“& - nv.
1=1

= Q.

Remark 4. Here also the -equality holds when ZKL is
v ES

constant for all s with po(s) >0 i.e. when A = ﬁl— Vi in

which case there is nothing to choose between t, and t,.

Remark 5. Under the model Mz, tl and t, have the same
expected design-variance i.e. E V *[t] = EV [t ]

m p 1 m po 2
Remark 6. We may note that unlike Theorenm 1, in

Theorem 2(Theorem 3), the model variance Vm(y.L) is assumed
- o * o * . .
to be proportional to ATT [mn-t] which is nearly
. 2 . .
bProportional to p.L(p.L), p.Ls being the normed size measures
of the units. Similar assumptions regarding Of are also

available in the literature. For example, Cassel, Sarndal

and Wretman(1976) investigated optimal strategies for
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estimating Y within a class of linear estimators under a
super-population model in the sense of attaining a lower
bound on the model-expected design-variance of an
estimator .They found that the lower bound is attained by =a
generalized difference estimator based on a sampling design
with 1inclusion probabilities proportional to known
size—measures(wzs,say) only when the model-expectations and

standard deviations are proportional to W's.
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