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ABSTRACT

In this paper we provide algorithms for maximisation and minimisation of
bicriterion quasi-concave function g (¢, ¢;x) subject to linear constraints,
The algorithm for maximisation is based on bisection approach. The
algorithm for minimisation is an implicit enumeration method. With some
minor modifications, this algorithm also enumerates all efficient solutions of
bicriterion linear programs. Maximisation of system reliability of series-
parallel and parallel-series systems (with two subsystems) through optimal
assignment of components is treated as a special case,

1. Introduction

Suppose g (z1, z) is a sing‘le valued function defined on R? which
iatisfies the properties : (i) g (z;, 2;) iS quasi-concave and (ii) g (z;, z,)
Increases with each argument. The problems, we study in this paper, are
Maximisation and minimisation of g (¢, X, ¢» x) subject to Ax = b, x >0
Where ¢; and ¢, are 1xn vectors, A isan mxn matrix and b an mx1

————
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vector. Practical justification and several examples of maximisation
problem can be found in Geoffrion [6]. Special cases of these two
problems can be found in Anand [1], Ancja et al. [3], Bector and Dall {5]
and Swarup [10, 11]. In all these special cases, g (¢, x, ¢3 X} 15 of the

form (¢, x -+ @) (¢ ¥-Hag).

In Section 2, we consider the problem of maximising g (¢, X, ¢,)
subject to Ax = b, x 20. It is assumed that g (z;. o) 13 continuously
differentiable on RZ and strictly increases with cach argument.  We fint
obtain some preliminary results and later develop an algorithm based on
these results. Geoffrion [6] considercd a more general maximisation
problem in which ¢; x and ¢; x are replaced by two concave functions
of x and gave algorithms separately for the general problem andth
problem under consideration. These algorithms are based on par-
metric programming technique. We argue that our algorithm is mor
eficient than algorithm 2 of Goeffrion [6), which was developed to so
the problem of this section.

Finally we apply the algorithm to a problem of assigning component
optimally to a series-parallel reliability system so as to maximise
system reliability.

In Section 3, we consider the minimisation problem. Here also,
derive some preliminary results and develop an algorithm to soli
the problem on the basis of these results. If the matrix A is tofall
unimodular and b an integral vector, the algorithm yields an optiml
solution even when x is restricted to be integral vector. Finally we appl
the algorithm to maximise the reliability of parallel-series reliabilt
system by optimally allocating the components.

2. Maximisation of Bicriterion Quasi-Concave Function
In this section, we consider the problem:
Maximise g (eg x, ey %),
subject to Y€K ={x:1A4Ax = b, x 20}. (P
This is equivalent to the problem: .
Maximise . g (7, z,),

subject to (Zv 7)) €Z ={(z1, ) (7, Z2) = (e1 X, ¢y x) for som

We assume that g (z;, z,,) is continuously differentiable on R? and strictlf
t

; : ) .;‘ Lo . . .
ncreases with z; and z,. In our notation, (z;, zp) > (y,, J%) means z, .
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2 deand (4, 2) F (0, ). A point (g, 5,) in Z is said to be efficient
if there does not exist another point (v, yo) in Z such that {3y, »,)>{z, z).
The optimal solution (2. =#) of problem P, is necessarily an efficient
point due to property (/1) of ¢ (73, z.).  So. there exists a positive number

A*such that (z* =%) maximises =, ¥ =, on /. Our approach is to first

find \* and next (¥, z¥) and an v* € A such that (2F, =F) =(¢; 3™ e, 2 %),
Note that this v% js an opitmid solution of problem P,

We shall first present some preliminary results and using these results
we develop an algorithm that  gives A%, (¥ z¥) and x*. The algorithm
starts with interval [0, « ) and partitions, in each iteration, an interval
containing A* (selected tn the previous iteration) inta two subintervals and
selects the one containing \*. It vields A*, (z¥, =¥) and ~* in the final

iteration,
Prelimingry Results

For the purpose of convenience. o point (5, 2p) in Z is denotf:d'b;/ z
and ¢ (z,. z.) by g (). Let us denote by L (2) the problem of maximising
oan an 7. Throughout this section we consider the preblem L (V) {or
A > 0 only. Let us denote an optimal  solution of L () by
Sy =l (Y. z ).

Lowva 1.a <h and = (3) £2 (A) =2, () >z (A) and z, (M) <z, ().

Proof. We have 7, (A) 7% 21 (A and 2o () # 22 (hg) since z (A;) and
s (d;) are optimal solutions of L (3,) and L (as) and z (X)) # z.()\z).
Suppose =, () — z; (Ay).  This implies =, (A > z, (}). Wecan write

o ()\1) Az (A > 0 (_‘\:)'&"}\1 Zy (’\2)’
P {oy (A -0y (A [z (A — 22 QDI A < s
ez (M)A 2 (M) < 5 () BAe 2 (),
which contradicts the optimality of = () for L (A). Therefore
2 00>z, (A,) and consequently Z» () <z ().
Levma 2. Let 2, <Ay, = (A)FEZ (M) and
3 e (o ()71 (e ()21 )

Then \, A K by Further if

X 2
LR M > @) AR (A, 2
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(1) 2 <A< Xy
_ y A oA A -
() g (zANZ gz M) = g > g () if 2€7. 5 <z ) and
A —
za > 23 (A)
- _ A A A _
g 2gCEA) =>gE=M)> ¢ (z)if €7 o>t Aand
A —~
Z, < 2 ().

Proof. We have A > 0 by Lemma 1. Suppose A < A;. Then
[z; Q=21 QDY 22 (A2)—2, (AD] < Aps dies, Zn (M) +HA 2 () < 5 (A)+
Ap Zo (Ag), which contradicts the optimality of = (A)) for L (A). Thus
A >\, and similarly X < A,

() Inequality (2) means that z (A) does not lie on the line passing
through z (A) and z (A)). Using (1) and (2). one can casily s
that A, <X <A,

(i) Assume that g (z (1)) pg (z () and (2) holds. Consider a point

A A - A _
z € Z such that z; < z; (\}and z, > z, (A).

A _ _
Since z; < z; (A)) < z; (A1), we can find «, 0<o <1, such that z; (V) =
A ~ A
azy+(1—e) z; (\;). Now consider the point z = a z-+(1—a) = (4;). It s
obvious that z € Z and z;, = z; (A). Also z, & 2, () for otherwise opti-

mality of z (X) for L () would be violated. Suppose ; == z, (A\). Then
- = e A A _
zy M)+ Az (A) = afzi+ A ]+ (1—0) [2,(4) +Azz ()]
A 4 — - —
<alzt A 2]+(1—a) [z W+ o (]

A —_ — —_ —
dueto (2), i.e., z;-F A 25 >z; (A)+ Az, (A) which contradicts the opti-

mality of z (A) for L(7\). “Therefore z,<<z, (A). Now, by properties (i) and
(ii) of g(z), we can write

2G(A)>g (2)> min {g (), g (;)},

- a —
which implies g(z(A))> g(z) since g(z(\,)) > g(z(2)). (ii) also can be proved
an the same lines.
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LEMMA 3. Let A<y,  (A)52 (M), A = [2;(0)—2; W)/ [Z2 (g) —Z:(AD)]
and 21 A 22> (A) A 2y (N for an optimal solution 2 of L(3). Then

(i) g(=(2)) =2g(2) = g(2) >glz(\)) for A > X
(i) g(z(A2)) 2 2(2) = 8(2) > g(z(\) for » <A

Proof follows from Lemmas 1 and 2.

LEMMA 4. Let a pe the value of —= 37 / aazg at an optimal solution z of L(/\)
2 1

Then
- A A A A
D ANCa=>g)V€gRIf z€Z,z, >3 and 2, <Zs.
. A A A A
(i) A 2a=g()€g@ ifz €2 2,<q and 2,>2,.
Proof.

A A A i .
(i) Consider a z € Z such that z; >z, and z,<z, Since Z is optimal
for L (), we have

A ) A -

[31‘_21]/[2:“32] <\ ga,

A A

oitaz, 21492, 3

Since g(z) is continuously differentiable quasi-concave, z;-+az, = Z,+aZ,
isa supporting hyperplane of the closed convex set S (2) = {z:8(2)2g(2)}

at z = gz and S(2) €{z:z;}+«z, >Z11-¢Z,}. Suppose g (Az)>g(2). Then 2 €
int $(z). This implies ;1+a2/;>21+ «Z, which contradicts (3). Therefore
g(ZA)<g(Z). (ii) also can be proved on the same lines.

LemMA 5. For A and a of Lemma 4,

(i) g(zM)) < g for 0 KA < X if X a,

(i) gz(M) Sgl@) for A > X if A>

(iii) g (z() < g(@) for A > 0 if X = a.

Proof. (i) and (ii) follow from Lemmas 1 and 4. (iiiy follows from (i)
(u) and Lemma 4 since any optlmal solution z .—,{: zof L (/\) satisfy either

“1>21 and 22 <Zz OF 21< z, and Zz > Z,.
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LeMMa 6. Let A < X < Ayand () ond =(\y) lie on the line {z/21+
Azye= ZI(X) + Az, (/{)} Then = (\) is the unigque optimal solution of L (Y)
for Ay <A < Xand z(\,) is the unique optimal solution of L () for
A< A< As.

Proof. Note that z (A,) and z (X;) arc also optimal for L (A). Consider a

X such that A, <A< X. Suppose = (A) 7z (A). Then we have 2, ()-25(4)
and z, (A)>z, (\;) by Lemma 1. We also have

Nz (W) =2 o () HA (A1)
ie., [z (A1) —21 DIz =2 (WIS A =2 A
ie. 30D Fx5 ()< ) A S,

which contradicts the optimality of = (a;) for L (X). Therefore = (\) =
z (M) and z (\;) is the unique optimal solution of L(3). Similarly, (3,
is the unique optimal solution of L (A)for X < A < X..

The following algorithm developed on the basis of above results
vields optimal solutions of problems P, and P, simultaneously.

Algorithm 1

Step 0: Find a point z(D that maximises z, coordinate on Z. This can be
done by maximising ¢,;x on K. Let xM be the point that maximises
ex on K. Then z®M = (¢;xt)), ¢,xM), Set x* = x(h), x* = =M and
q* = g (z®). Similarly obtain x® that maximises ¢,x on K and
find the image z® of x®, If ¢*<g(z®), sct x* = x&, o* == =@
and ¢* = g(z®).

Step 1: Find X = [z{¥ — z [z — zP] and set F, = =V -+ A

Maximise z; -+ 2 z, on Z by solving LP : maximise (¢;-- A ¢;) xon
K. Let % be the optimal solution of this LP and z = (¢,%, ¢»%) and
F=z4+22,. IfF = F,, set »* = and go to Step 4. If g (2)>¢*,
go to Step 3. Otherwise go to Step 2.

Step 21 I x* = x(), set x® = % and z® == 2. QOtherwise set x® = %
and z:® = z and go to Step 1.

98 | og
022 | 02
z=z Ifa <X set x® =% and z® = 3z and go to Step 1.
Ifta> A, set x® = 7 20 =zand go to Step 1. If a==A,

stop. x* and z* are optimal solutions of the problems P, and P,,
respectively.

Step 3 : Set x* =7, z* = z and ¢* = g (z). Evaluatea = at
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Step 4+ Define the function S(0) =g (zM -0 (2('3)——;;(1))) and maximise
G(f) over 0COL. Let 0% maximise i (6) subject to 0O 1.
Set ¥ = -4z M) and x* = x4 g% (x®—xDy and stop.
x* and * arc optimal solutions of the problems P; and P,
respectively.

Validity of Algorithin

The optimal solution of the problem P, is an eflicient point z* and
therefore there exists a finite positive A* such that z*is an optimal
solution of L(A*). The above algorithm starts with the interval [6, o) in
search of A* and in cach iteration it divides an interval containing a A*
into two subintervals and sclects the subinterval that contains A*. The
algorithm obtains A* in Step 3 or Step 4 of the final iteration.

LeMMA 7. Suppose = and =® of Step 1 of the algorithim are obtained
as optimal solutions of L(A;) and L(A,), respectively. Then Ay < A, and the
interval [A;, A.] contains at least one value of A*. Further,

() ¢ O) gAY If €7, 7 > 71 () and 7,22 (0).

(ii) g (/-l) <g (= (1) if:A €7, _ﬂl <z (A) and z,> 2, (M),

Proof. The proof is based on induction on the number of iterations.

In the first iteration A, = 0 and A, is takento be oo as a convention.
Suppose the lemma holds for rih iteration and let z( and z® of Step 1
of rth iteration be solutions of L(A;) and L(A,) and Z an optimal solution
R of L (%) where A is as described in Step 1. If F 5% F,, we have, by Lemma

2, N < X <. Suppose ¢*>g () and z* = z. Then g(z®) >£(2)

. A
and due to Lemmas 2 and 3, g (z(})) <g (z*) for » > A and g ()< 2(2)
oA A A . — .
fze 7, z < ziand z,>%,. It means that the interval [A;, A] contains

avalue of M and the lemma holds for (r--1) th iteration when A, and z®)
are updated as \, = A and z® = z. Similarly the cases (a) g*}g () and
* =0 () ¢* < g (z) and A <aq, (¢) ¢* < g(2) and A> o where

%= %/aﬂ at z == z can also be proved using Lemmas 2, 3, 4 and 5.
ol 02y

Theorem 1. If F = F, in Step 1, the optimal solution of the problem P,

lies on the line segment joining = and z® of Step 1.

Proof. T F = F,, 2 and z® are on the linez; -2z, = 2 -+ A %,

0.«

Suppose 200 and z® are obtained as optimal solutions of L(\;) and L(}y),
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respectively. By Lemmas 6 and 7, it is enough to consider the optimal
A

solutions of L(},), L (A) and L(\,). Consider an optimal solution = of
L(\;) which does not maximise z,-- Az, on Z. We have either (4}

A

A A A (. ’
4 < 2V and = >,~;‘) orb) ;> :(ll) and -, < Z, since both - and =" ae
o < Sy - 2 2

(1) A . A O
optimal for L(},). Suppose (@) holds. Then we have [z, - 5] [ -2

A — A . . '.
= A A, e, :(11) 4+ X :;l) < o+ A . which contradicts that zisn

optimal forL()-S. Therefore (b) holds and due to Lemma 7, 2(2)<g=Y

A o X
Similarly, if an optimal solution = of L(A,) docs not maxmise 2y -t -

A . .
on Z, then g (2)<g (z®). Now it is enough to consider only the optm:
solutiens of L(}) in order to find the optimal solution of P..

A L . .
Suppose z is an optimal solution of L(A) but is not on the line segner

A A A
.. - . ) ERE
joining z® and z®, Then either z; > z\" and =, < z," or 5, < = ad

A A A
z; > z;‘l) and consequently by Lemma 7, g(z) € g(z(") or g(z) < g

Hence the Lemma.

If the algorithm terminates in Step 3, then by Lemma 5, \ of fw
iteration is a value of A* and z* is the optimal solution of P,. Ifth
algorithm terminates in Step 4, then by Thcorem 1 the best point
the line segment joining z( and z® is the optimal solution of P, and«
point x*¢K such that z¥* = (c,x*, ¢,x*) is an optimal solution of P,.

o

Discrete Cuse

Consider the problem P, with x restricted to be an integral veclu
Let 1be the set of all integral points of K. A pointxin [ is said tob
efficient with respect to I if there does not exist a yin I suchth
(c1X,6X) § (c1,¢,y). Note that a point which is eflicient w.r.t. J ne
not be efficient in K. To maximise g(e;x,c,x) on [, it is cnought
consider points which are efficient w.r.t. I.

If A4 is totally unimodular and b is an integral vector, algorithm 1
be made use of to solve the above problem. In this case, apply algoritht
1 ignoring the integrality restriction. 1If it terminates in Step 3, x* is I
required optimal solution. If it terminates in Step 4, enumeratcd

points which are efficient w.r.t. I and satisfy ¢;x>z{? and c,x > -{Pandti



OPTIMIZATION OF BICRITERION QUASI-CONCAVE FUNCTION 81

the point among them which gives maximum value of g. If this point is
better than x*, then it is the required solution. Otherwise x* is the
required solution. Sometimes the structure of the matrix 4 enables us to
develop implicit enumeration techniques such as branch and bound

method to carry out the above mentioned enumeration, as illustrated in
the following special case.

Special Case : Maximisation of Reliability of Series-Parallel System

Consider a series-parallel reliability system consisting of two parallel
systems C; and C, in series. Suppose C, (C,) consists of n,(n,) positions
and there are n(=mn; +n,) components any one of which can be assigned
to any position. Let positions of C; be denoted by 1,2,...,n; and those
of C, denoted by n,-+1,.. .n.  Assume that reliability of component jis
pi; when it is assigned to position /. We represent an assignment by % x1
VeCtor X=(X11,...X1n Xa1,+++5 Xam o »Xn1s.-,X,;)7 where x;=1 if component
jis assigned to position i and zero otherwise. For an assignment Xx, the
system reliability can be written as

n n . n n .
Rx)=[l—»n = ¢91[1— = w g'i],
i=1 j= Y i=n-+1 j=1 ¥

where g;;=1-p;;. This can be rewritten as

Ry(x) = [1—exp (—sy%)] [l—exp (— )],
where

51=(S11> -+ szl,..,,sg,,,..,,snu,...,s,,l,,v,(),...,O)
and 5,=(0,0, .4(),5(,,1“)1 s S 1y 0 S oo Snn)
are two 1 X2 vectors
and s;=—log g;;.

Now consider the problem (R,) of assigning these n components to n
positions of the system so as to maximise the system reliability. This
problem is, in mathematical terms,

Maximise g(e1x, 65x), (R4)
subject to xeK and x being integral,

where g(ciX,cox) = [1—exp(—e€X)] [L—exp(-—c:X)], €1= 1, =52 and
K= {x: _éllxi,-:l for i=1tom, ,-Zilxij =1 forj= 1to n and xi; 20}
Considejraz; function f (x,))= [1—exp(—x)] [1—exp(—))] from R* to R.

We now present a result concerning f(x,y) which enables us to use
algorithm 1 for solving the problem R,.
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LemMa 8. f(x,)) is quasi-concave on Ri=i(x.1) | x 200200

See Appendix for proof.

Since g(z1,z5) 1 quasi-concave on R: by [L.mma 8 and strictly

increases with z; and =z, we can make use of Algorithm 1 as suggested
earlier for the discrete casc. If Algorithm 1 terminates in Step 4,
Algorithm 2 given below can bc used to enumerate all assignments that
satisfy ¢;x > z§, and x>z If anassignment is represented by a

permutation (vy,V.,..-,Va) of 1.2, ... then Niy, 1 fori 1tonand we can

n, n - . .
write ¢,x = X s; andc,v = Xy, For a partial permutation
. i - i
i=1 [ A
"
(st ;ug) of 1,2,.. ,m, let ¢y (uy... ) represent the maximum value of Esi‘.i
i—1

on the set of all permutations generated from (u,.....). Similarly let
n

¢y(ity,....11) represent the maximum value of £ s, on the sante set of
i=n -1

permutations. ¢;(uy,...,4x), i=1,2, can be obtained using Hungarian method
for the assignment problem. Let N denote the set {1.2, ..}

Algorithm 2
Step 0: Set G={(1), (2),...,(m)} and a,=z{* and a, --- ="

Step 1: Select a partial permutation (11, 14) from G and set G=G\|
{(uy, oo u)}. Ifk = n—1, go to Step 3. Otherwisc cvaluate
¢i(uy, oux) for i=1,2. If ¢uy,...,u) > a; fori = 1.2, then sct
G=U{u, ,u,)} UG

Y€ N—{uy, .. ,ux}

Step 2: If G=4¢, stop. x* is optimal. Otherwise go to Step 1.

Step 3: Xf (uy,....,u,) is the permutation generation from (i, ol y).
n n
evaluate iZX Siy,—ay and I { ls‘,-,,i—ag. If one of these two values
= i=n,-
‘e ey . "
IS nom-positive, go to Step 2. Otherwise evaluate g( > Sin
s i
n - =
it Sitey) If it is greater than g(e¢, 3*, ¢, x%), set Xy, =1l j=u,
and 0 otherwise for i=1 to n. Go to Step 2.



OPTIMIZATION OF BICRITERION QUASI-CONCAVE FUNCTION 83

3. Minimisation of Bicriterion Quasi-Concave Function

In this section, we consider the problem:

Minimise g(ery,e.x),

subject to X € K= {vidx=b, x>0} P,
This is equivalent to the problem:

Minimise g(z1,2)),

subject to (z1,72) € Z. P,

where Z is as described in Section 1.

Notc that Z 1s a convex polyhedron. In this section, a point (z1,23)
in Z is said to be efficient if and only if there does not exist another
point (y1,p,) in Z such that (y,,3,) < (z1,2:). By properties (i) and

. . . * ok .
(if) of g(z1,5), there exists an efficient extreme point (z, , z, ) that minimises
. * * . . - ., *
g(z,7) on Z. Since (z,, z,) is efficient, there exists a positive number A
* * . . . .
such that (z;, z;) minimises z, -+ *z, on Z. Our approach is to search

¥ o 22) and x* ¥ o0) = (e®, rox®) during the
for #* and find (5, z,) and x*€K such (z,, z3) = (¢v*, r,x*) during

search. In this section also, a point (z;,z,) in Z is denoted by z and
8(z1, zp) by g(z). We denote by M(A) the problem of minimising z;+4Az,
on Z and denote by z(A) an optimal solution of M(X). Throughout this
section we consider the problem M(A) for A>0 only.

Preliminary Results
LeMMa 9. A, <A, and z(A)7z(A) = 23 (A) <z, (V) and z, (A)> zu(A2).

Proof is similar to that of Lemma 1.

LemMa 10. Let A <My, z(A)5%2(\,) and x:[zl(/\z)—ZI(A))],’[Zg('\l)“‘iz()‘z)]
Then A& A & Ay, Further, if z,(0)-FAzy(X) <zy(A)-FAzo (M), then <A<hy.
Proof is similar to that of Lemma 2.

Suppose A, <<}, and z(};) and z(},) are optimal solutions of M(A;) and
M) such that z(A\)7£2(A,). Let X=[z(A)—z,(A)}/[200) —2,(A2)] and
be the point of intersection of the lines Lj:z;4-A;zy=2z3(A)-+A1z2(A) and
Lyizi4d zy=2,(A)+20z,(A).  Let e=z,(A) +Az,(2)). Note that the line
2FAz,=¢ intersects L, at z(\;) and L, at z(3y). If A\, <x<<),, the region
54 N e, 2040z > 200 - Mza(hy) and zp + Xz > zi(A)+ (bza(09)}
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LeMMA 12, Let Ay <\ <Ma. Then

(Y g(z) 2min{g(z(a). g(=(A)), g(l)} for any optimal solution ;ofM(/\l)

satisfring =y > zi(A) and z,<zy()))

(0 g(z)2min{g(=(A1)). g(=(A2)), gy} for any optimal solution ;ofM(Ac_,)
satisfyving :T<:,(,\:) and ;_:> =a(AY).

Proof.

~

(f) We have [5p—2(A)] [Z(0—2]=4 < A,

ie., 5y Az & ¢, which implies = € A (A1,45). Now, statement (/) follows
{rom quasi-concave property of g.

(4/) also can be proved on the same lines.

Lemya 13, Suppose 2(\,) and =(\,) lie on the line =,-1-Az,==2,(A)-FAzy(A).
Then =(Ay) is the unique optimal solution of M()) for Ay < A < X and z(),)

is the unique optimal solittion of M(X) for A < A < A,.

This lemma can be proved on the same lines as Lemma 6 noting that
ZN), () and z(),) of this lemma minimise SEA 2z b Az, and
Zyi-AD, on Z. respectively.

The following algorithm developed on the basis of above results
yields optimal solutions of problems P; and P, simultaneously. The
algorithm initially obtains =™ and z® which minimise z; and z, on Z,

respectively. If z{V - z{¥ or =iV = =¥, then the algorithm stops giving

one of z» and =z as an optimal solution of problem P,. Otherwise the
algorithm performs several iterations giving an efficient point z¢+» in rth
{(r>1)iteration.

Inrth (r>1) iteration, the algorthm starts with a collection W of
pairs of indices. An element (i,j) in W represents the pair of efficient
points z() and z(). The algorithm selects a pair (i,j) in W and obtains,
using z& and z®, a new efficient point z¢+» which results in the inclusion
of pairs (i,r +-2) and (r+2,j) in W and elimination of (i,j) from . A
point x¢+2 in K that corresponds to z"#?is simultaneously obtained
along with z+2, Point z* given in this iteration is a point in {z®),...zC*2})
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such that g(z*) = min  g(c"). Some of the clements 15 W ar
1I<I<r+2

eliminated by a criterion involving the value of g at this z* The algorithm
stops when W=¢. z* of final iteration is an optimal solution of problem

P, and the corresponding point x* in K'is optimil for problem P,.

Algorithm 3

Step 0: Obtain x® (x®) that minimises  ¢pv(e.y)  on K and sa
zW=(e,xD, c,xM) and 2P =(c, ¥, ¢, \'). Tuke A 0and \==
and, as a convention, take 0.z; -z, as the objective function of
M(e0). Then z® and z® are optimal solutions of M(\,) and M(\y,

respectively. If =z = z{®, then z® and x® arc optimal solutions
of the problems Py and P,.  If 28Y — 2%, then =zt and x™ e

optimal solutions of Py and P;.  If 2z and = do not coincide

in any coordinate, set W-={(1,2)}. r=2. d,=:{Y and d,=:{.

Step 1: I g(z®)Cg(z®), set z¥=ztY, g% = g(zV) und x*=x". Otherwize
set z¥=z(®, g*=g(z®) and x*=x13.

Step 2: Choose any (i, j) from W. Set W = IWN\{(i.j)} and r=r+1,
Evaluate A, = [z — =(P)[z{) — 9] and set d=={" -- \, =57 and
find x® that minimises (¢,+Ac)x on K. Set z0)=(cxtr, ¢,x).
Then z()is an optimal solution of M()\). Set d,=z7 - A ¥
If d,=d, go to Step 7. Otherwise find the solution (/"", #¥"”) of
nt+hz=d; and z+Mz,=d, and the solution (A7, ) of
zitMZp=d, and 24 Nzy=d;.  Set q(i,r)=g (I\°", 1i*)) and
q(r, N=g (h{*?, WDy, Xf 8(=") 2 q*, go to Step 4.

Step 3: Set z¥=z0), x*=x(, g¥—g(z(),

Step 4: If q(i,r)<q*, set W=W U {i, n}.

Step 5: If q(r, j)<q*, set W=Wy{(r, j)}.

Step 6: Delete from W each (u,v) if g(u,v) > g*.

Step 7: If W:{éqS, goto Step 1. Otherwise stop. z* and v* are optimal
solutions of the problems P, and P,.
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Validity of Algorithin
Consider an element (i. j) of W. Let

Iy = { =iz is optimal for M(X) for some A, ;<A< A}

U{z:zis optimal for M(X) and z;> 240, z,< 2(%)

U {=:z is optimal for M(3)) and z; <=0, z,> =),

Let L;; be the line segment joining =@ and =), Defining E; as Ly
without end points = and z0) when X;=A;, we can write

Eyj = Evr U Ej Uz} (4)
for an optimal solution = of AM(X,) when A<y
Lemma 14, Fj gLy if oy (W) 4A 2y ) = =042z where A= [z~
R
Proof. Case (i): N, = X < )

The equality -;(AM)+ Azy (V) = :(1')+ Xz(z” implies that z(), z(X}and z0)

optimal for M{A) and lie on the line z;+ Azy=2,(}) +Az, (V). In this case,
we have {z:z is optimal for M(A) for some A, ;<A <N} =z0 by Lemma 12

We also have {z :z is optimal for M()) and z;<:\?, z,> 2} = ¢.

Otherwise, we arrive at a contradiction that -(? is not optimal for M(}).
The set {z:z is optimal for M(\;) and z,>:, z,< z{’} contains z&) due to
Lemma 9 and since ); = X and =/ is optimal for M()S. We claim that
there does not exist an optimal solution :Aof M(}) such that :/1‘> -7 and

/1 -
2,8 . Otherwise we arrive at a contradiction that z() is not optimal

for M(%;). Therefore, the set {z:z is optimal for M(\) and z,> 2P, zy< 28N
is contained in L;; and consequently E;; C Ly;.
Cuse (II) < )= M

This case can be verified on the same lines as case ().
Case (iii): N< N < Aj.
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We can casily see, following Lemma 13 and the arguments of case (i),
that
-:z is optimal for M(A) for some A oh<ag Ny (s

optimal for M()}, (5)
{z:z is optimal for (X)) and -0 o< Y b, (6)
and {z:z is optimal for M(};) and =, <z oy (7

We also have
=1z is optimal for M(N)} = L.

Otherwise, we arrive at a contradication that either z is not optimal
for M()) or =0’ is not optimal for M(},). From Equations(5)-(§) we can
now conclude Ej;=L;;.

THEOREM 2. At the end of each iteration of the algorithm, the optimal

solution of the problem P, belongs to  \  F;; W{z*}
(i,j)(l",

Proof. We prove the theorem by induction on the number of iterations
Suppose the theorem is true for / th iteration. Let H'th and H'V ! represent
Win Step 7 of Ith and (/1) th iterations. Assume that (i,/)eW¢ is
chosen in Step 2 of (/--1) th iteration and supposc ,=d in that step. We
have Ej; € L; by Lemma 14 and g(2)>g(=*) for -€L; by quasi-concave
of g. Thus g(2)>g(z*) for z€E}, and the optimal solution of P, belongs to

E; Ulz% since W= WON{(i j ' d.
i,j)&/JV(Hl) 7 U (%) since {7 /)y when d,=d

Supposc d,<d. Consider the casc ¢(i,r) >¢* and q(r, j)>¢*. We have
g(z0) > g(z*) for the revised =* and duc to Lemmas 11 and 12, g(=)> g(=*)
fqr z€E;, U E,, that is, g(z)>g(z*) for -€¢E;; by Equation (4). We also have
g(2)>g(z*) for z€E, if (u,)eWON{(i, j); and q(1,v)>q*. Now, an optimal

solution of P, belongs to U Ey.. -*Y by induction 1} thesis
s P U{z*} by induction hypothesis

since WUD=(WON{(Z, /)}) \uU (zg(u,v)}. Similarly other three cases can
,v)
q(lr,v;%z*

also be verified.

Following the above arguments, one can casily sec that the thcorem
holds for the first iteration also.

Theorem 2 implies that final z* of the Algorithm 3 is optimal for the
problem P, since final W is empty. Thus final x* that satisfics
(¢1x*,crx%*)=z* (final) is an optimal solution of the problem P,. In Step 2,
any LP technique can be used to find x® that minimises (¢;-+A¢,)x on K.
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Discrete Case

Consider the problem Py with x restricted to be an integral vector.
Algorithm 3 yields an optimal solution for this discrete case also if A is
totally unimodular and b is an integral vector provided that we use in
Step 2 simplex method or any LP technique that yields an extreme point
of K as an optimal solution. This is because all extreme points of K are
integral when A is totally unimodular and b is an integral vector and x*
of Algorithm 3 is always an integral vector if we use in Step 2 any LP
technique as mentioned above.

Special Cuse: Maximisation of Reliability of Parallel-Series System.,

Consider a parallel-series reliability system consisting of two series
systems S; and S, in parallel.  Suppose S,(S,) consists of n,(n,) positions
and there are n(=n;+n,) components anyone of which can be assigned to
any position. Assume that reliability of component j is p;; if it is assigned
to position I, that is, reliability of a component depends also on the pos:-
tion in which it is fixed. Now the problem is how to assign # components
to n positions of the system in order to maximise the system reliability.
Denotz the positions of Sy by 1,2,....ny and those of S; byn;--1,....n.
We represent an assignment by an 72X 1 vector x=(X1...., X1, Xa1, - sXampeses
N1, X)) T where xj;=1 if component j is assigned to position / and zero
otherwise. For an assignment x, the system reliability can be written as

n, n n n
Ryxy=1--[1— @ = p*][l— = x p¥il.
i=1j=1 ¥ fempy bl =1 0
In other words,
Ry(x) = | —[l—exp (—a,x)[[1—exp(—ayx)],
where
Oy = (0155 @pny CugyeeesBoms oGy 1yoees Gy s 0,...,0)
and a, = (0,...,0, @ -1yl %4 D yevesCuganeesun)
arc two 1 X n vectors

and a; =—log pij.

The problem (R,) of maximissing Rp(x) over the set of all assignments
can be posed as

Minimise g(c,X,02%),

subject to x€K and x being integral,
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gle,x,e,x)=[1—exp(—c;v)] [l—exp(—ca¥)]. ¢;=q;, cy=a,,

where
n n )
and K={x: ¥ x;=1 fori=lton, X x;= 1forj=1tonand
j=1 i=1
Ny > 0}

Since g(z;,z2) s quasi-concave on R* by Lemma 8 and the constraint

matrix 4 is totally unimodular in this case, Algorithm 3 yields an optimal
solution of the problem R,. Any assignment techniquz can be used to
solve the LP in Step 2 of the algorithm.

4. Discussion

Algorithm 1 of Section 2 yields an optimal solution of problem P,
This algorithm is based on quasi-concave property and monotonic
property (with respect to each argument) of g(zy,z.). Geoffrion [6] also
gave an algorithin to solve the problem P;,. Howecver, he exploited th:
two properties of g in a different manuer. He showed that as we move
from one end of efficient frontier F(the set of efficient points) of Z to the
other end, g(z;,2») is non-decreasing up to some point and non-increasing
from that point onwards. Geoffrion’s algorithm starts at one end of F
and moves along F by parametric programming technique until it reaches
an edge of Z that contains optimal z*, Our algorithm divides in each
iteration a part of F containing optimal z* (selected in previous iteration)
into two parts and select the one that contains -*. This is done by
solving an LP problem. If the algorithm ends in Step 4, it maximises
8(z1,2,) on the edge of Z that contains z*. If it ends in Step 3. it directly
gives z*,

If the simplex method is used to solve LP of each iteration, the
optimal basic feasible solution of LP in an iteration can be used as mitial
basic feasible solution of LP in the next iteration of the algorithm. We
can see that no basic feasible solution is visited more than once
throughout the algorithm. Since our algorithm is based on bisection
approach, we claim that our algorithm would perform better than that of
Geoffrion [6].

. Algorithm 3 obtains optimal solutions of problems P, and P,. It
implicitly enumc?rates g.ll cfficient extreme points of K and finds an optimal
one. The algorithm yields efficient frontier, if the following modifications
are done:

(1) Ignore the points 4G and A@oh of Step 2.
(2) In Step 3, update W also as W WOU{G,r), (r, j)}
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(3) Delete Steps 4,5, and 6.

(4) Store - of cach iteration including =® and z®. Eliminate
“M(=@) if there exists a =@ such that MO 2®). Arrange
all the remaining =®’s in the increasing order of z; coordinate
and take convex linear combinations of each pair of successive
points in that order.

To generate all efficient points of Z of Section 2, we can further

modify the Algorithm 3 by replacing minimisation by maximisation
and eliminating initial = and =@ when they are not efficient,

An important advantage of Algorithm 3 is that it gives an optimal

solution of problem P, even if x is restricted to be integral provided that
the matrix A is totally unimodular and & is integral. We have taken
this advantage to solve the problem of assigning components optimally to
a series-parallel reliability system so as to maximise the system reliability,

9]

{10}

[
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APPENDIX

Proof of Lemima 8
We prove the lemma by showing that for any two distinct arbitrary points (x1:¥p)

and (x5.7,) in RZ,

f(-\‘l—l"/\:‘?,)ﬁ ‘|L/\_T)> min { f(-\'l,J'l); f(x;zsyg)l}»
for 0 A < | where $=x,-—x; and 3=y, —y;. Suppose

min  f (x;+A%, y1HAP) = f (0% FA%9) < min {f (v S (v2)h O
0l

for some A% 0<A®<C1. Let (x%,3°)=(x1,3)+A(%,3) and
AN = [ (x+ X+ DF, 3 A0+,
for A € [—X°, 1—)°]. We can write

h(0) = min h(A) < min {#(—X°), B(1—2A°)}, a0
—A0 AL 1)
we have
i (©)=y(1—8)F +8t —7)7,
and
H'(0)=—yz*—89*-+y8(F-13)%
where y = exp (—x°) and 8 = exp (—»°).
We know that (x%,°) 2> (0,0). Assume (*%»°)>(0,0). Then 0<<y<l and 0§l
Since k() and 4'(}) are continuous, equation (10) implies A’'(0)==0 which in tum

implies one of ¥ and ¥ is positive and the other is negative. Now one can casily se
that

Y8(F+3)* < max (y#2, 8y%)
i.e., A"(0)<0. This contradicts the equality in (10). If onc of x2 and 1 is 0 W (0)5£0

which also contradicts the equality in (10). Therefore there cannot exist A%0 <0<
such that (9) holds and hence the lemma.
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