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Mapping a locus controlling a quantitative genetic trait (c.g.. blood pressure) to
a specific genomic region is of considerable interest. Data on the quantitative
trait under consideration and several codominant genetic markers with known
genomic locations are collected from members of families and statistically ana-
lyzed to draw inferences on the genomic position of the trait locus. The vector of
parameters of interest comprises the pairwise recombination fractions, 0. between
the putative quantitative trait locus and the marker loci. One of the major com-
plications in estimating 6 for a quantitative trait in humans is the lack of haplo-
type information on members of families. The purpose of this study was to devise
a computationally simple and efficient method of estimation of § in the absence
of haplotype information. We have proposed a two-stage estimation procedure
using the expectation-maximization (EM) algorithm. In the first stage. param-
eters of the QTL are estimated based on data of a sample of unrelated individu-
als. From estimates thus obtained, we have used a Bayes' rule to infer QTL
genotypes of parents in families. Finally, in the second stage of the procedure.
we have proposed an EM algorithm for obtaining the maximum likelihood esti-
mate of 8 based on data of informative families (which are identified upon infer-
ring parental QTL genotypes performed in the first stage). We have shown. using
simulated data, that the proposed procedure is cost-effective. computationally
simple, and statistically efficient. As expected, analysis of data on multiple markers
jointly is more efficient than the analysis based on single markers.  Genet.
Epidemiol. 19:97-126, 2000.  © 2000 Wiley-Liss. Inc.
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INTRODUCTION

Developing statistical techniques for the detection and estimation of linkage
among marker loci and loci determining a quantitative trait is an active area of re-
search [Jayakar, 1970; Haseman and Elston, 1972; Hill, 1975; Weller. 1986; Amos
and Elston, 1989; Lander and Botstein, 1989; Goldgar, 1990; Haley and Knott, 1992;
Zeng, 1994; Whittaker et al., 1995; Kruglyak and Lander, 1995; Schork et al., 1996},
Although the idea of mapping quantitative traits (QTL mapping) can be traced back
1o Sax [1923], the recent identification of highly polymorphic DNA markers in plants
and animals and the development of dense maps of such markers have resulted ina
resurgence of interest in developing simple and efficient statistical methods for QTL
mapping. Many common human disorders (e.g., hypertension, diabetes) arc inher-
ently quantitative in nature. Therefore, QTL mapping is of considerable interest in
human genetics. Many currently used QTL mapping methods, especially those that
have been developed in the context of plant genetics or genetics of inbred animals,
assume knowledge of linkage phase in individuals that imposes a scvere restriction
on the applicability of these methods in human genetics. One of the major problems
in QTL. mapping is to accurately infer the genotype of an individual at the major
locus controlling variation of the guantitative trait. The purpose of this paper is to
propose a method to estimate, via the expectation maximization (EM) algorithm. the
recombination fractions between marker loci and an autosomal major locus control-
ling a guantitative trait from data on nuclear families without any assumptions on
linkage phase and haplotypes. The proposed method is a two-stage stratcgy. In the
first stage. individuals are probabilistically classified into the major locus genotypes.
In the second stage. the recombination fractions are estimated using the inferences
made in the first stage. The proposed procedure also provides estimates of param-
eters of the QTL. We have examined the efficiency of the estimation procedure us-
ing Monte-Carlo simulations and have shown that the proposed procedure works
very well.

MODEL

Consider an autosomal biallelic locus, with alleles (A, A,), determining a guan-
titative trait X, Suppose the distribution of X conditioned on the genotype is:

X]A;A| “'N((Z.OJ)
X1A|A:"’N(ﬁ,0'l)
XA, ~ Ni~a.0) (n

where < aand o includes the environmental variance.
Suppose the allele frequency of A, is p. Then, assuming Hardy-Weinberg ey
Iibrium proportions at the QTLL, X has a mixture distribution given by:

P NGy« 2p00 - pINBE) + (1= pY N-a.a). (2

Consider an autosomal biallelic codominant marker locus with alleles (MM
possaibly hnked 1o the quantitative trait locus (QTL). [Extensions of the proposed
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method to multiple and multiallelic markers are discussed in later sections.] Our aim
is to estimate the recombination fraction, 6, between the two loci, which are as-
sumed to be in linkage equilibrium.

DATA DESCRIPTION

We consider data on nuclear families. Suppose {(v;;, vp): i = 1,2,....,K} are
the observed values of the quantitative trait of K pairs of parents such that in each
pair. cither one parent is MM, and the other M\M, or both parents are M M. (Obvi-
ously, if neither parent is heterozygous at the marker locus, the family is not infor-
mative for linkage.) For the /" pair of parents with n; offspring, the known trait
values will be denoted as (v, Vi, « - - Yige2); = 1,2, ... K. We further assume that
the marker genotype (MM, M\M, or M-M-) of each offspring is known. Thus, the
data comprise trait values and marker genotypes of parents and offspring in nuclear
[amilies.

ESTIMATION PROCEDURE

Although our primary aim is to estimate ), since the trait parameters «, f3. o
and 1 are unknown, we shall estimate these also to facilitate estimation of (. Knowl-
cdoe of a. . o and p facilitates estimation of 0 because using the estimated values
ol «. 3. o, and p. and the observed values of the quantitative trait, we can classify
cach parent, albeit probabilistically, to a specific trait locus genotype. When trait
locus genotypes are known for the parents in a nuclear family, then obtaining an
estimate of 0 from the remaining data (marker genotypes of parents and offspring.
and values of the quantitative trait of the offspring) becomes much simpler. Our
estiimation procedure is based on this two-stage strategy.

Let, f,(x), probability density function (p.d.f.) of Na.o’) =
7,. prior probability of f, = I
S, p.df. of N(B.o7) =

NI

207

e
2o
1. prior probability of fy = 2p(1 - p).

¢ 7 and m.. prior probability of £ = (| —py

: 1
(), pdf of N-a.07) =
Jx) p.dotl of M )
Thus the p.d.f. of v, (i =1.2.....K:j= 1.2} is given by:

fiv,)= 2””./}‘.“,, ) (3

n ot

The parameters to be estimated in this mixture model are w. o and T We
estimate these parameters by the maximum likelthood method.
The likelihood of the parental data is:

L. o . phyv )= h n Z/r, fv ) )
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However, a direct analytical maximization of the above function will not yield
closed form estimators and iterative numerical maximization procedures, €.g., scor-
ing method [Rao, 1973], will involve complicated expressions.

A computationally simpler and more elegant procedure is based on the EM al-
gorithm corresponding to a mixture of normal populations [Dempster et al., 1977,
McLachian and Krishnan, 1997]. A sketch of the algorithm is presented below.

The mixture distribution can be viewed as an “incomplete” setup in the sense
that we have no a priori knowledge as to which of the three component distributions
any particular observation belongs. The first step (E-step) in this algorithm is, there-
fore to estimate the probabilities with which an observation may belong to any of the
three component distributions. The second step (M-step) uses these estimates to build
up the “complete” likelihood function, which is easily maximized to yield relevant
parameter estimates.

Define:

Zijn 1, if y; is an observation from p.d.f. f,,

0, otherwise;

i=12,... ,K;j=12n=123.

The introduction of z;,s thus constitutes the “complete” setup. However, as z;,5
are unknown, we have to estimate them conditioned on the observations y;. This is
the E-step of the EM algorithm.

Zgo = Elzylyy)
__ ROy
27 Sy
i=1,2,...,Kj=1.2;n=172,3. We note that these estimators are Bayes’.

Having obtained the Z s, we can easily obtain the closed form expressions for
the m.Le. of p, @, and &” in the M-step of the algorithm.

©)

K 2 3 N
Lpr 0= LTI T )1 ©

i=1 j=1 n=1

The m.].e.s of the parameters are given by:

K 2 2 A
- Zi=12j=\(zij1 +%Zij2)

p 3K , (N
&= ZEK=IZ§=I(2ijl - 21',‘3)}',7 8)
RN ‘

K2
2 j=1%52Y5

3: SN > 9
Zi’ilz;ﬂzijz ©
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1 K 2
5" = 2 X 0y~ 8 404 = B 42,0, + @), (10)
i=] j=1
Thus, the [* step of the EM algorithm is:
E-step:
(I e (1)
~0__ T, ()
Zijn PR —TA 11
2T ;) tb
i=12,...,K;j=1,2;n=1,23.
M-step:
~D o~
ﬁ(l)=2£12§:l(zijl +%Z.‘jz ) 12)
2K ’
—~(D (D
&(1) ZK 23=l(zu1 % )yij (13)
~0 _ —~0_
Eilil j=l(zijl +25 )
D
A”_Ef‘lzz 1Zj Yy 0
= =0
Zﬁlz?ﬂzz‘jz
LSS O, a0 2y = B sy + ),
2K 1 n Zl]l yz] zz]2 yt] if3 ylj (15)
i=l j=

We require initial estimates of p, o, B, and & (3, &, B, 6> ) to imple-
ment this iterative algorithm. The method of moments estimators serves as a simple
initial choice [see Everitt and Hand, 1981].

As an initial approximation of f, we assume that there is no dominance effect,
l e. ﬂ(O) =0.

Assuming B = 0, the method of moments yields the following equations:

_ 1 K 2
Y= a?;;y,j—a(zp (16)
ZZ(y,, Y)' =0’ +2p(-p)a’. (17)

2K1]]l

As 0 < p< 1, we can fix p'©, = po within this interval. Thus.

a®=Y12p,-1); (18)
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S0 _ 2p,(1-p)V”

g1y (19)

Clearly p, cannot be chosen to be 0.5.

Our next stage is to classify the parents (i.e. {(yi,y2): i = 1,2, ..., K}) into
one of the three component distributions. We shall use the usual classification
rule given by:

Classify y; into f, if and only if

n N
Ly, =MAX 15425 5

i=12,...,Kj=12;n=1273,; the 2,-1-,,8 being the final (converged) values in the
above EM algorithm. This is, in fact, the Bayes’ classification rule corresponding to
the 0 - 1 loss function and thus minimises the error in classification under such loss
functions [Fergusson, 1967].

Having estimated a, B, o?, p and having classified the parents into the trait
genotypes, we are now in a position to implement another maximum likelihood pro-
cedure to estimate 0. Before describing the actual procedure, let us note a few salient
points. Information on 6 can be obtained from only those offspring who have at least
one of doubly heterozygous (i.e., A,A,M,M,) parent. We shall use the conditional
trait distribution of the offspring given the trait genotypes of the parents and the
marker genotypes of both parents and the offspring in order to estimate 6. We pro-
vide these distributions in Tables I and IL

TABLE I. Trait Locus Mating Types Among MM x Mm Parents, Mating Probabilities, and
Probabilities of Trait Locus Genotypes Among Offspring With Marker Genotype MM*

Tg
g Mating type Probability AA, Aiaq a;a,
i AAI X AA » 3 0 0
2 AA X Ay P2 1(1-0) 16
3 AA X @A Pip 16 ta-9) 0
4 AA X ma 2pps 0 1 0
aa, X Ad,
5 Ay X AA 2p:%p, % 1 0
aiA| X AA;
6 Aay X Aya 2p:p %(1 -0) % 50
@A X Ajay
7 Ay X aA, 2p,%ps? %9 % %(1 -0)
aA; X a1A )
8 Aja X aq 2plp23 0 % %
aA, X a\a,
9 aa; X Aya P 0 2(1-6) 16
10 aia; X @A, p,p23 0 %9 %(1 -6)
I ayay X aya, Pt 0 0 T

*Probabilities of trait locus genotypes among offspring with marker genotype Mm can be obtained by
replacing 8 by (1 - 6) in this table.
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Let:

M, = marker genotype of ji, individual in i" family,
i=12,....Kj=12,...n+2

G.G, = classified trait genotypes of the parents in i family,
i=12,....Kj=12

H, = trait genotype of j” individual [i.e. (j - 2)" offspring] in i" family,
i=12,....Kj=34,....,m+2

Py, = P{H; =1Gy,Ga, My, My, M},
wherey, =A A=A 43=AA0i=12,.. . K;j=34,... m+2;

n=123.

P,.s are obviously functions of 6. However, for the same genotype, P, may be
different for different haplotypes. For example, if G;) = A/A,, G, = AAy,, M, = M\M,,
M, = M\M,, M;; = M\M,, then P, = 0 if the haplotype is A;M,/A,M,. Thus, in esti-
mating 6, we have to consider the different possible haplotypes separately for given
trait and marker loci genotypes of each parent. We next classify the offspring into
their trait genotypes.

Define:

Qijn = P(Hij =Y. Gil’GiZ’Mil’MIZ’Mij’yij)
2:=|Pljnf;l(ylj)

i=1,2,...,Kj=34,...,1,+2;n=1,2,3.

In the computation of Q,, we use a, /§, éz obtained using the EM algorithm
described previously.

The usual classification rule is given by:

Classify y; into f, if and only if

in — TAX 2103 Ly 5
i=12,... K:j=34,...,n+2,n=123.
The likelihood of 8is given by:

Lo =IL® Q1)

where L,(0) is the likelihood of the i family based on the classified genotypes of the
n, offspring of that family. Note that as haplotypic information is usually unavailable
from nuclear family data, L(6) would be a mixture of the different conditional trait
distributions of the offspring corresponding to the different possible haplotypes. For
clarity of presentation, let us consider the following example of a nuclear family i
with three (n, = 3} offspring. Suppose the parental classified QTL. genotypes are A,A,
(= GG,;) and A A, (= G,»). Suppose the marker genotypes of these parents are, respec-
tively. M\M, (= M,)) and M\M, (= M;,). Then, the possible haplotypes of the doubly
heterozygous parent are: A,M,lA.M, and A, MlA,M,. The classification probabilities
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at the QTL for offspring depend on both marker genotypes of the offspring as also
on parental haplotypes. Suppose the marker genotypes of the three offspring are:
MM, (= M), M\M, (= M), and M\M, (= M;s). Suppose, the classified QTL geno-
types of these offspring are, respectively, A/A; (= Hy), A\A; (= Hy) and A\A, (= Hy5)
when the haplotypic configuration of the doubly heterozygous parent is A,M,lA,M,,
and AjA;, A)A; and A,A; when the parental haplotypic configuration is A,M,lA,M,.
Then,

L) =%{0(1—9>2 +(1-6)) 22)

In fact L(6) is a mixture with components of the form ¢0" (1 — 6)? or ¢,0" (1 —
6)*{& + 1 — 0)’}" where c, is some constant. Since a direct analytical maximization
procedure is complicated, we implement an EM procedure. For example, the com-
plete likelihood corresponding to (22) would be:

* 1 1-m
L (&= 5{6’(1 -0’y {(1~-6)"} (23)

6(1-6)° 3
6(1-6>+(1-6)°

where m =

Thus, L, (6) would be of the form ¢;68“ (1 - 6)" where c; is some constant while u;
and v; are functions of 0. Thus,

K
L*(0)={Hci}02il “1-0Y,. (24)

which is easy to maximise giving
K
Zi:lui

f=— i
X W +v)

(25)
Since u;’s and v;’s depend on 6, we need an initial approximation for imple-

menting the EM algorithm. As 0 < 6 < 05, 6 = 0.25 may be used as an initial

approximation. If the final (converged) value of 0 exceeds 0.5, we take 8 = 0.5.

We finally note that in the first stage of this two-stage procedure, the estimated
parameters are a, B, p, and ”. All these parameters are estimable from a sample of
randly drawn individuals from the population. If indeed a random sample of indi-
viduals is available, then the above parameters can be estimated with trivial changes
in the likelihood function derived above. The E and M steps also require trivial
changes. Having estimated these parameters, one can sample families and initially
classify only the parents into major QTL genotypes using the proposed classification
rule (which requires the value of the quantitative trait of the individual to be classi-
fied and estimates of the parameters «, f3, p, and o). Families in which neither
parent is classified as a heterozygote at the major QTL can be discarded even before
marker-typing because these families will not provide any information for estimat-
ing 0. This strategy will be cost-effective.



106 Ghosh and Majumder
EFFICIENCY OF THE ESTIMATION PROCEDURE

Assessment of the efficiency of the estimation procedure is of obvious interest.
For this, we have examined the empirical frequency distributions of 8 based on mul-
tiple replicates of simulated data. Before providing the results, we describe the simu-
lation procedure for fixed values of p, a, B, &°, and 6. In the first step, we randomly
generated the trait values of a fixed number (NOBS) of pairs of unrelated parents
from appropriate (selected randomly using a trinomial random number generator with
cell probabilities P, 2pg, and ¢°). Normal distributions (see Model section). In the
second step, using the data so generated, the trait parameters (a, j3, o’, p) were esti-
mated using the EM algorithm. (We emphasize that for the purpose of estimating the
trait parameters, it is not essential to obtain data on pairs of parents; only data on
randomly sampled unrelated individuals suffice.) In the third step, the QTL geno-
types of the parents are inferred using the Bayes’ rule. For further computations,
only those pairs of parents with at least one inferred QTL heterozygote are retained.
In the fourth step, for each parent in the retained pairs, marker genotype was deter-
mined using a trinomial random number generator. For subsequent computations,
only those parental pairs with at least one double heterozygote were retained. In the
fifth step, we randomly generated the marker genotype of an offspring by sampling
either from a binomial distribution with success probability 1/2 for a parental mating
in which one parent is MM, or M,;M, and the other parent is MM, at the marker
locus, or from a trinomial distribution with cell probabilities (1/4, 1/2, 1/4) for a
parental mating in which both parents are M;M,. In the sixth step, based on the
conditional probabilities of offspring genotypes given parental mating type as pro-
vided in Tables I and I, we generated, using a trinomial random number generator,
the genotype of the offspring with respect to the trait locus. These steps were re-
peated until the required number of informative families (NFAM) were obtained. Us-
ing the data so generated, we again used the EM algorithm to estimate 6. Replication
of this procedure a large number of times (NREP) yielded the empirical frequency
distribution. For every set of parameter values, we have evaluated the performance of
the estimator with 5 offspring per family, NFAM = 100 and NREP = 1,000. We have, in
a later section entitled “Sample Size Effect”, evaluated the effect of sample size.

Classification of Parents With Respect to QTL Genotypes

As mentioned earlier, in the first stage of the present procedure, parents are
classified into genotype classes on the basis of their observed trait values. Success of
estimating the recombination fraction accurately by the present procedure critically
depends on the performance at the first stage. It is, therefore, important to evaluate
how well parents are classified to their true genotypic classes by the present method.
Results pertaining to classification of parents to their true genotypes using the pro-
posed algorithm are provided in Figure la—c with NOBS = 1,000, NOBS = 250, and
NOBS = 100, respectively. We have observed that though the classification perfor-
mance was extremely good for NOBS = 1,000, the results were sufficiently satisfac-
tory for NOBS = 250. We found that when there is no dominance (i.e., 8 = 0), between
95 and 99.5% of the parents were correctly classified into their true genotypic classes.
The percentage of correct classification increased as p deviated more from 0.5. This
is cxpected because increase in the deviation of p from 0.5 increasingly polarises the
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Fig. 1. Percentage of correct classification of parents for simulation parameter values o= 5, =0, 1,

2.3,4, 6% =1 and (a) NOBS = 1,000, (b) NOBS = 250, and (¢) NOBS = 100. Circles correspond to p =
0.9, triangles to p = 0.7, and squares to p = 0.5.

distributions corresponding to the genotypes. The percentage of correct classifica-
tion decreased as the extent of dominance (f) increases. The worst classification
arose for o =5 and f = 4. In this case, the overlap between distributions of the A A,
and A A, genotype classes was the largest. Therefore, a non-informative parent (i.e.,
with true genotype A,A,) has a high probability of being classified as informative
(i.e., with true genotype A;A,) and vice versa. However, even in this case, the prob-
ability of correct classification was about 80%. We also noted that these results are
independent of 0. Thus, it is seen that the first stage of the proposed method works
extremely well, indicating that evaluation of the next stage, in which an estimate of
the recombination fraction is obtained, is worthwhile.

Empirical Frequency Distribution of ]

If indeed the procedure provides a good estimate of the recombination fraction,
0, then one expects that the probability distribution of £ obtained from multiple rep-
lications of simulated data generated using a fixed set of parameter values will be
clustered around the true values of 0. Figures 2—-10 depict the frequency distributions
of @ for simulation parameter values of 6 =0, 0.1, 0.3 and 0.5, separately for p = 0.9,
0.7,0.5, and B =0, 2, 4. The values of the other parameters used in these simulations
were: o = 5 and ¢ = 1. From Figures 2-10 it is seen that in all cases, except when
the trait and marker loci are completely unlinked (i.e., 8 = 0.5) and the dominance
effect (B) is large (Figs. 8d, 9d, and 10d, the distributions were unimodal and
leptokurtic. In these extreme cases, there are higher probabilities of misclassiﬁcatioq
as has been noted in the previous section. For 8= 0, in 80-85% of the replications 0
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Fig. 2. Empirical frequency distributions of § for simulation parameter values p= .9, a =5, B=0, &
=land () 0=0,(b) 8= 1,(c) 9= 3,and (d) 8= 5.

was < 0.08 if § =0, while this percentage was between 65-70% if f§ = 4. Similarly
for @ =10.3, in 80-90% of the replications 6 was in the interval [0.25, 0.35]. How-
ever, for 0= 0.5, while 95% of the 8 values were between 0.45 and 0.5 for p = 0.5,
this percentage for p = 0.9 was only about 75%. The proportion of 6 values lying
close to the true value of 6 decreased as f increased. Thus, it is seen that the proce-
dure provides good estimates in conformity with expectations, unless the degree of

dominance (f§) is very high. Therefore, if the estimated values of S is close to that of
a. the estimate of 8 may be inaccurate.

Mean and Variance of § and Confidence Interval for 0

To examine the behavior of the estimator with respect to variation in values of p
and B. we have performed simulations for fixed parameter values a =5, o = 1, and for
values of p=09,0.7,60.5; =0,2,4and 6=00.1, 03, 0.5. We have evaluated the
means and variances of 6 and have obtained 95% confidence intervals of 6. These results
are given in Table IL. It is seen from Table 111 that the true value of 6 was always included
in the 95% confidence interval of 6. The coefficient of variation of § was also < 0.5%.
These results indicate that the performance of the proposed estimator is extremely good.
It is also secn from Table 111 that when p deviates from 0.5, the mean of 8 is closer to the
true value of O and the 95% confidence interval of 8 is narrower, unless 8 is very close o
05. The vanance of 8 increased when p deviated more from 0.5. Table Il also
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Fig. 3. Empirical frequency distributions of @ for simulation parameter values p= .7, a =5, =0, ¢*
=land (@) 8=0,(b) 6=.1,(c) 6=.3,and (d) 6= 5.

shows that estimates of @ deviated more from the true value of 6, their variances in-
creased, and the 95% confidence intervals became wider as the value of f increased to o.
This phenomenon is due to increasing overlap between the two genotypic classes A A,
and A,A; as 3 becomes closer to «, resulting in errors of parental genotype classification.
We also note that for fixed values of o, o, p, and 0, the adverse effect of increase of S on
estimation of @ is non-linear in B. For the sets of parameter values investigated, the
relative error in estimation of @ never exceeded 20%.

Thus, for a fixed value of B, the efficiency of estimation of 6 is dependent on
both the true value of @ and the trait allele frequency, p, for any finite sample sizes
of families. Since the trait genotype is unknown and needs to be inferred, the infer-
ence is better when the value of p is much deviated from 0.5, because in such cases
the overlap of trait-value distributions among genotypes is small. However, the effi-
ciency of estimation of 9 strongly depends on the “effective” sample size (that is, the
number of informative families), especially when the true value of @ is not close to
0. When the value of p deviates from 0.5, the effective sample size decreases, thereby

reducing the efficiency of estimation of 6.

Sample Size Effect

We have investigated the performance of the proposed estimator when data
on fewer offspring are available. Based on simulated data with 3 offspring per
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family, we have obtained the empirical frequency distributions of @ for different
values of 8 and p = 0.5, 0.7, 0.9. The frequency distributions were marginally
less well-behaved compared to those based on 5 offspring per family. The esti-
mated f values were also marginally more deviant from true 6 values with smaller
sibship sizes. For example, the mean and variance of @ for simulation parameter
values =5, B=2, =1, p=0.7, and 0 = 0.3 were 0.342 and 0.00765,
respectively, based on 100 informative families with 3 offspring per family, while
these figures were 0.317 and 0.000683 with S offspring per family. For p = 0.3
and the remaining simulation parameter values as above, the mean of § was 0.377
with 3 offspring per family, while it was 0.321 with 5 offspring per family. The
additional deviation of estimated 6 from true 6 due to decrease in sibship size
from 5 to 3 varied between 8 and 20%. Thus, while larger data sets are desirable
especially when p is close to 0.5, our method continues to perform rather well
even with smaller sibship sizes. We also emphasize that although we have pes-
formed our simulation experiments with fixed sibship sizes of 5 and 3, variable
sibship sizes pose no problem. Likelihood equations are easily modified and since
data on offspring conditional on parental genotypes are independent, our simula-
tion results are based effectively on 5 (or 3) X number of families.
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Power of Test for Linkage Detection for Varying Degrees of Major Trait
Locus Effect

To assess, more clearly, the efficiency of the proposed estimator 6 at varying
degrees of major locus effect, measured as the proportion of variance of QT ex-
plained by the major biallelic locus (A), we have computed the empirical power of
the test of hypothesis Hy : 8= 6, < 0.5 vs. H; : 8= 0.5. For this assessment, we have
generated simulated data for different values of A. While such data can be generated
for various combinations of parameters, we present results of 8 and o’ kept fixed at
0 and 1, respectively, with a and p varied suitably to attain different values of A in
the range of 0.2 to 0.9. A fixed value of 6, = 0.1 was used throughout. For each set
of simulated data, the empirical 5% cut-off points for rejection for the null hypoth-
esis was determined and the power was estimated as the proportion of replications
{out of 1,000) with @ = 0.5 in which 6 was greater than the empirical 5% cut-off
point. The results are graphically presented in Figure 11 from which it is evident that
our proposed method performs quite well, at least when the percentage of variance
in QT explained by the major locus exceeds 30%. Other combinations of values of
parameters B, o, a, p yielding the same value of A resulted in approximately the
same power; estimates are not provided.
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Effect of Linkage Heterogeneity

Suppose a QT is controlled by a single major biallelic locus that explains A %
of variance (the remaining variance being environmental), but there is linkage het-
crogeneity. That is, in a proportion (7) of families, the QT is due to one major locus
and in the remaining proportion (1 — 7) of families, the trait is due to an unlinked
major biallelic locus. We assume that the values of A for both loci are equal, which
in a sense is the worst-case scenario. Suppose, a biallelic marker is linked to the first
QTL.: that is, linkage is present in only x proportion of families. It is pertinent to
examine the performance of the proposed procedure in estimating linkage from the
pooled set of families, when one is unaware of the existence of the underlying link-
age heterogeneity.

We have used simulations to examine this. In generating simulated data, we
have used 6 = 0.1. two values of A = 80 and 60% (in each case, a, 3, and & were
kept fixed at 5. 0. and 1. respectively; p was varied suitably to attain appropriate
values of A, and five values of m =0.9, 0.8, 0.7, 0.6, and 0.5 for each value of A.
Results are presented in Table IV, from which it is seen that the estimated value of 0
is reasonably good unless there is considerable linkage heterogeneity (small 7) or
the proportion of variance explained by the major locus is small (small A). When
compared to the results presented in the previous section (and Fig. 11), we see that
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while in the absence of linkage heterogeneity the proposed method performs quite
well even when A is as low as 30%, in the presence of linkage heterogeneity the
method fails to perform well unless A is as high as about 80%.

Analyzing a Two-Locus QT as a Single-Locus QT: Effect on Estimate of 6

Consider a QT that is controlled by two unlinked, biallelic trait loci. Suppose a
biallelic marker is linked to one of the two loci. In the absence of knowledge that the
QT is controlled by two major loci, it is reasonable to investigate the effect of ana-
lyzing data assuming that the QT is controlled by a single major locus, on the esti-
mate of 6. To examine this issue, we generated simulated data sets for different values
of a and p. We denote the values of o as ¢, and @, for the two trait loci. The values
of B and p were held fixed at 0 and 0.7, respectively, for both loci; 8 (recombination
fraction between the marker and one QT) was taken as 0.1. Having generated repli-
cate data sets for each combination of the above parameters, we used the proposed
method for estimating O assuming that the QT was controlled by a single major
locus. The results are presented in Table V. It is seen from Table V that when the
effect on the QT of the trait locus to which the marker is unlinked (the “‘unlinked
QTL") is small relative to the linked trait locus, the method performs quite well even
when the data are incorrectly analyzed assuming that the QT is controlled by a single
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major locus. However, the estimate of 6, which is always upwardly biased. worsens
as the relative effect of the linked trait locus decreases. When the relative eftects of
the two trait loci are equal, analyzing the two-locus QT data as single-Jocus data
leads to hopelessly bad estimates of the recombination fraction.

ESTIMATION OF 6 WHEN THE MARKER IS MULTIALLELIC

The above procedure of estimation of @ can be easily shown to hold in the case of 2
multiallelic locus. Suppose the marker locus has K alleles denoted as M\,M,, . . ., M. A
mating between a homozygote and a heterozygote will be of the form MM, X M;M.,
while a mating between two heterozygotes will be of the form MM; x M;M,.

A MM, x MM, mating will produce offspring with marker genotypes MM, and
MM, with probability 1/2 each. The probabilities of the trait genotypes of the off-
spring for various parental mating types are identical to those corresponding to marker
genotypes MM or Mm given in Table 1. In the case of a mating between two het-
erozygotes, we need to differentiate between matings MM, x MM, and MM, x MM,
where either i # k or j # . For MM; X M;M; matings, the distributions of the trait
genotypes of the offspring for varioius parental mating types are identical to those
corresponding to marker genotypes MM, Mm, or mm given in Table II. MM; x MM,
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(i # k or j = [) matings can produce offspring with marker genotypes MM, MM,
MM, and MM, with probability 1/4 each. The probabilities of the trait genotypes of
the offspring for various parental mating types are given in Table VL

Note that the estimation of the trait parameters a. o”. and p does not depend on
the marker. Thus, the procedure of estimating these parameters in the case of a
multiallelic marker is identical to that in the case of a biallelic marker described
carlier. While estimating 6, we should consider the appropriate conditional distribu-
tion of the trait genotypes of the offspring given in Tables 1. 1l and VI. As all the
probabilities in these tables are some multiples of 6. . (1 — 0). (1 - O¥. [(F + (]
('], we can use the EM procedure described earlier to obtain the m.Le. of 0.

EM APPROACH IN MULTIPOINT MAPPING

The proposed EM procedure for mapping a trait locus using two-point finkage
can be easily extended to the case of multipoint mapping. For case of exposition. we
consider a three-point mapping setup. Suppose the trait locus is flanked by two
hiallelic, codominant marker loci with alleles (M, and (M. respectively. such
that the recombination fractions between the trait locus and the marker loct are 0,
and 0. respectively. We assume that chromatid interference is absent and. henee. the
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recombination fraction between the two flanking markers is 6 = 6, + 6, — 26,0,. The
conditional probabilities of the trait genotypes of offspring given the parental trait
and marker genotypes as well as the offspring marker genotypes are given in Table
VII for backcross at both marker loci, in Table VIII for intercross at both marker
loci, and in Table IX for backcross at one marker locus and intercross at the other.
We have used simulated data to assess the relative efficiency of multipoint linkage
analysis over two-point linkage analysis. The simulation parameter values used were a =
l.o=1:$=0,2,4,p=09,0.7,0.5 and different values of 0, and 6,. We first note that
since the estimation of the trait parameters o, §, o, and p do not involve marker infor-
mation, the classification of parents into their true genotypes is identical to the case of
two-point linkage. The EM algorithm invoked in the second stage of our proposed proce-
dure 10 estimate 6, and 8, is also similar to the previous case, except that we need to
consider the conditional trait genotypic distribution of the offspring given information at
both the marker loci. We assume that the value of 0, i.e., the recombination fraction
hetween the two marker loci is known a priori. Based on our simulated data, we have
found that the histograms of 8, and 8, (i.e., the estimated values of 0, and 6,) are much
more well behaved and concentrated than in the case of two-point linkage, especially
when a marker locus is unlinked to the trait locus (i.e., when 6, or 6, is 0.5). Two repre-
sentative histograms are presented in Figures 12 and 13. We also find that using three-
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TABLE IIL. Mean and Variance of 6 and 95% Confidence Interval of @ for & = S,a'=1p=.9,
0.7,0.5; =0,2,4;, 6=0,0.1,0.3, 0.5

p True 6 B Mean (8) Var (6) 95% C.1. of @
9 0 0 0.015 0.000174 (0.009, 0.026)
2 0.044 0.000432 (0.017, 0.048)

4 0.075 0.000695 (0.051, 0.097)

0.1 0 0.103 0.000084 (0.099, 0.114)

2 0.117 0.000277 (0.095, 0.126)

4 0.172 0.001008 (0.131, 0.195)

0.3 0 0.303 0.000452 0.291,0.311)

2 0.313 0.000747 (0.286, 0.328)

4 0.368 0.001739 (0.345, 0.401)

0.5 0 0.478 0.000397 (0.438, 0.500)

2 0.471 0.000902 (0.415, 0.500)

4 0.409 0.001335 (0.395, 0.487)

7 0 0 0.021 0.000154 (0.019, 0.041)
2 0.053 0.000312 (0.023, 0.057)

4 0.081 0.000865 0.063, 0.101)

0.1 0 0.107 0.000087 (0.095, 0.122)

2 0.122 0.000290 (0.097, 0.128)

4 0.182 0.001064 (0.143, 0.204)

0.3 0 0.308 0.000497 (0.293,0.317)

2 0.317 0.000683 (0.284, 0.321)

4 0.373 0.001867 (0.357, 0.408)

0.5 0 0.491 0.000083 (0.477, 0.500)

2 0.487 0.000118 (0.472. 0.500)

4 0.413 0.001146 (0.401. 0.494)

5 0 0 0.038 0.000186 (0.022, 0.058)
2 0.067 0.000299 (0.035.0.073)

4 0.105 0.001018 (0.071.0.112)

0.1 0 0.113 0.000129 (0.097.0.123)

2 0.115 0.000283 (0.089, 0.124)

4 0.196 0.001153 (0.162, 0.208)

0.3 0 0314 0.000512 (0.291.0.325)

2 0.321 0.000630 (0.287. 0.329)

4 0.381 0.001794 (0.358, 0.416)

0.5 0 0.497 0.000056 (0.486. 0.500)

2 0.491 0.000068 (0.478. 0.500)

4 0.421 0.001062 (0411, 0.498)

point linkage analysis, the mean of 0, (or 92) is closer to the true value of 8, (or 6,) than
in the case of two-point linkage. The variances of the estimates in the case of multipoint
linkage are also Jower than those in the case of two-point linkage. Relevant statistics are
provided in Table X. The relative efficiency of the three-point linkage analysis over the
two-point linkage analysis (defined as the ratio of the variance of the estimate in the case
of two-point Jinkage to that in the case of three-point linkage) was found to be about 1.3.

DISCUSSION

The proposed method of linkage detection exploits the fact that knowledge of
parental genotypes at the QTL greatly eases statistical estimation of 0. Since for a
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quantitative character, the QTL genotype of an individual cannot be inferred with
certainty because of intrinsic variability within genotype classes, we have used the
EM algorithm coupled with a Bayes’ classification procedure to classify parents into
QTL genotype classes. A similar EM approach to estimate the trait parameters was
used by Kao and Zeng [1997] in mapping a quantitative trait locus in an interval
flanked by two markers. However, their procedure was based on inherent knowledge
of haplotype information that is not readily available in human genetic studies. More-
over, the effect of marker genotype on trait value was assumed to be linear. The
procedure proposed by us does not use these assumptions. In our procedure, esti-
mates of trait parameters and recombination fraction are obtained. The estimates of

TABLE IV. Mean and Variance of Recombination Fraction in the Presence of Linkage
Heterogeneity (1 = Proportion of Linked Families) Estimated From Simnlated Data Sets With

Differing Values of A (Percentage of Variance Explained by the Major QTL) and Recombination
Fraction = 0.1

A=80% A=60%

T Mean (6) Var (9) Mean (9) Var (9)
09 0.126 0.0041 0.1466 0.0075
0.8 0.1415 0.0062 0.1683 0.0112
0.7 0.167 0.0091 0.1975 0.0172
0.6 0.194 0.0143 0.223 0.0237

0.5 0.2268 0.0197 0.2549 0.0294
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TABLE V. Effect of Analyzing Two-Locus QT Data as a Single-Locus Data, on Estimated 6;
When lis True Value is 0.1 (a; and a; Denote the Effects of the Two QTLs), A Is the Proportion
of Variance Explained Jointly by the Two QTLs and A, Is the Proportion Explained by the
Linked QTL

a a A A Mean (8) Var (9)
5 1 091 0.88 0.1088 0.0007
5 2 0.92 0.79 0.1291 0.0016
5 3 0.93 0.68 0.1516 0.0031
5 4 0.94 0.57 0.1774 0.0058
5 5 0.95 0.47 0.2056 0.0094

trait parameters are used in inferring the parental QTL genotypes. The estimation of
trait parameters, in the first stage of the proposed two-stage procedure, can be based
either on data of a random sample of individuals or on data of parents (assumed to
be unrelated) in families. The first stage of our procedure does not use marker geno-
type information. Thus, even if families are sampled, it will be prudent to initially
obtain only measurements of the quantitative trait on parents. The EM algorithm
implemented in the first stage will provide estimates of trait parameters. Having ob-
tained these estimates, we can classify parents in families into major QTL geno-
types, using the proposed classification rule. This enables identification of potentially
informative families (i.e., at least one parent heterozygous at the major QTL). Then,
the investigator can obtain genotype information at marker loci on both parents and
measurements of quantitative trait on offspring in those families in which at least
one parent is doubly heterozygous. Thus, the proposed two-stage procedure provides
cost effectiveness in terms of data collection. In the second stage, based on data on
only informative families, the proposed EM algorithm provides the maximum likeli-
hood estimate of the recombination fraction between a marker locus and the major
QTL. We note that in the context of human pedigree analysis, the EM algorithm was
first applied by Ott [1977].

We have shown that our proposed method results in virtually error-free classifi-
cation of parental QTL genotypes, unless the dominance effect is very large. We
have also shown, using simulations, that for a wide range of parameter values that
corresponds to widely different values of the proportion of variance in QT explained
by the major locus, the estimates of recombination fractions and the power to detect
linkage are quite good for reasonable sample sizes. We have shown that our method
performs more efficiently when data on multiple markers flanking the trait locus are
used. One major advantage of the proposed method is that the estimation of recom-
bination fractions is not as strongly tied to estimates of QTL parameters as in lod-
score analysis. Through the use of EM algorithm, the present procedure extracts
appropriate information from the quantitative data and then uses a Bayesian classifi-
cation rule to transform the QT data to qualitative genotypes before estimating 0
from the transformed data by a likelihood-based method. This reduces the impact of
error in estimating trait parameters on the estimate of 6. Because of the weak depen-
dence of 6 on estimates of trait parameters, and because no separate segregation and
linkage analyses need to be performed in the present approach, the earlier observa-
tions that model misspecification can seriously affect estimates of trait parameters
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TABLE X. Mean and Variance of (§;) and (§;) and 95% C.I. of @, and 6, for @ =5 and 2= 1
B 6 6 Men(d) Var(d) 95%CLof6 Mean(d) Var(d) 95%ClLof6,

p

9 0 O 1 013 .000156 (.007, .023) 102 000067  (.097, .115)
g 2 1 1 113 .000238 (.098, .124) 15 000242 (.096, .126)
9 4 3 170 .000945 (.132, .194) 362 001583 (341, .395)
S22 3 3 316 .000586 (.287, .328) 314 000588  (.288, .325)
S 4 03 5 372 .001658 (.359, 416) 444 000971 (420, .498)
g 0 5 A 492 .000065 (481, .500) .101 000068  (.096, .119)

[Dizier et al., 1993; Atwood et al., 1995] and that prior segregation analysis can
reduce the power to detect linkage [Atwood and Slifer, 1997] become less relevant.
Further, this approach leads to a considerable reduction in computational load, which
in usual parametric segregation and linkage analyses of a QT can be sufficiently
heavy to require the use of a supercomputer [Atwood and Slifer, 1997]. Joint segre-
gation and linkage are computationally even more expensive, although there are some
indications that it may be more powerful [Gauderman et al., 1997] than separate
segregation and linkage analyses. We have shown that for reasonable levels of link-
age heterogeneity, the proposed method performs quite well. Model misspecification,
treating a two-locus QT as a single locus QT, even though yields biased estimates of
0, leads to gross errors in inference only when both trait loci have nearly equal ef-
fects. Thus, the present method appears to be quite useful and robust for QTL map-
ping. Compared to numerical maximization of the likelihood of parental and offspring
data, on all families jointly with respect to all parameters (recombination fraction,
trait parameters and allele frequencies), the proposed stagewise procedure using the
EM algorithm is computationally much more efficient and provides reduction of data
collection costs.
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