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A b s t r a c t

In this paper we provide algorithms for maximisation and minimisation of 
bicriterion quasi-concave function g c^x) subjcct to linear constraints.
The algorithm for maximisation is based on bisection approach. The 
algorithm for minimisation is an implicit enumeration method. W ith some 
minor modifications, this algorithm also enumerates all efficient solutions of 
bicriterion linear programs. Maximisation of system reliability o f series- 
parallel and parallel-series systems (with two subsystems) through optimal 
assignment of components is treated as a special case.

1. Introduction 
«

Suppose g (zu  z2) is a single valued function defined o n  R % which 
Satisfies the p ro p e r t ie s :  (/) g  (zu  z 2) is quasi-concave an d  (//) g  (~i, z.,) 
"'creases with each argument. The  problem s, we study in this paper, are 
Maximisation and minimisation o f  g  (cx x , c., x) subject to  A x  — b, x  > 0  
"here and c.2 are 1 x n  vectors, A  is an m x n  matrix an d  b  an m x \
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’r Canada, and is carried out during the  first author’s stay at U n iversity  o f  N ew
Brunswick, Canada.



vector. P rac tica l justification and  several examples of maximisation 
problem  can be found  in Gcofl'rion [6 ], Special cases of these two 
problems can  be found  in Anand [1], Aneja et al. [3], Bector and Dahl [5] 
and S war up [10 ,11] ,  In all these  special cases, g (c, x, c2 x) is of the 
form  (cl x  -|- «i) (c2 A'+flo).

In Section 2 , we consider th e  problem o f  maximising g (c, .v, c2x) 
subject to  .4.v =  b, x  > 0 .  It is assumed that g (z,, r 2) is continuously 
differentiable on R 2 and s tr ic tly  increases with each argument. Wefiht 
obtain some prelim inary  results' and  later develop an algorithm based o n  
these results. Geoffrion [6] considered a more general maximisation 
problem  in which c1 x  and c2 x  are replaced by two concave functions 
of  x  an d  gave algorithms separately  for the general problem and the 
problem under  consideration. These algorithms are based on para­
metric p rogram m ing technique. W e argue that our algorithm is m o re  
efficient th a n  a lgorithm  2 o f  Goeffrion [6], which was developed to so lve 
the problem o f  this section.

Finally  we apply  the a lgori thm  to  a  p roblem  o f  assigning components 
optimally to  a series-parallel re liab il i ty  system so as to maximise the 
system reliability.

In  Section 3, we consider the m inim isation problem . Here also, w 
derive some preliminary results and  develop an  a lgorithm  to solve 
the p roblem  on  the  basis o f  these results. If  the matrix  A  is totally 
un im odular  and  b an  integral vector, the a lgorithm  yields an optimal 
so lution even when .v is restricted to  be integral vector. Finally we apply 
the a lgorithm  to  maximise the re liability  o f  parallel-series reliability 
system by op tim ally  allocating th e  components.

2. Maximisation of Bicriterion Quasi-Concave Function

In th is  section, we consider the  p rob lem :

Maximise g  (c1 x , c2 x),

subject to  ,v € K  =  {a : A x  =  b, x  > 0}. (Pi)

This is equivalent to  the p rob lem :

Maximise . g (zu z 2),

subject to (zl5 z2) e Z  =  {(zu  z s) : (zlt z 3) =  (Cl x , e2 x )  fo r  sow*
a  €  K }.  (P;i

We assume tha t  g (zv  z ,,)  is continuously  differentiable on R \  and  strictly 

increases with z^ and z2. In our no ta tion , (zx, z2) ^  m eans zL ^



-2 >  ) t  and (z„ z.) ^  (.f„ r..,). A po in t  (?,, z.,) in Z  is said  to  be efficient 
if There doc.', not exist another po in t  ( i v  vL>) in Z  such th a t  (_yj, v ^ X z ^  r a).

The optimal solution ( ; f .  ~f) o f  p ro b lem  1% is necessarily an efficient

point due to  property (//) of cr ( ,] .  z.). So. there exists a positive number

A* such that (;* ,:?) maximises z, -• A* z, on Z. O u r  app roach  is to first

find A* and next ( rf ,  r?) and an v* € K  such that (rf, :* ) = {cl x*. c., .x*). 

.Note rliat this ,v* is an o p j n u l  so lu t io n  of  prob lem  Pj.

We shall tir^t present some pre l im inary  results a n d  using these results 

vie develop an algorithm th a t  gives A*, (:*, -?) and ,v*. The algontlnn  

starts with interval [0 , ^  ) -• nd p a r t i t ions ,  in each i tera tion , an  interval 
containing A* (selected in the p rev ious  iteration) into tw o subintcrvals. and 

selects the one containing A * .  It yields A*. ( r f ,  r?) and a* in the final 

iteration.

Preliminary Results

For the purpose of convenience, a point (z^ r^) in Z  is denoted by z 
and g (-i. -•) bv g (;). Let us deno te  by L  (A) the p rob lem  o f  maximising 
: r , A:, on Z. Throughout th is  sec t io n  wc consider the  p rob lem  L  (A) for 
X >  0 only. Let us denote  an  optim al so lu t io n  o f  L  (A) by 
:fA) =  (z, (A), z, (A)j.

L e m m a  1. a ,< A ,  and z ( \ )  ± :  (A,) - - r ,  (A,) > z ,  (A,) a n d z ,  (A ,)<za (A,).

Proof. Wc have r ,  (Al} ^  ^  (A.) and z, (X,) ^  z,. (A,) since z (A,) and 
- (Aa) are optimal solutions o f  L  (^j) and L  (Aj) a n d  z (Ai) 7^  - (Aa). 
Suppose n  (A,) <  z, (a ,) .  This implies za (A i)>  r ,  (A,). W e can write

z . U . H  A, <-M >  z, (A*)-!-*, zs (A^,

ic.. {r4 (A,) -z ,  <A1>r{za <A1) - z 2 <A,)]< K  <  As,

i.e.. z, (A2)-!-Ao z 2 (A,) <  z, (A,) l-Ao r ,  (A^,

which contradicts the o p t im a l i ty  o f  z (A2) for L  (A»). Therefoie 
rj (A1) > z 1 ( a 2) and consequently  z., (Ai) < z ? (A2).

Lf.MM.v 2. L e t  > .!< A ,.  z ( Aj )  and

A =, - Z i C ^ l / t z s C A s ) - ^ * ! ) ]  (1)

Then A, Further i f

z, (A) +  l  z2 (A) >  +  A (Al)’ (2



(/)  <C A <  Aa

(//)  g  (z ( A 0 ) >  £  (z  (A)) => «• ( r  (A)) >  £  (■-) i f  - € Z. z, <  z, (A ) ami
/\ _
- s >  z% (A)

— __ /A A ■* —
(f/i) g  (z (A,)) >  g  ( r  (A)) -> g (z (A)) >  <? ( r )  i f  z  € Z. r ,  >  ( A) <■»,/

A _
r 2 <  z2 (A).

Proof. We have A >  0 by  Lem m a 1. Suppose  A <  Aj. Then 
Ui (Ai)“~-i (Ag)]/  (A;>)—z2 (Ai)] <  Ai, i.e., - i  (A i)+A j z., (A/) <  z, (As)-f- 
Ax z2 (Aa), which con trad ic ts  the  op tim ali ty  o f  r  (A,) fo r  L  (At ). Thus 

A > A i and  similarly  A A2.

(i) Inequality  (2) m eans th a t  z (A) does  n o t  lie o n  the line passing 
th ro u g h  z  (Ai) a n d  z  (A2). Using (1) and  (2). one can easily "ee

that At <  A < A 2.

(n )  Assume that g  (z (A])) (z (A)) a n d  (2) ho lds . Consider a point
A A  __ A __

z  € Z  such th a t  z x <  z x (A) and  z2 >  z 2 (A).

A _
Since z t <  Zi (Aj) <  z 2 (Aj), we can find a, 0 < a < l ,  such tha t  zj (A) =

A <■"-» A

a z ! + ( l — a) Zi (Ai). N o w  consider the p o in t  z =  a z - j - ( l— a) z (A!). It is 

obvious th a t  z (  Z  a n d  zx =  zx (A). Also za <  z2 (A) for  otherwise opti-
_ rv _

m ality  o f  z (A) for  L  (X) w o u ld  be vio lated . Suppose z2 — r 2 (A). Then

-  -  _  A _  A _
zi (A)+ Az2 (A) =  a [ z j+  A Z2] + ( l —a) [z^Aj) -|- Az2 (Aj)]

< a [zi~l- A z2] - | - ( l •—a) [zi ( a ) +  A : 2 (Aj]

A __ A __ _  __
due to  (2), i.e., z x+  A z 2 >Z!(A)-f- X z2 (A) which contradicts  the  opti-

_  ___ r-J ___

mality  o f  z (A) for  L {A). T h e re fo re  z2< z 2 (a). N ow , by properties (/') and 
(/i) o f  g{z), we can w rite

g ( z ( \ ) ) > g  ( z )>  min {g ( z ( \ t)), g  (z)},

A __
which implies g(z(A))> g(z) since g(z(Ai))>g(z(A)). (ii)  also can be proved 
nn the same lines.



L e m m a  3 . L e t  ( A J ^ z  (Aa) ,  A =  [ ^ ( A , ) - ^  (A2) ] /  [ z a (X2) — ^ ( A ^ ]

h 'v X  l i > : i  ( A j ) - M  z 2 (A ,) f o r  cm optim al solution Z o f L ( \ ) .  Then

(') £ (-(ai)) > g (Z )  => £(2) > g ( z ( \ ) ) f o r  A >  \

(ii) g(r(A2)) >  g(?) ---> g (z)  >  g ( z ( \ ) ) fo r  A <  A

Proof follows from  Lemmas 1 a n d  2.

0J? / 3j6T ~
L e m m a  4 .  L et a  b e  the value o f —— I -------a t an optimal solution z  o f  Z(A)

O Z 2 I  0 Z t

Then

A A A A

(i) A <  a => g  (-) <  g  (?) i f  z  € Z ,  zx >  & and z2 < g 3.

A A A A

( / / )  A >  a  => g  ( : )  <  g  ( i )  i f  Z  €  Z ,  Z ! < i i  atul z 3 > Z 2 - 

Proof.

A A A

(/) Consider a i ( Z  such th a t  zj > Z i and z2< z %■ Since z  is optimal 
for L  (A), we have

[ i - 2 .]/[?a- l ]  <  A- <  a,
i.e.,

/I A

' i + a z 2 <  Z l ~ T < * Z i -  ( 3 )

Since #(r) is continuously  differentiable quasi-concave, z i + a z 2 =  ? i+a2a 
is a supporting hyperplane o f  the  c losed  convex set S  (Z) =  (z  :g(z)^g(Z )}

A A

at z ■= z  and S(Z) £ {z:z1+oLz2'^ Z 1-raZ i }. Suppose g  (z )> g (Z )■ Then z €
A /t

int S(z). This implies z1+ a zs > 2 1- f a ? a which contradicts  (3). Therefore
A

g(z)Kg(Z)- (ii) also can be p roved  o n  the  same lines.

Lemma 5. F o r  X and a o f  Lem m a  4 ,

(>) £ « a)) <  g(Z)for  0 <  A <  A j /  A < a ,

(ii) g(z(A)) < ,g< z)for  A >  A i f  A >  a ,

(iii) g  (z(A)) <  g (z) fo r  A >  0  i f  A == a.

Proof (/) and  (ii) fo llow  f rom  Lem m as 1 and 4. (iii) follows from  (i)

(ii) and Lemma 4  since any op t im a l  so lu t io n  z =?fc Z o f  L  (A) satisfy either
is/ rsj rmJ

?i>Zi and z  ̂ < Z t  o r  zx<  Zi a n d  za >  ?2.



Lemma 6 . L e t K  <  A" <  A. and z ( \ x) en d  z(A..) lie on the lute {r/r,+ 
~XZit== Zi(X) +  Az, (A)}. Then z (A,) is the unique optim al solution of L (X\ 
fo r  Ax <A <  A"and z (X.,) is the unique o p tim a l solution o f  L  (A) for

A <  A <  Aj.
P ro o f  N o te  that z (A,) and  z (A.) arc a lso  o p t im a l  fo r  L  (A). Consider a 

A such  th a t  Aj < X <  A. Suppose  z (A) 9 ^z (A,). T h en  we h a \c  zx (A)--,.j(A,) 
a n d  z2 ( a ) > z 2 (A^ by L em m a 1. We also have

- i  (A) +  X z ,{X )  >  --i OM +  A z 2 (A,).

i.e., [zj (A O -Zx (A)]'[z2(A)—z2 (A1) ] <  A <  I

i.e., Zj (A,) -f- X z2 (Aj) <̂ z1 (A) A ~2 (A),

which contradicts  the  op t im a l i ty  o f z ( A i ) f o r  L  (A). Therefore z (A) =  
z  (Aj) an d  z (Aj) is the  u n iq u e  optim al so lu t io n  ofZ-(X). Similarly, z(A2)

is the unique optim al so lu t io n  o f  L  (A) fo r  A <  A <  A2.

The following a lg o r i th m  developed on the  basis o f  above results 
yields optimal solu tions o f  problem s Pj and  P 2 s im ultaneously .

Algorithm  1

Step  0: F ind  a point zO) th a t  maximises z l c o o rd in a te  on  Z. This can be 
done by maxim ising c xx  on K. Let .v(l > be  th e  p o in t  tha t  maximises 
exx  on K. T hen  =  (cxx (1), c 2x(1)). Set x*  — x (‘>, x* ----- z(*> and 
Q* — g  (zC1)) . S im ilarly  ob ta in  x(2M h a t  maximises c.,x on K  and 
find the image z<2' o f  x^K  I f  q* < g ( : '2)), set x* =  x<s>, z* =  z,3> 
and  q* =  g(zW ).

S tep  1: F ind  A =  [ z ^  — z ^  ]/'[ z ^  — z ^ ]  a n d  set F0 — z\^  -f  A zi'- .

Maximise zx +  A za on  Z  by solving L P  : maximise (cj-|- A c2) ,v on 
K. Let x  be th e  op tim al so lution o f  th is  L P  and z  ----- (c{x, c.,x) and 
P  =  2 i+A 22. I f  F " =  F0, set X* =  A. and  go to  Step 4. I f  g  (l ) > q *, 
go to  Step 3. Otherwise go to  Step 2 .

S tep  2 : I f  x*  =  xW, set a'(2) =  * and z<2> — z ■ O therwise set a (1) =  x 
and  z(J) =  z  a n d  go to  Step 1.

S tep  3 : Set x* =  x, z* =  z  and q* =  g  (z ). Evaluate  a — ~
d z 3

r)iT
at

dzi
z= z-  I f  a <  A, set a:® =  % and  z&  =  z  an d  go to  Step 1. 
I f  a >  A, set .vW =  x , z*1) =  z  and  go to  Step 1. I f  a — A, 
stop, .x* and z*  are  optim al solutions o f  th e  problems Px and P2, 
respectively.



Step 4 : Define the func tion  0 (0) =  g  (z(U+fl (ZV ) - Z0))) and  maximise 
>'i (6) over O < 0 < 1 .  Let 0* m axim ise ^ (0) subject to  1.
Set :* r O ) H - 0 * a n d  x*  =  .*(*}+6* (XW - XW) and  stop. 
x* and z*  arc optim al so lu t io n s  o f  the  problems Pj and  P 2, 
respectively.

Validity o f Algorithm

T h e  optimal so lu tion  of  the p ro b le m  P a is an efficient p o in t  z* and 
therefore there exists a finite positive A* such that z* is an  optim al 
s o l u t i o n  of L(A*). The above a lgo ri thm  s ta r ts  with the  interval [0, °o) in 
search  o f  A* and in each itera tion  it d iv ides an  interval conta in ing  a  A* 
into  t w o  subintervals an d  selects the  subin terval tha t contains A*. The 
a l g o r i t h m  obtains \*  in Step 3 o r  Step 4 o f  th e  final iteration.

L em m a  7- Suppose and z (2> o f  S te p  1 o f  the algorithm are obtained 
as optimal solutions o f  L (A^ andL (\.z), respectively. Then Ai <  and the 
interval [Alt AJ contains at least one value o f  A*. Further,

O') g (-) < g  (-(Ai)) i f  z  € Z, r j  >  z 1 (Aj) and z 2< z ,  (Ax).

(H) g (-) < g  (= (A.)) i f  z  € Z. <  - i  (A2) and z2>  ~2 (A,).

Proof. The p ro o f  is based on in d u c t io n  on  the  num ber o f  iterations. 
In  the first iteration A, =  0 and Aa is tak en  to  be oo as a convention. 
S u p p o s e  the lemma h o ld s  for r lh  i te ra t ion  an d  let zO) and  z(2) o f  Step 1 
of /th iteration be so lu tions  o f  £(Ai) and  jL(A2) and z  an optimal solution 
ofi(A) where A is as described in Step 1. I f  F  ^  F0, we have, by Lem m a 

2’ K < A <A2. Suppose </*>£ (?) a n d  z*  =  rW. Then g(z(1))
A

and  d u e  to Lemmas 2 and  3, g  (r(A)) (z*) for A >  A and g  ( z ) <  g(z) 
■C A A  A  —  .

Z, Zj <  Zi and  z2> g 2. It means th a t  th e  interval [A1; A] contains  
a value of A* and the  lemma holds fo r  (/’+ ! )  th  i teration  when A2 and  z(2) 
are updated as A, =  A~and z<2) =  z • S im ilarly  the  cases (a) (2) and
:* =  z<*> (b) q* <  g  (i)  and  "A <  a, (c) q* <  g  iz )  and 7  >  a  where

« = ~ — at z — g can also be p ro v ed  using Lemmas 2, 3, 4 and  5.
0^21 0-1

Theorem 1. I f F =  F0 in Step  1, the o p tim a l solution o f  the problem  P 2 
lies on the line segment jo in ing  :W and  z (2) o f  S tep  1.

Pl'oof If F =  F 0, zW  and  z(2> are on  the line ^  +  A za =  z i  +  A 
Suppose z<4 and z<2) are obtained as op t im a l  so lu tions o f  i(Aj) a n d  Z(A,),



respectively. By Lem m as 6 and 7, it is enough  to  consider the optimal

so lu tions o f  L(Xi), L  (A) and  C o n s id e r  an optim al so lu t io n :  ef
L (AO which does n o t  maximise z t -\- Aj. on  Z. We have either (oj

z , <  z ?  and  --2> 4 °  o r  b) and  r .  <  4 “ since both r and .-"arc

fl) /1 A '1'
o p tim al for  L(Aj). S u p p o s e  (a) ho lds .  T h en  we have [-*, - -  r,] [ r , - : ; 1 

«  A» <  A, i.e., = ?  +  A r ‘°  <  r , +  A which contradicts that ri>no; 

optim al fo r  Z(A). T herefo re  (b) h o ld s  a n d  d u e  to  Lemma 7, .?(r)<s(r'i.
A _

Similarly, if  an  op t im a l  so lution j  o f  L (X .>) does not maximise rj -  .< .

on Z, then g  ( r ) < g  (2® ). N ow  it is enough  to  consider only the optima 
solutiens o f  L { \)  in o rd e r  to  find the o p t im a l  so lu t io n  o f  P..

Suppose z is a n  op tim al so lu t ion  ofZ-(A) b u t  is not on the line segmeu
A A A (-i

jo in ing zW  and  z&K T hen  either z \ >  z ,J a n d  r 2 <  or  <  r (‘ as:

A  A A

zz >  z f  and consequen tly  by Lemma 7, g{z) <  £(~(1>) or g(zj <

Hence the Lemma.

If  the a lgo r i thm  term inates  in Step 3, then  by Lemma 5, A of lins 
i teration is a va lue  o f  X* and  z* is the  op tim al so lution o f  P.,. If tbs 
algorithm  term inates  in Step 4, then by  T h e o re m  1 the best point :* ® 
the  line segment jo in in g  zW  and  z<2> is th e  op t im a l  so lu tion  o f  P, and; 
po in t  x* $ K  such th a t  z* =  (Ci**, c2x*) is an  optim al so lu tion  of  Pj.

Discrete Case

Consider the  p ro b le m  Pi with .v res tr ic ted  t o  be an integral vectw 
L e t / b e  the  set o f  a ll  integral poin ts  o f  K . A  po in t .v in r  is said to t  
efficient with respect to  I  if  there  does  no t  exist a y  in /  such th: 
(Ci-Y,^*) ^  (ci )a c-j}’)- N o te  tha t a  p o in t  which is efficient w.r.t. / nee 
n o t  be efficient in  K. To maximise g i c ^ ^ x )  on F, it is enough! 
consider po in ts  which a re  efficient w .r.t .  / .

I f  A  is to ta l ly  u n im o d u ia r  and b is a n  in tegral vector, a lgorithm 
be made use o f  to  solve the  above p ro b lem . In  th is  case, ap p ly  algorithm' 
1 ignoring the in tegrality  restriction. I f  it te rm ina tes  in Step 3, x* is tfc 
required optim al so lu tion . I f  it te rm ina tes  in Step 4, enumerate# 

points which are efficient w.r.t. /  an d  satisfy c1x > z [ l) and c .A ^r^and ta l



the point am ong them  which gives m a x im u m  value o f  g. I f  th is  point is 
better than x*, then  it is th e  re q u ire d  so lu tion . O therwise x* is the 
required so lu tion . Sometimes th e  s t ru c tu re  o f  the  m atrix  A  enables us to  
develop implicit enum eration  te c h n iq u e s  such as b ran ch  and  bound 
method to  carry ou t the above m e n t io n e d  enum eration, as illustrated in 
the following special case.

Special Case : M axim isation o f  R e lia b ility  o f  Series-Parallel System

Consider a series-parallel re l ia b i l i ty  system consis ting  o f  two parallel 
systems Cx and C2 in series. S u p p o se  Cx (C2) consists o f  nfji? )  positions 
and there are n (= n 1+ n 2) c o m p o n en ts  any  one o f  which can  be assigned 
to any position. Let pos i t ions  o f  C x be deno ted  by  1 ,2 , . . . ,n 1 and those 
of C., denoted by «A+ 1,.. ,n. A ssu m e  th a t  re liability  o f  com ponent j  is 
Pu when it is assigned to  p o s i t io n  i. W e represent an assignment by ir  x  1 
vector A-=(.vn , ..x ln,.Y21,... ,  x Vl, .. ,x„u . . . , x lJ,)T where x u =  1 if  component 
j  is assigned to  position  i and  zero  o therw ise. F o r  an  assignment x , the 
system reliability  can be w rit ten  as

n, n n n
R s{x) =  [1 — ir tt qx,J ] [1 — 7T 7t q x,J],

,'=1  / = 1  0 /=«! + 1  / =  1 ''

where qij= l —p i). This can be rew rit ten  as

^ (-Y) =  [1 - e x p  (-s'x-v)] [ 1— exp (—avy)],

where

5'i =  (.S'iI, 5ai , . . -,Sln, • • ->Snil , • • ■ 0,.. .,0)

and s . ,= (0 ,0 , ■ > - Au,

are two 1 X /;2 vectors 

and log qu .

Now consider the problem  (R.,) o f  assigning these n  com ponents to  
positions o f  the system so as t o  maximise the  system reliability. This 
problem is, in mathematical te rm s,

Maximise c2x ),

subject to  x ( K  and x  being integral,

where g i ^ x ^ x )  =  [1 - e x p ( - « i * ) ]  [ 1 —exp(- -c2x)], Cj= su  c2= s 2 and 

K = {x:  S  Xjj— 1 fo r  / =  1 to  it, S  */; =  1 fo r  j  =  1 to  n and x,v > 0}.

Consider a  fu n c t io n f ( x , y ) =  11—expC—-v")] [ 1 cxp( v)] f rom  ^  t0  
We now present a  result concern ing  f ( x , y )  which enables us to  use
algorithm 1 fo r  solving the  p ro b lem  R s.

n



Lemma 8 . f ( x , y )  is  quasi-concaw  on R\ — \(x .y )  | a > 0 .  i><>}.

See A p p e n d ix  fo r  p r o o f .

Since g (z ! ,z t) is q u a s i -c o n c a v e  on R 1 by L .m m a  S and strictly

increases w ith  Zl a n d  z 2, we can make use o f  A lgorithm  1 as suggested 
earlier f o r  th e  d isc re te  case. Tf Algorithm 1 terminates in Step 4, 
A l g o r i t h m  2 given b e lo w  can  be used to  enumerate all assignments that

satisfy and  c a.v >  4 " .  If an assignment ,v is represented by a

p e rm u ta t io n  ( V j . V o , o f  1, 2 , then \ jv  ̂ 1 l o r /  1 to  n and we can
n i n

write c ,x  =  S  siv a n d  <\>.v -  S  v „ F o r  a partial permutation
«=1 ' " X- 17,-f 1

(i{1,u 2,...,U k)o£  1,2,.. ,/7, le t  Cj(»j... ,«*•) represent the maximum value of Si,-,..
i- 1 '

on  the  set o f  all p e rm u ta t io n s  generated from  (m, , S imi larly let
n

c2(itx,...,ui<) represent th e  m a x im u m  value o f  S  .v,-,.. on the same set of
I =  1 ‘

perm uta tions .  d (u x..... Uk), i — 1,2, can be obtained using Hungarian method
for the  assignment p ro b le m .  Let N  denote the set {1.2, ...//}.

Algorithm  2

Step 0 : Set G={(1), ( 2 a nd a x= r p  an d  a., :'2"

Step 1: Select a  p a r t ia l  perm u ta t io n  from  G and set G = G \
I f k  =  n — 1, go to  Step 3. Otherwise evaluate 

£ , - ( « ! , f or  7 =  1,2. I f  Ci(uh .. ,itk) >  c/j for / =  1,2. then set 
G  =  U {(llL% ,.,Uk,y)}  u  G

y  € N - { u 1, . . . ,u k}

Step 2: I f  G=<f>, stop, x*  is op tim al.  Otherwise go to  Step 1.

Step 3: I f  (uL,....,u„) is th e  perm uta t ion  genera t ion  from  (»,, ,.,i 
>h n

evaluate  S  sit, —ax and  S  Sj a*. I f  one o f  these tw o values 
*=1 /= «!+  1 '

is non-positive, go to  Step 2. Otherwise evaluate  g( S  ,v(V, ,
/—I 'n

+ 1  V -  I f  il; is greater than  A*> c 2-v*), set X* =  1 if j = i ti 

a n d  0 otherwise fo r  7 =  1 to  n. G o  to  Step 2.



3. Minimisation of Bicriterion Quasi-Concave Function

In this section, we consider the  p ro b le m :

Minimise "( ĉ .v.CoA),

subject to a- $ K  =  {a :/1a-=Z>, . y > 0}.

This is equivalent to  the problem :

Minimise

subject to {zu z , ) ^ Z ,  (p4)

whcreZ is as described in Section 1 .

Note that Z  is a convex polyhedron . In  this section, a  po in t  (z1,z2) 
in Z is said to  be efficient if and o n ly  if there does no t exist another 
point (vi.j'j) in Z  such tha t <  (zx,z2). By properties (z) and

Jj» ||(
(") of g (r i ,r2), there exists an efficient extreme poin t ( z j , z2 ) th a t  minimises 

* *
£(“i»-2) on Z. Since ( zJf r2 ) is efficient, there  exists a positive number X* 

* *
such that (zl , r2 ) minimises z1Jr \ * z 2 on  Z. O ur  approach is to  search 

* * * * 
for >* and find , z% ) and x* $ K  such (z 1, z2) =  r zx*) during  the

search. In this section also, a  p o in t  (z^z ,)  in Z  is denoted by z and 
g(zlt by g(z). We denote by Jl/(A) the  problem  o f  minimising Zi+Az,. 
on Z  and denote by z ( \ )  an optimal so lu t io n  o f  M(A). T h roughou t this 
section we consider the problem M (A) fo r  A > 0  only.

Preliminary Results

Lemma 9. A1<A., and z(X1)^z(A .i )=>z1(A1) < z 1(A.:,) a n d z 2 (A1) > z 2(A2)-

Proof is similar to that o f  Lemma 1.

L emma 10. L et Ax<X2, z (A j) : j£ z (A 2)  and  A=[z1(A,)—z1(AJ)]j[z2(A1) —z2(A2)] 
Then A ^  A ^  A2, Further, i f  zJ(X)+Az2(A )<z1(A1)+Az2(A1), then A1<A<A2. 
Proof is similar to  th a t  o f  Lemma 2.

Suppose Aj<A2 and z(Aj) and z(A2) a re  optim al solutions o f  M(Ax) and 
^(A2) such tha t  z(Aj)96z(A2). Let A — [zxfAg)—z1(A1)]/[za(A1)—z2(A2)] and h 
be the point o f  intersection o f  the lines i 1 :z14-A1z2= z 1(A1)+ A 1z2(A1') and 
L.,:Zi-f-Atz ,= z1(A2‘)-f A2z2(A2j . Let c =  z ^A ^ -fA za^ ) .  N ote  th a t  th e  line 
Zi+Az2= c  intersectsL t a t z(Aj) and  L.-, a t z(Aa). I f  A1< a < A 2, th e  region 

A z2<  c, z1+A1z2> z x(A1) -j- A1z2(A1) and  zx -f- A2z2^Zx(A2)+ (A 2za(A»)}



v. x m a t o M  m m j x  ■s'v’*- A'VJ> KJ,-K- SA!#

i% a w s g f c  fo r iW  %  f?< ^ '  4V X  -i'V>vmi ft. Let mdc»oteite 
triangfc b y d (* xJ» ). T h is  tr>»x& t.\ssW *m  \«  l-<£. 1 a> M'adcd tegsoa. 
T he pK row w tf  )m e:ir c u n v )m r iw &  t^V yw vi ;(.'*) >0 tfic ** ParS 
th e  b o u n d a ry  o f  Z -

V"m_ \.  ' ^ n ^ e  VV >>-> 

i*EMMA I / .  g t . ^ »  >  g { h # f vr

. . S  % J J ^ c o n c ^ e  o j  ^  it k  chough t(7 S)>ow tha
*U> W ^ ^ t Q T A ^ x - c K . .  f t  «wvt

zJM + A tSziA }  >  Z j t e t f t A j Z j f r j ,
aitd

•->^>H >  2A W > V K , z ^  fov « { 0 ,w j.

v , ^ o s e ^  r. I 2^ > ,  f 0j. Soj3j fc ^  X}<I{ ^  a iuid some o p th m i  aoiuti

t  a  ) 4 . j -  / n <* ? - if  > I > A V i.e., z t$ )4 -X zJX
* i(  i ) + ^ * ( h )  w h ich  ca a (m < iic tt  o \ c  ^ c i m a l k y  o f  p ( f y t a r  M( X)  V  

Therefore z(A){M *i,>s)  & r \  <<>c<\. ' ^



L e m m a  12 .  L e t  A i < , \ < A 2. Then

O' "(-) £(-(A»)), g{h)} fo r  any optimal solution z o f M (AJ

sa tisfying  r ,  >  r,(A,) and

(//) .?(-) i?(r(A2)), g(A)} fo r  any optimal solution 7 ofM(*«)

satisfying  - jCm O V ) am/ ~2>r.,(A 2).

P roof,

(/) We have a ,)]  •[r2(A1i~^ .,]  =  A1 <  X,

i.e., r,4-Ar, <  c, which implies ; ( i  (A^A,). Now, statement (/) follows 
from quasi-concave property  o f  g,

(ii) also can be proved on the same lines.

L e m m a  13. Suppose r(Aj) and z(\.,) lie on the line r^ -A v -r , (A )+ A ~ r 2(A). 
Then r(Aj) is the unique optim al solution o f  M(X)  fo r  Ax <  A <  a~ and z(A,)

is the unique optim al solid ion o f  M(A)  fo r  A <  A <  A2.

This lemma can be proved on the  same lines as Lemma 6 no ting  that 
-(Ai), r(Aj and r(A2) of  this lem m a minimise +  A! z2, zx+  Ar, and 
ri';-A2r 2 on Z. respectively.

The following algorithm  developed on the basis o f  above results 
yields optimal solutions o f  p roblem s P 3 and P 4 simultaneously. The 
algorithm initially obtains r (l) and  z^2> which minimise Zj and z2 on Z,

respectively. If  z(,0 4'-’ o r  r!.1' =  z 9 \  then  the a lgorithm  stops giving

one of z(‘> and r |2> as an optim al so lu t io n  o f  problem P4. Otherwise the 
algorithm performs several ite ra tions giving an efficient po in t z<r+2> in / th  
( r ^  1) iteration.

I n r t h ( r ^ l )  iteration, the  a lg o r th m  starts with a collection  IF of 
pairs of indices. An element ( i , j )  in  W  represents the  pa ir  o f  efficient 
points z(o and zV). The a lg o r i th m  selects a  pa ir  (/,_/') in W  and  obtains, 
using z<» and  zM, a new efficient p o in t  z(r+-'> which results in the inclusion 
of pairs ( / , r+ 2 )  and  ( r + 2 , j )  in W  a n d  e lim ination o f  (i , j)  from  W. A 
point x(r r2> in K  th a t  corresponds  to  z(r+2) is simultaneously obtained 
along with ~(r+2>. Po in t  z*  given in  th is  i teration  is a p o in t  in { z V \ . . .z ^ V )



such th a t  g(z*) =  m in  g(z{0)- Some o f  the clcmcnt!> >s are
l < / < r + 2

elim inated  by a c r i te r ion  involving the value o f  a- a t this z*. The algorithm 
stops when W=<t>. z*  o f  final iteration  is an  o p t im a l  solution of problem 
P 4 and  the  co rrespond ing  p o in t  v* in K  is o p t im a l  (o r  problem P3.

Algorithm  3

S tep  0: Obtain .vO (a-^) th a t  minimises ^ .v^vy)  on K  and set 
c2.v(D) a n d  Z'.a> =  (c1A-'2', c., a '2’)- Take A, 0 and A,= z 

and, as a co n v en t io n ,  take O.zx-'r-* as the  objective function of 
M (c c ). Then zW a n d  z|2> are op tim al so lu tions of  -U(AJ and iW(A.j,

respectively. I f  =  z'i'K then z '2; an d  .v,2> are optimal solutions

o f  the p rob lem s P 4 and  P 3. If ziIJ --  - 1/ ' ,  then r " 1 and .v'1̂ me 

optimal so lu t io n s  o f  P 4 and  P3. I f  z^1) and  z ,2) do not coincide 

in any coo rd ina te ,  set W-— {(1,2)}. /■ =  2. </1= rJ i1) and </2=Zo2\

Step  1: If  ^ g ( z ( 2->), set z * = z U), q* =  g ( z lU) and a * = a i". Otherwise 
set z * = z ^ ,  q * = g (z (2)) and  .v*=a',:!|.

S tep  2■ Choose any  ( i , j )  f ro m  W. Set W  =  ^ \ { ( / . 7 j} and r = r -f 1.

Evaluate A, =  — z ^ J / l z ^  — zf^J and  set d = z[°  A, z ^  and 

find ,\'(r> th a t  m inim ises (^-fArCo)^ o n  A'. Set z1' >— (c1.v1'’', r 2.v(,J). 

T h e n z ^ i s  an  optim al solution o f  M (Ar). Set dr =  z\r> Ar ■

If  dr~ d ,  go to  Step 7. Otherwise find the so lu tion  h{-i'r>) of 

^i+A/z2=(// a n d  r 1+A,z2=  </,■ and  the  so lu tion  (h{l ' j>, h(r Ji) of 

z i Jr \ z 2-=dr a n d  z 1-\-\jZ2= d J. Set q ( i ,r )= g  (li\nr\  h\!'r)) and 

q{r, j ) = g  (h([ ’J), / $ ’» ). I f  £ (z ( ') )> 9* go to  Step 4.

S tep  3: Set z* —z (-r\  x * = x ( r\  q*= g(z(r'>).

S tep  4: I f  q (i,r)< q * , set W = W  \ j  {/,/•)}.

S tep  5: I f  q(r, j )< q * ,  set W = W \j{ ( r ,  j) } .

S tep  6: Delete from  W  each (u,v) if  q(u, v) >  q*.

Step  7: I f  W^<j>, go to  Step 1. Otherwise s top , z* and  .v* are optimal 
solutions o f  the  problem s P 4 and  P 3.



I 'alidily o f  A lgorithm

Consider an element ( i , j )  o f  W.  Let

E i} -= { z:z is optimal for M(X)  fo r  some A, Aj<A< A;}

U { - i s  optimal for  M(Xf)  and 21> z (p, z2<  z (<p}

L ' { - i s  optimal fo r  M(Xj)  and r 1< r (1J), z2> - 2)}-

Let L ;j be the line segment jo in ing  zW and : 0 \  Defining Eu as La  
without end points  z<n and z (i> when A, =  Ay-, we can write

E r, =  E ir u  E rJ U {-(r)) (4)

for an optim al so lution z (r) o f  M ( Ar) when Xj ^Xr^Xj .

L e m m a  1 4 .  c  J.0 i f  =1 (A)+A (A) =  : (/ '  +  I z f  where A =  [z{p ~

4 '  ] / [4°  ~  - 2}J-

P roof Ciise ( i ) : A, — A <  \ j

The equality -i(A)+ Az2 (A) =  r (1')+  A z ^  implies tha t z(A)andz®

optimal fo r  M(X)  and lie on the  line z! +  Aza= z 1(A) +Az2 (A). In this case, 
we have {z:z is optimal for M(A) fo r  some A, A,< A <Ay}=zW by Lemma 12.

We also have {z : z is optim al fo r  M(Xj) and 21< - \J\  za>  z^}  =  <j>.

Otherwise, we arrive at a contradiction  that zf/> is not optim al for M(X).

The set {z:z is optimal for  M ( A,) and z1> z i ,'), 2. ,< z ^ }  contains z('> due to

Lemma 9 and since A/ =  A and is optimal for M(X).  W e claim that
/i /i 

there does not exist an optimal so lu tion  z of  M(A,) such th a t  Z j>  z /  and

/i
z2 <Zg^ . Otherwise we arrive at a  contrad ic tion  tha t z<J> is n o t  optimal

for M(Xj).  Therefore, the set {z:z is optimal for M(Xf)  and  r L>  -V  

is contained in L u and consequently  E i} C  La-

Case (ii): A,- <  a =  Aj.

This case can be verified on the  same lines as case (/).

Case (iii): A,•< \  <  Xj.



We can  easily see, fo l lo w in g  L em m a 13 and th e  argum ents  o f  case (/), 

th a t
{z:z  is optim al for  M(A)  fo r  some A, A,<>.< A«} { - ' " . - ' ‘‘JL *- - is 

op tim al for  M(X)},  ^

{z:z is optim al for  A/(A,) and  r : <  4''} <!>, (6)

and  {z . z  is optimal for  M(Xj )  an d  < z \J). r 2> 4 ”} —</.. (?)

We also have

{z:z  is optimal for  M ( A)} =  i-,/.

Otherwise, we arrive a t  a c o n trad ica t io n  tha t  e ither r 1' 1 is not optimal 
for  M { A,) o r  z(j) is not op tim al fo r  M(Xj).  F r o m  E q u a t io n s ^ ) - ^ )  we can 
now conclude  E u —Lij.

T h e o r e m  2 .  A t the en d  o f  each iteration o f  the algorithm , the optimal
Solution o f  the problem  P t belongs to l / I 'a  U{-*}

0 ,/y lV

P ro o f W'e prove the th e o re m  by induction on  the num ber of  iterations
Suppose the theorem is t ru e  fo r  / th iteration. Let H *'1 and H'1' " represent
W  in Step 7 of  I th  a n d  (/-}-1) th  iterations. Assum e that (/,y)€ is
chosen in Step 2 o f  (/-[-I) th  iteration an d  suppose  d , ~ d  in that step. We
have Eij £  L tj by Lemma 14 and  g (z )> g(z* )  fo r  r b y  quasi concave
o f  g. T hus g (z )^ g ( z * )  f o r  z$.Esl and the optim al so lu tion  o f  Px belongs to

U  Eu U [z*} since W (/ " =  ^/(/)\ { ( ' ./)} when  d, — d. 
i j y w m  ^

Suppose dr<d. C o ns ide r  the case q(i , r)  ~^q* and  q { r , j ) ^ q * .  W'e have
g ( - (r))>&(z*) for  the revised z*  a n d  due to L em m as 11 and  12, # ( - ) >  g(=*)
fo r  z$E ir U  ErJ, that is, g ( z ) ^ g ( z * )  for z ^ E ^  by E q u a tion  (4). We also have
g(z)> g(.z*) fo r  z$E m if  (u ,v)sW «> \{(i, j))  and  q ( i i ,r )^ q * .  Now, an optimal
solution o f  Pi  belongs to  U  E Uv by  induction  hypothesis

M c o ' d  + o
since {( m,v)}. S im ila r ly  other three cases can

(u,v)e WO)

also be verified.

Follow ing  the above argum ents , one can easily  see that the theorem 
holds  for the first i te ra tion  also .

Theorem  2 implies th a t  final z*  o f  the A lg o r i th m  3 is o p t ;mal for  the 
prob lem  P 4 since final IV  is empty. T h u s  final x*  that satisfies 
(ci* ,c2x * ) ^ z *  (final) is a n  op tim al so lu tion  o f  th e  p ro b lem  P 3. In Step 2, 
any LP technique can be u sed  to  find tha t  m inim ises (Ci +  A,C2).v on K.



Discrete Case

Consider the p roblem  P 3 with .v restricted to be an integral vector. 
Algorithm 3 yields an optimal so lu t ion  fo r  this discrete case also i f  A  is 
totally un im odular  and  b is an integral vector provided tha t  we use in 
Step 2 simplex m ethod  or any LP techn ique  that yields an  extreme point 
o f  K  as an optim al solution. This is because all extreme po in ts  o f  K  are 
integral when ,4 is totally  un im odu la r  and  b is an integral vector and x*  
o f  Algorithm 3 is always an integral vector if we use in Step 2 any LP 
technique as m entioned above.

Special Case: M axim isa tion  o f  R e lia b ility  o f  Parallel-Series System .

Consider a parallel-series re liab ili ty  system consisting o f  two series 
systems S y and S 2 in paralle l.  Suppose S ^ S z )  consists o f  «i(«2) positions 
and there are n{ =  n1+ it2) com ponents  anyone  o f  which can be assigned to 
any position. Assume that re liability  o f  com ponent j  is p a  i f  it is assigned 
to  position th a t  is, reliability o f  a com ponen t depends also on  the posi­
tion in which it is fixed. Now the p ro b lem  is how to assign n components 
to  n positions o f  the system in o rder  to  maximise the system reliability. 
Denote the positions o f  S i by l,2 ,... ,/?i and  those o f  S 2 by ^  +  1,
We represent an assignment by an n2 x  1 vector . v = ( a " u . . . . , . v 1„ , x 21, . . . , x 2 „ , . . . ,  

where .v ,;= l  if com ponent j  is assigned to pos ition  / and  zero 
otherwise. F o r  an assignment x , the  system reliability can be written as

n x n n n
y?p(.Y) =  l — [ 1 —  i t  i r  p x ‘J ]  [ l -  n  7T p Xi i  ] .

, =  1 j=  1 u i^ n , + l 7 = 1  ,]

In other words,

RP{x) =  1—[1 —exp ( — — exp(—a,.*)], 

where

a l ~  (a l l )  • ' ■ >a i«> °U1 > • • • >a 2 " > -■ •a / ; 1 1> ■ ■ • 5 a /(1 0 , . . . , 0 )

and a., =  (0 , . . . ,0 , +

are two 1 x n  vectors

and <ijj =  — log p i}.

The problem (Rp) o f  maximissing R P(x)  over the set o f  all assignments 
can be posed as

Minimise g(crv,c2x),

subject to xgAT and x  being integral,



where g(CiX,czx ) = [ \  — exp(—Cj.y)] [ I — exp(—c2.v)], c L= ai, c2=a,, 

n n
and  K —i x :  S  *,; =  1 f o r / = l t o / ; ,  i i  *,/ =  1 for /' =  1 to n and 

/ =  l / = i
xa  >  0).

Since g (zu z $  ' s quasi-concave on R~ by Lem m a 8 and the constraint

m atrix  A  is to ta l ly  u n im o d u la r  in this case, A lgo ri thm  3 yields an optimal 
so lu t ion  o f  the p ro b le m  R p. Any assignm ent technique can be used to 
solve the LP in Step 2 o f  the algorithm.

4. Discussion

Algorithm  1 o f  Section 2 yields an op t im a l  solution of  problem Pj. 
This a lgorithm  is based  on quasi-concave p roperty  and monotonic 
p roperty  (with respect to  each argum ent) o f  g (z1,~2). Geoffrion [6] also 
gave an  algorithm  to  solve the p roblem  Pj. However, he exploited the 
two properties o f  g  in  a  diiferent manner. H e  showed that as we move 
from  one end o f  efficient f ron tie r  / '( th e  set o f  efficient points) o f  Z  to the 
o ther end, g(zu zz) is non-decreasing up  to  som e p o in t  and  non-increasing 
from  that po in t  onw ards. G eoffr ion’s a lg o r i th m  starts a t one end of F 
an d  moves along  F  by  param etr ic  p ro g ram m in g  techn ique until it reaches 
an  edge o f  Z  that co n ta in s  op tim al z*. O u r  a lg o r i th m  divides in each 
ite ra tion  a par t  ox F  con ta in ing  optim al z*  (selected in previous iteration) 
in to  two parts a n d  select the one th a t  co n ta in s  =*. This is done by 
solving an  LP p rob lem . I f  the a lgori thm  ends in Step 4 , it maximises 
g (zl t z 2) on the edge o f  Z  tha t  contains ■ *. I f  it ends in Step 3. it directly 
gives z*.

I f  the simplex m e th o d  is used to solve L P  o f  each iteration, the 
optim al basic feasible so lu t io n  o f  L P  in an  i te ra t io n  can be used as initial
basic feasible so lu t io n  o f  LP in the  next i te ra t io n  o f  the a lgorithm. We
can  see that no basic  feasible so lu t ion  is visited m ore  than  once 
th roughou t the a lgori thm . Since ou r  a lg o r i th m  is based on bisection 
approach, we claim th a t  o u r  a lgorithm  w o u ld  pe rfo rm  better  than  that of 
Geoffrion [6].

Algorithm 3 o b ta in s  op tim al so lu tions o f  p rob lem s P, and  P4. It
implicitly enumerates a l l  efficient extreme p o in ts  o f  K  and  finds an  optimal
one. The a lgorithm  yields efficient f ron tier ,  i f  the  fo llow ing  modifications 
are d o n e :

(1) Ignore the po in ts  W *)  and  h0 '’) o f  Step 2.

(2) In S te p  3, upda te  W also as W = W \ j { ( i yr),  (r , j )}



(3) Delete Steps 4,5, and 6 .

(4) Store :<~r> o f  each itera tion  including : « and z(2>. Eliminate 
-0)(r (2)) if there exists a such tha t  r(r,< r ( 1>(z<>><z<2>). Arrange 
all the remaining r ^ ’s in the increasing order o f  z x coordinate 
and take convex linear com bina tions  of  each p a ir  o f  successive 
points in tha t  order.

To generate all efficient po in ts  o f  Z  o f  Section 2, we can further 
modify the Algorithm 3 by rep lac ing  minimisation by maximisation 
and eliminating initial and z(2) w hen they are not efficient.

An important advantage o f  A lgo ri thm  3 is that it gives an  optimal 
solution of problem P 3 even if  .v is restric ted  to be integral p rovided that 
the matrix A  is to ta l ly  un im odular  a n d  b is integral. W e have taken 
this advantage to  solve the prob lem  o f  assigning components optim ally to 
a series-parallel reliability  system so as t o  maximise the system reliability.
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APPENDIX

P ro o f o f  Lem m a  8

W e prove the lem m a by showing that for any two d istin ct arb itrary p o in ts  C'j.v'i) 

and ( x 2,y t )  in

/ ( . V i + A ^ - f  A y )>  min { /( .V ij 'j ) , /(.*■>,>',)}, 

for 0  ^  A ^  1 where x = x 2— x t  and j =  y 3 —  y v  S u p pose

m in  /(^C j +  Ax, J 'x + A j))  =  / ( a - j + A ^ . J i  +  A0))) <  m in  { /  (aY -’V)’ J (■''2-.vi )} , (9)

for som e A", 0 < A ° < 1. Let (A'0,v0) =  (x 1,7 l )-f-A0(^,_j>) and

K A) =  / ( . v 1+ ( A ° - l - A ) i ,  }’1+ (A 0+A)jp),

for A €  [ — A0, 1 — A0]. W e can write

/f(0 ) =  m in  h(X) <  m in { /7 (— A0) ,  h(l—  A0)} , (10)
—A °< A < 1—A0

w e have

/;' ( 0) = y ( l - S ) *  + $ ( 1  — y ) j ,

and

h \0 ) =  —yx 2—Sj>2+ y 8(* -|-J>)2, 

where y  =  exp ( — x 0) and S =  exp ( — y n).

W e know  that (x ° ,y ° )  ( 0 ,0 ) . Assum e ( / , / ) >  ( 0 ,0 ) . T h en  0 < y < l  and 0 < g < l .  
Since h(A) and h \ A) are continuous, equation ( 10) im p lie s  >i'(0 )= = 0  w h ich  in turn 
im plies one o f  x  and y  is positive and the other is n eg a tiv e . N o w  o n e  can  easily  see 
that

yS(x+J*)2 <  max (yx2, Sjj>2)

i.e ., A"’(0 ) < 0 . This contrad icts the equality in ( 10) .  I f  o n e  o f  x °  and i" is 0  h \ Oj^iO 
which also contradicts the equality in ( 10). T herefore there  ca n n o t exist A°,0 < A “ <1 
such that (9)  holds and hence the lemma.
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