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Mapping a locus controlling a quantitative genetic trait (e.g., blood pressure) to 
a specific genomic region is of considerable interest. Data on the quantitative 
trait under consideration and several codominant genetic markers with known 
genomic locations are collected from members of families and statistically ana­
lyzed to draw inferences on the genomic position of the trait locus. The vector of 
parameters of interest comprises the pairwise recombination fractions, 0. between 
the putative quantitative trait locus and the marker loci. One of the major com­
plications in estimating 0 for a quantitative trait in human.s is the lack of haplo- 
type information on members of families. The purpose of this study was to devise 
a computationally simple and efficient method of estimation of 0 in the absence 
of haplotype information. We have proposed a two-stage estimation procedure 
using the expectation-maximization (EM) algorithm. In the first stage, param­
eters of the QTL are estimated based on data of a sample of unrelated individu­
als. From estimates thus obtained, we have used a Bayes' rule to infer QTL 
genotypes of parents in families. Finally, in the second stage of the procedure, 
we have proposed an EM algorithm for obtaining the maximum likelihood esti­
mate of 9 based on data of informative families (which are identified upon infer­
ring parental QTL genotypes performed in the first stage). We have shown, using 
simulated data, that the proposed procedure is cost-effective, computationally 
simple, and statistically efficient. As expected, analysis of data on multiple markers 
jointly is more efficient than the analysis based on single markers, (icnct. 
Epidemiol. 19:97-126, 2000. © 2000 wiiey-Liss. tnc
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INTRODUCTION

Developing statistical techniques for the detection and estimation of linkage 
among marker loci and loci determining a quantitative trait is an active area of re­
search |Jayakar, 1970; Haseman and Elston, 1972; Hill, 1975; Weller. 1986; Amos 
and Elston, 1989; Lander and Botstein, 1989; Goldgar, 1990; Haley and Knott, 1992; 
Zeng, 1994; Whittaker et al„ 1995; Kruglyak and Lander, 1995; Schork el a!., 199(>|. 
Although the idea of mapping quantitative traits (QTL mapping) can be traced hack 
to Sax 11923), the recent identification o f highly polymorphic DNA markers in plants 
and animals and the development of dense maps o f such markers have resulted in a 
resurgence of interest in developing simple and efficient statistical methods lor QTL 
mapping. Many common human disorders (e.g., hypertension, diabetes) are inher­
ently quantitative in nature. Therefore, QTL mapping is of considerable interest in 
human genetics. Many currently used QTL mapping methods, especially those that 
have been developed in the context o f  plant genetics or genetics o f inbred animals, 
assume knowledge of linkage phase in individuals that imposes a severe restriction 
on the applicability of these methods in human genetics. One o f the major problems 
in QTL mapping is to accurately infer the genotype o f an individual at the major 
locus controlling variation of the quantitative trait. The purpose o f this paper is u> 
propose a method to estimate, via the expectation maximization (EM) algorithm, the 
recombination fractions between marker loci and an autosomal major locus control 
ling a quantitative trait from data on nuclear families without any assumptions on 
linkage phase and haplotypes. The proposed method is a two-stage strategy. In the 
first stage, individuals are probabilistically classified into the major locus genotypes. 
In the sccond stage, the recombination fractions are estimated using the inferences 
made in the first stage. The proposed procedure also provides estimates o f param­
eters of the QTL. We have examined the efficiency o f the estimation procedure us­
ing Monlc-Carlo simulations and have shown that the proposed procedure works 
very well.

MODEL

Consider an autosomal biallelic locus, with alleles (A,. A:), determining a quan­
titative trait X. Suppose the distribution of X conditioned on the genotype is:

X1A,A, ~ N(a,cf)
X M , A : ~ M  p , c f )
XlAyt: -  Ni-a.cr)  < 1 >

where fi *' </ and o' includes the environmental variance.
Suppose the allele frequency of A, is />. Then, assuming Hardy-Weinberg equi­

librium proportions ai the QTL. X has a mixture distribution given by:

/> S{a.rr\  + 2/>( 1 p)N{ft.cr) + ( \ - i i ) :N(~a.<r). < - *

Consider an autosomal biallelic codnminant marker locus with alleles i.W . W 1 
possihh linked to the quantitative trait locus (QTL). [Extensions o f  the proposed



method to multiple and multiallelic markers are discussed in later sections.] Our aim 
is to estimate the recombination fraction, 0, between the two loci, which are as­
sumed to be in linkage equilibrium.

D A TA  D E S C R IP T IO N

We consider data on nuclear families. Suppose {(v;i, y i2) '■ > = 1,2..........K } are
the observed values o f  the quantitative trait of K  pairs of parents such that in each 
pair, either one parent is and the other or both parents are M XM 2. (Obvi­
ously, if neither parent is heterozygous at the marker locus, the family is not infor­
mative for linkage.) For the i"' pair o f  parents with n, offspring, the known trait 
values will be denoted as (yi}, v,4, . . . ,v,„,-+2); / = 1,2, . . . ,K. We further assume that 
(he marker genotype (A/,A/,, M KM-, or Af>A/: ) o f  each offspring is known. Thus, the 
data comprise trait values and marker genotypes of parents and offspring in nuclear 
families.

E S T IM A T IO N  P R O C E D U R E

Although our primary aim is to estimate 0, since the trait parameters a, ji. o',  
and n are unknown, we shall estimate these also to facilitate estimation o! 0. Knowl­
edge of  a, f i  (T. and p  facilitates estimation of 0 because using the estimated values 
of a. / I  r r ,  and p. and the observed values of the quantitative trait, we can classify 
each parent, albeit probabilistically, to a specilic trait locus genotype. When trait 
locus genotypes are known for the parents in a nuclear lamily, then obtaining an 
estimate of 0 from the remaining data (marker genotypes of parents and offspring, 
and values of the quantitative trait o f  the offspring) becomes much simpler. Our 
estimation procedure is based on this two-stage strategy.

 ̂ l\ ai'

Let./](.*), probability density function (p.d.f.) of N{a.cr) = ~JT==C

n,. prior probability o f / ,  = p~, ( .

/( .v). p.d.f. o f  N((i,cr) =
tJ27TO

71;, prior probability o f /> = 2p(\ -/>).

1
A(.v), p .d . f .  o f  M - a , c T )  = —/ = = < ’

• i l n o
Thus the p.d.f. of y„ (/ = 1.2..........K : j  = 1.2) is given by:

/i(.v), p.d.f. o f W(-a.<r) = - j = e 2n' and *'• Pnor probability o f / ,  = (1 p) 
•42xo

/ (  V ) / . (  V < [})
n I

The parameters to be estimated in this mixture model aie a . o',  and n. We 
estimale these parameiers by the maximum likelihood method.

The likelihood of the parental data is:

l i a . f t o  . />l v  ̂ (v 1 (4)



However, a direct analytical m aximization o f  the above function w ill not yield  
closed form estimators and iterative numerical maximization procedures, e.g ., scor­
ing method [Rao, 1973], w ill involve complicated expressions.

A  computationally simpler and more elegant procedure is based on the EM al­
gorithm corresponding to a mixture o f normal populations [Dempster et al., 1977; 
McLachlan and Krishnan, 1997]. A  sketch o f  the algorithm is presented below.

The mixture distribution can be view ed as an “incom plete” setup in the sense 
that we have no a priori knowledge as to which o f the three com ponent distributions 
any particular observation belongs. The first step (E-step) in this algorithm is, there­
fore to estimate the probabilities with which an observation may belong to any o f  the 
three component distributions. The second step (M -step) uses these estim ates to build 
up the “com plete” likelihood function, which is easily m axim ized to yield  relevant 
parameter estimates.

The introduction o f  Zijns thus constitutes the “com plete” setup. However, as z,;„s 
are unknown, we have to estimate them conditioned on the observations yy. This is 
the E-step o f  the EM algorithm.

i = 1 ,2 ,. . . ,K \ j  = 1,2; n = 1,2,3. We note that these estimators are B ayes’.
Having obtained the z ;j„s, we can easily obtain the closed  form expressions for 

the m.l.e. o f  p, a,  and o2 in the M-step o f the algorithm.

Define:

Zijn = 1) if  ytj is an observation from p.d.f. /„, 
= 0, otherwise;

i'= 1 , 2 , . . .  , K ; j =  1,2; n =  1,2,3.

(5)

K 2

The m .l.e.s o f the parameters are given by:



+z,2(yii - h 2 + zljS(yli+ a ) 2}. (10)
/=! j  = 1

Thus, the l,h step o f  the EM  algorithm is:
E-step:

■—-(#-!> ------- -( /-I)
"'W 71 n Jn(y,j)
z .jn ---«-,) - r — ’ ( 1 1 )

/„ ( y ,y)

i = 1,2 , .  . . ,  K ; j  = 1,2; n = 1,2,3.
M -step:

„  ,  , ^ (()  
jl«) _ ^-'=1^1 (Zi)l + 2z-;2 ) „ 2 )  p -  2K  ,

o '0 - „ , -— (/) ^ ( 0  
^,=|^y = l(2y| +Z,y3 )

(13)

\ K y 2 7
jfro = z t l —£i2i!l

(/)

v *  y 2 7 ■(0
•y2

(14)

We require initial estimates o f p, a,  ft, and cr2 (p<0), a <0), /3(0), cr2(0)) to imple­
ment this iterative algorithm. The method o f  moments estimators serves as a simple 
initial choice [see Everitt and Hand, 1981].

As an initial approximation o f  p, w e assume that there is no dominance effect, 
i.e., P <0> = 0.

A ssum ing p  = 0, the method o f moments yields the following equations:

r=4jliy>=a<-2 ? - « .  (16)
/ A  /=] ;-=1

j2 =  ~ F)2 = v 2 + 2 p { \ - p ) a 2. (17)
f=, j =1

A s 0 </? < 1, w e can fix p (0), = p 0 within this interval. Thus.

a <0>= F /(2 /? 0- l ) ;  (18)



J m = ° ‘ - 2Pa ~ Pl f - -  < w1)

Clearly p0 cannot be chosen to be 0.5.
Our next stage is to classify the parents (i.e. {(y,i,y,2)'- i = 1,2, . . .  , K }) into 

one of the three component distributions. We shall use the usual classification  
rule given by:

Classify into /„ if and only if

hn =  'WWm.wZ®, ;

/ = 1 ,2 ,. . . , K\ j  = 1,2; n = 1,2,3,; the z ijns being the final (converged) values in the 
above EM algorithm. This is, in fact, the Bayes’ classification rule corresponding to 
the 0 - 1 loss function and thus minimises the error in classification under such loss 
functions [Fergusson, 1967].

Having estimated a , /3, a2, p  and having classified the parents into the trait 
genotypes, we are now in a position to implement another maximum likelihood pro­
cedure to estimate 6. Before describing the actual procedure, let us note a few  salient 
points. Information on 6  can be obtained from only those offspring w ho have at least 
one of doubly heterozygous (i.e., A iA2MlM2) parent. We shall use the conditional 
trait distribution o f the offspring given the trait genotypes o f  the parents and the 
marker genotypes of both parents and the offspring in order to estimate 6. We pro­
vide these distributions in Tables I and II.

TABLE I. Trait Locus Mating Types Among MM X Mm Parents, Mating Probabilities, and 
Probabilities of Trait Locus Genotypes Among Offspring With Marker Genotype MM*

s Mating type Probability M M

“Kg

A[Ci[

1 A\A\ x  A|A| 4
Pi

1
2 0 0

2 „ 3„Pi Pi I d  - 6 ) \ e
3 A | A i x d\A i „ 3„Pi Pi } (1  - 9 ) 0

4 A[A] x  a,a, 
a,a, x  A)Ai

2pi p  2 0 1
2 0

5 A i £? | xA\Ai  
Qij4| x A\A]

2P i3P2
1
4

1
4 0

6 A,ai x  Aifli 
a]Ai x  Aiai

2_ 2 
l p2 l d - 0 )

1
4

7 A ,a i x a,A, 
a,A, x  <j|A|

i Pi
1
4 1 ( 1 - 0 )

8 A,Q, X 0,0, 
a,A , x  a,a,

2pip23 0 1
4

1
4

9 a,a,  x  A,a. PIPl 0
10 a,a,  x  a,A, PlP2 0 \ d - 6 )

1
II a,a, x  a,a, Pi 0 0 T

•Probabilities of trait locus genotypes among offspring w ith marker genotype Mm  can be obtained by 
replacing 6 by (1 -  0) in this table.
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Let:

MtJ = marker genotype o f j lh individual in i,h family,
i = 1 ,2 , . . .  ,K\ y = 1 , 2 , . . .  ,n, + 2

Gj]Gj2 = classified trait genotypes of the parents in i,h family,
i = 1,2, . . .  , K \ j =  1,2

= trait genotype o f  j ,h individual [i.e. (j -  2),h offspring] in i'h family,
i = 1 ,2 , . . .  ,K\ j  = 3,4„ . . . ,  n, + 2

p* ijn = P{Hjj = y„IG,,,G,2, Mn, Ma, My},
where y, = A\Auy2 = AiA2,Y3 = A2A2, i = 1 ,2 ,. . . ,AT;; = 3,4, . . . + 2; 

n = 1,2,3.

r,j„s are obviously functions o f  6. However, for the same genotype, Pijn may be 
different for different haplotypes. For example, if  Gn = A tA t, Gi2 = A {A2, M,t = M tMt, 
M,: = M tM2, M,} = M,A/|, then Pm = 6 if  the haplotype is A lM2/A2M ]. Thus, in esti­
mating 0, we have to consider the different possible haplotypes separately for given 
trait and marker loci genotypes o f each parent. We next classify the offspring into 
their trait genotypes.

Define:

<£,„ =  P(H„ = y  „|Gfl, Gj2, Mn, Mi2, My, y9)

_  îjnhSyl] ) (20)

i=  1 ,2 , . . . , A-; /  = 3, 4, + 2; n = 1, 2, 3.
In the computation of Qijn, we use a,  P,  a  obtained using the EM algorithm 

described previously.
The usual classification rule is given by:
Classify y,, into/„ if and only if

Qij* = ^ = 1 ,2 ,3  Qij, ;

/=  1,2..........K-j = 3A ..........n( + 2 ,n =  1,2,3.
The likelihood o f 0 is  given by:

L ^ ) = n L ,. ( 0 )  (21)
J = I

where L,(G) is the likelihood of the i"' family based on the classified genotypes o f the 
n, offspring of that family. Note that as haplotypic information is usually unavailable 
from nuclear family data, L,(0) would be a mixture o f the different conditional trait 
distributions of the offspring corresponding to the different possible haplotypes. For 
clarity of presentation, let us consider the following example o f  a nuclear family i 
with three («, = 3) offspring. Suppose the parental classified QTL genotypes are /V ,/l [ 
(= O',,) and A ,/! ' (= Gl2). Suppose the marker genotypes o f  these parents are, respec­
tively. M,MI (= A/,,) and M,M2 (= Mn). Then, the possible haplotypes o f  the doubly 
heterozygous parent are: and A IM1\AIM I. The classification probabilities



at the QTL for offspring depend on both marker genotypes o f  the offspring as also  
on parental haplotypes. Suppose the marker genotypes o f the three offspring are: 
M\M\  (= M,3), M xM2 (= Mi4), and M,M, (= Mi5). Suppose, the classified QTL geno­
types o f  these offspring are, respectively, A,A,  (= Ha), A,A2 (= / / l4) and A,A2 ( -  Hi5) 
when the haplotypic configuration o f  the doubly heterozygous parent is A\M{\A2M2, 
and A tA2, AtA t and A tA2 when the parental haplotypic configuration is A tM2\A2Mi. 
Then,

Li(0) = ~{6( i-e)2+a-e)3} (22)
In fact L,(0) is  a mixture with components o f  the form ci0d'1 (1 -  O f  or cm0 ‘' (1 -  
Of'{&  + 1 -  0)2}'3 where c/0 is som e constant. Since a direct analytical maximization 
procedure is complicated, we implement an EM procedure. For example, the com ­
plete likelihood corresponding to (22) would be:

l ; { 6 ) = | { 0 ( i  -  0 )2n a  -  e y r m (23)

6 ( 1  ~ 6 ) 2  n  w h e r e m = -  - )2-+ ( 1 _ 6 ) 3 - ^

Thus, L-{9)  would be o f the form c,0"‘ (1 -  ff)v‘ where c, is some constant while u, 
and v, are functions o f  9. Thus,

f W  =  { n c , } » £ ‘ , ' < l ^ )S ' l’' (24)

which is easy to m aximise giving

Z K
i=\Ui

Since u- s and v,’s depend on 6, we need an initial approximation for imple­
menting the EM algorithm. As 0 < 9 < 0.5, 6  = 0.25 may be used as an initial 
approximation. If the final (converged) value o f  9  exceeds 0.5, we take 0 = 0.5.

We finally note that in the first stage o f  this two-stage procedure, the estimated 
parameters are a, p, p,  and a 2. A ll these parameters are estimable from a sample o f  
randly drawn individuals from the population. If indeed a random sample o f indi­
viduals is available, then the above parameters can be estimated with trivial changes 
in the likelihood function derived above. The E and M steps also require trivial 
changes. Having estimated these parameters, one can sample families and initially 
classify only the parents into major QTL genotypes using the proposed classification  
rule (which requires the value o f  the quantitative trait o f the individual to be classi­
fied and estimates o f  the parameters a, /3, p,  and cr2). Families in which neither 
parent is classified as a heterozygote at the major QTL can be discarded even before 
marker-typing because these families will not provide any information for estimat­
ing 9. This strategy will be cost-effective.



EFFICIENCY OF TH E  ESTIMATION PROCEDURE

Assessment o f the efficiency o f  the estimation procedure is o f  obvious interest. 
For this, we have examined the empirical frequency distributions o f  0  based on mul­
tiple replicates o f simulated data. Before providing the results, w e describe the simu­
lation procedure for fixed values o f p, a, fi, o2, and 9. In the first step, we randomly 
generated the trait values o f a fixed number (NOBS) o f  pairs o f  unrelated parents 
from appropriate (selected randomly using a trinomial random number generator with 
cell probabilities p \  2pq,  and q2). Normal distributions (see M odel section). In the 
second step, using the data so generated, the trait parameters (a,  ft, o2, p)  were esti­
mated using the EM algorithm. (We emphasize that for the purpose o f  estimating the 
trait parameters, it is not essential to obtain data on pairs o f  parents; only data on 
randomly sampled unrelated individuals suffice.) In the third step, the QTL geno­
types o f the parents are inferred using the Bayes’ rule. For further computations, 
only those pairs o f parents with at least one inferred QTL heterozygote are retained. 
In the fourth step, for each parent in the retained pairs, marker genotype was deter­
mined using a trinomial random number generator. For subsequent computations, 
only those parental pairs with at least one double heterozygote were retained. In the 
fifth step, we randomly generated the marker genotype o f  an offspring by sampling 
either from a binomial distribution with success probability 1/2 for a parental mating 
in which one parent is or M2M2 and the other parent is M tM2 at the marker 
locus, or from a trinomial distribution with cell probabilities (1/4, 1/2, 1/4) for a 
parental mating in which both parents are MtM2. In the sixth step, based on the 
conditional probabilities o f offspring genotypes given parental mating type as pro­
vided in Tables I and II, we generated, using a trinomial random number generator, 
the genotype of the offspring with respect to the trait locus. These steps were re­
peated until the required number of informative families (NFAM) were obtained. Us­
ing the data so generated, we again used the EM algorithm to estimate 0. Replication 
of this procedure a large number of times (NREP) yielded the empirical frequency 
distribution. For every set of parameter values, we have evaluated the performance of 
the estimator with 5 offspring per family, NFAM = 100 and NREP = 1,000. We have, in 
a later section entitled “Sample Size Effect”, evaluated the effect o f sample size.

Classification of Parents With Respect to Q TL  Genotypes

As mentioned earlier, in the first stage of the present procedure, parents are 
classified into genotype classes on the basis o f their observed trait values. Success of 
estimating the recombination fraction accurately by the present procedure critically 
depends on the performance at the first stage. It is, therefore, important to evaluate 
how well parents are classified to their true genotypic classes by the present method. 
Results pertaining to classification o f parents to their true genotypes using the pro­
posed algorithm are provided in Figure la -c  with NOBS = 1,000, NOBS = 250, and 
NOBS = 100, respectively. We have observed that though the classification perfor­
mance was extremely good for NOBS = 1,000, the results were sufficiently satisfac­
tory for NOBS = 250. We found that when there is no dominance (i.e., P = 0), between 
95 and 99.5% of the parents were correctly classified into their true genotypic classes. 
The percentage of correct classification increased as p  deviated more from 0.5. This 
is expected because increase in the deviation o f p  from 0.5 increasingly polarises the
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(a) (b) (c)

P P P
Fig. 1. Percentage o f  correct classification of parents for sim ulation param eter values a  = 5, fi = 0, I , 
2, 3, 4, a 2 = 1 and (a) N O B S  = 1,000, (b) N O B S  = 250, and (c) N O BS  = 100. Circles correspond to p  = 
0.9, triangles to p  = 0.7, and squares to p  = 0.5.

distributions corresponding to the genotypes. The percentage of correct classifica­
tion decreased as the extent o f dominance (fi) increases. The worst classification 
arose for a  = 5 and ft = 4. In this case, the overlap between distributions o f the A|A, 
and A iA 2 genotype classes was the largest. Therefore, a non-informative parent (i.e., 
with true genotype A,A,) has a high probability o f being classified as informative 
(i.e., with true genotype A,A2) and vice versa. However, even in this case, the prob­
ability o f  correct classification was about 80%. We also noted that these results are 
independent o f 9. Thus, it is seen that the first stage o f the proposed method works 
extremely w ell, indicating that evaluation o f  the next stage, in which an estimate of 
the recombination fraction is obtained, is worthwhile.

Empirical Frequency Distribution of 6
If indeed the procedure provides a good estimate o f the recombination fraction, 

6, then one expects that the probability distribution o f 9 obtained from multiple rep­
lications o f simulated data generated using a fixed set o f parameter values will be 
clustered around the true values o f 6. Figures 2 -1 0  depict the frequency distributions 
o f 9 for simulation parameter values of 9 = 0, 0.1, 0.3 and 0.5, separately for p = 0.9, 
0.7, 0.5, and [3 = 0 ,2 ,  4. The values of the other parameters used in these simulations 
were: a  = 5 and o2 = 1. From Figures 2 -1 0  it is seen that in all cases, except when 
the trait and marker loci are completely unlinked (i.e., 9 = 0.5) and the dominance 
effect (ft) is large (Figs. 8d, 9d, and lOd, the distributions were unimodal and 
leptokurtic. In these extreme cases, there are higher probabilities o f misclassification  
as has been noted in the previous section. For 9 =  0, in 8 0 -8 5 r/r o f the replications G
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was < 0.08 if P = 0, while this percentage was between 65-70%  if  /J = 4. Similarly 
for 0 = 0.3, in 80-90% of the replications 0 was in the interval [0.25, 0.35]. How­
ever, for 0 = 0.5, while 95% of the 9 values were between 0.45 and 0.5 for p  = 0.5. 
this percentage for p  = 0.9 was only about 75%. The proportion o f  9 values lying 
close to the true value of 9 decreased as p  increased. Thus, it is seen that the proce­
dure provides good estimates in conformity with expectations, unless the degree of 
dominance (P) is very high. Therefore, if  the estimated values of j3 is close to that of 
a, the estimate of 9 may be inaccurate.

Mean and Variance of 6 and Confidence Interval for 6

To examine the behavior of the estimator with respect to variation in values of p  
and p. we have performed simulations for fixed parameter values a  = 5, o2 = 1, and for 
values of p  = 0.9, 0.7, 0.5; p  = 0, 2, 4 and 9 = 0.0.1, 0.3, 0.5. We have evaluated the 
means and variances of 0 and have obtained 95% confidence intervals o f  9. These results 
are given in Table II. It is seen from Table III that the true value o f 0 was always included 
in the 95% confidence interval o f 0. The coefficient of variation of 0  was also <  0.5%. 
These results indicate that the performance of the proposed estimator is extremely good. 
It is also seen from Table III that when p  deviates from 0.5, the mean o f 9  is closer to the 
true v alue of 0and the 95% confidence interval of 9  is narrower, unless 9  is very close to 
0.5. The variance o f 9  increased when p  deviated more from 0.5. Table III also
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Fig. 3. Empirical frequency distributions of § for simulation parameter values p  = .7, a  = 5, P = 0, <r 
= 1 and (a) 6 = 0, (b) 0=  .1, (c) 9 = .3, and (d) 0=  .5.

shows that estimates o f  9  deviated more from the true value of 9, their variances in­
creased, and the 95% confidence intervals became wider as the value o f p  increased to a. 
This phenomenon is due to increasing overlap between the two genotypic classes AiA, 
and j4,A2 as /? becomes closer to a , resulting in errors o f  parental genotype classification. 
We also note that for fixed values o f  a,  o2, p,  and 9, the adverse effect o f increase o f P on 
estimation o f 9  is non-linear in p. For the sets of parameter values investigated, the 
relative error in estimation o f 9  never exceeded 20%.

Thus, for a fixed value o f  p, the efficiency o f  estimation o f  9 is dependent on 
both the true value o f  9  and the trait allele frequency, p,  for any finite sample sizes 
o f  fam ilies. S ince the trait genotype is unknown and needs to be inferred, the infer­
ence is better when the value o f  p  is much deviated from 0.5, because in such cases 
the overlap o f  trait-value distributions among genotypes is small. However, the effi­
ciency o f  estimation o f  9  strongly depends on the “effective” sample size (that is, the 
number o f  informative fam ilies), especially when the true value o f 9  is not close to 
0. W hen the value o f  p  deviates from 0.5, the effective sample size decreases, thereby 
reducing the efficiency o f  estimation o f  9.

Sample Size Effect

We have investigated  the performance o f  the proposed estimator when data 
on few er offspring are available. Based on sim ulated data with 3 offspring per
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Fig. 4. Empirical frequency distributions of 0 for simulation parameter values p  = .5, a  = 5, /3 = 0, o2 
= l and (a) 0 = 0, (b) 0 = .l , ( c )  0 = .3 ,a n d (d )  0 = .  5.

family, we have obtained the empirical frequency distributions o f  9  for different 
values of 9 and p  = 0.5, 0.7, 0.9. The frequency distributions w ere marginally 
less well-behaved compared to those based on 5 offspring per fam ily. The esti­
mated 9 values were also marginally more deviant from true 9  values with smaller 
sibship sizes. For example, the mean and variance o f  9  for sim ulation  parameter 
values a  = 5, /J = 2, o2 = 1, p  = 0.7, and 9  = 0 .3  w ere 0 .3 4 2  and 0.00765, 
respectively, based on 100 informative fam ilies with 3 offspring per fam ily, while 
these figures were 0.317 and 0 .000683 with 5 offspring per fam ily. For p  = 0.5 
and the remaining simulation parameter values as above, the m ean o f  9 was 0.377 
with 3 offspring per family, while it was 0.321 with 5 offspring per fam ily. The 
additional deviation o f estimated 9 from true 9 due to decrease in sibship size 
from 5 to 3 varied between 8 and 20%. Thus, w hile larger data sets are desirable 
especially when p  is close to 0 .5 , our method continues to perform  rather well 
even with smaller sibship sizes. We also em phasize that although w e have per­
formed our simulation experiments with fixed  sibship s izes  o f  5 and 3, variable 
sibship sizes pose no problem. Likelihood equations are easily  m odified  and since 
data on offspring conditional on parental genotypes are independent, our simula­
tion results are based effectively  on 5 (or 3) x  number o f  fam ilies.
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Power of Test for Linkage Detection for Varying Degrees of Major Trait 
Locus Effect

To assess, more clearly, the efficiency o f the proposed estimator 9 at varying 
degrees o f  major locus effect, measured as the proportion of variance of QT ex­
plained by the major biallelic locus (A), w e have computed the empirical power of 
the test o f  hypothesis H0 : 6 =  90 < 0.5 vs. H t : 9 = 0.5. For this assessment, we have 
generated simulated data for different values o f A. W hile such data can be generated 
for various combinations o f  parameters, we present results o f /? and cr2 kept fixed at 
0 and 1, respectively, with a  and p  varied suitably to attain different values o f A in 
the range o f  0 .2  to 0.9. A fixed value o f 9(i = 0.1 was used throughout. For each set 
o f simulated data, the empirical 5% cut-off points for rejection for the null hypoth­
esis was determined and the power was estimated as the proportion o f replications 
(out o f  1,000) with 9  = 0.5 in which 9  was greater than the empirical 5% cut-off 
point. The results are graphically presented in Figure 11 from which it is evident that 
our proposed method performs quite well, at least when the percentage of variance 
in QT explained by the major locus exceeds 30%. Other combinations o f values of 
parameters a2, a, p  yielding the same value of A resulted in approximately the 
same power; estim ates are not provided.
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Effect of Linkage Heterogeneity

Suppose a QT is controlled by a single major biallelic locus that explains A % 
of variance (the remaining variance being environmental), but there is linkage het­
erogeneity. That is, in a proportion (n) o f families, the QT is due to one major locus 
and in the remaining proportion (1 -  n) o f families, the trait is due to an unlinked 
major biallelic locus. We assume that the values o f A for both loci are equal, which 
in a sense is the worst-case scenario. Suppose, a biallelic marker is linked to the first 
QTL: that is, linkage is present in only k  proportion o f fam ilies. It is pertinent to 
examine the performance of the proposed procedure in estimating linkage from the 
pooled set o f families, when one is unaware o f the existence o f  the underlying link­
age heterogeneity.

We have used simulations to examine this. In generating simulated data, we 
have used 6 = 0.1, two values of A = 80 and 60% (in each case, a, ji, and cr were 
kepi fixed at 5. 0. and 1. respectively; p  was varied suitably to attain appropriate 
values of A. and five values o f 71 = 0.9, 0.8, 0.7, 0.6, and 0.5 for each value of A. 
Results are presented in Table IV, from which it is seen that the estimated value of 0 
is reasonably good unless there is considerable linkage heterogeneity (small n) or 
the proportion of variance explained by the major locus is small (small A). When 
compared to the results presented in the previous section (and Fig. 11), we see that
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Fig. 7. Empirical frequency distributions of 6  for simulation parameter values p  = .5, a  = 5, /? = 2, cr2 
= 1 and (a) 0 = O , ( b ) 0 = . l ,  (c) 0  = .3, and (d) 0 = .5.

while in the absence o f  linkage heterogeneity the proposed method performs quite 
well even when A is as low  as 30%, in the presence o f linkage heterogeneity the 
method fails to perform w ell unless A is as high as about 80%.

Analyzing a Tw o-Locus Q T  as a Single-Locus QT: Effect on Estimate of 6

Consider a QT that is controlled by two unlinked, biallelic trait loci. Suppose a 
biallelic marker is linked to one o f  the two loci. In the absence o f  knowledge that the 
QT is controlled by two major loci, it is reasonable to investigate the effect o f ana­
lyzing data assum ing that the QT is controlled by a single major locus, on the esti­
mate o f  6. To exam ine this issue, w e generated simulated data sets for different values 
o f a  and p.  W e denote the values o f  a  as a x and a2 for the two trait loci. The values 
o f J3 and p  were held fixed at 0 and 0.7, respectively, for both loci; 6 (recombination 
fraction between the marker and one QT) was taken as 0.1. Having generated repli­
cate data sets for each combination o f  the above parameters, we used the proposed 
method for estimating 0  assuming that the QT was controlled by a single major 
locus. The results are presented in Table V. It is seen from Table V that when the 
effect on the QT o f  the trait locus to which the marker is unlinked (the “unlinked 
QTL”) is small relative to the linked trait locus, the method performs quite well even 
when the data are incorrectly analyzed assuming that the QT is controlled by a single
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l;ig. 8. Empirical frequency distributions of 6 for simulation parameter values p  = .9, a  -  5, P = 4, cr 
= 1 and (a) 0 = 0, (b) 6= .1, (c) 0=  .3, and (d )0 = .5 .

major locus. However, the estimate o f d, which is always upwardly biased, worsens 
as the relative effect o f the linked trait locus decreases. When the relative effects of 
the two trait loci are equal, analyzing the two-locus QT data as single-locus data 
leads to hopelessly bad estimates of the recombination fraction.

ESTIMATION OF 0WHEN THE MARKER IS M ULTIALLELIC

The above procedure of estimation o f 6  can be easily shown to hold in the case of a 
multiallelic locus. Suppose the marker locus has K  alleles denoted as M hM2, . .  . ,  MK. A 
mating between a homozygote and a heterozygote will be o f  the form M,M, x  MjMk, 
while a mating between two heterozygotes will be o f the form M,M, x  MkMh

A M,M, x  MjMk mating will produce offspring with marker genotypes MM,  and 
M,Mk with probability 1/2 each. The probabilities o f the trait genotypes o f the off­
spring for various parental mating types are identical to those corresponding to marker 
genotypes MM or Mm given in Table I. In the case o f  a mating between two het­
erozygotes, we need to differentiate between matings M,M, x  M.M, and M,M, x  JM*M( 
where either i £  k or j  *  /. For M,Mj x  M,M, matings, the distributions o f the trait 
genotypes of the offspring for varioius parental mating types are identical to those 
corresponding to marker genotypes MM, Mm, or mm given in Table II. M,Mj x  MkMi
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( i k or j  *  / )  matings can produce offspring with marker genotypes M,Mh M,Mt, 
M,M,, and MjM, with probability 1/4 each. The probabilities of the trait genotypes of 
the offspring for various parental mating types are given in Table VI.

Note that the estimation of the trait parameters a. cT. and p  does not depend on 
the marker. Thus, the procedure of  estimating these parameters in the case ol a 
multiallelic marker is identical to that in the case of a biallelic marker described 
earlier. While estimating 6, we should consider the appropriate conditional distribu­
tion o f  the trait genotypes of  the offspring given in Tables 1. II. and VI. As all the 
probabilities in these tables are some multiples of 0. O'. (1 -  0). (1 -  ())'. [tf + (1 
tf)"). we can use the EM procedure described earlier to obtain the m.I.e. ol 0.

EM  A P P R O A C H  IN M U L T IP O IN T  M A PP IN G

The proposed EM procedure for mapping a trait locus using two-point linkage 
can be easily extended to the case of multipoint mapping. For ease ol exposition, we 
consider a three-point mapping setup. Suppose the trait locus is flanked by two 
biallelic. codominant marker loci with alleles (A/,,/;i,) and respectively, such
that the recombination fractions between the trait locus and the marker loci are (I. 
and 0:, respectively. We assume that chromatid interference is absent and. hence, the
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Fig. 10. limpirical frequency distributions of $ for simulation parameter values p = .5, a  = 5, /J = 4. 
er -  I and (a) 0 = 0, (b) 0= ,l, (c) 9 = .3, and (d) 9 = .5.

recombination fraction between the two flanking markers is 9 = 0i + 02 -  29l92. The 
conditional probabilities o f the trait genotypes o f offspring given the parental trait 
and marker genotypes as well as the offspring marker genotypes are given in Table 
VII for backcross at both marker loci, in Table VIII for intercross at both marker 
loci, and in Table IX for backcross at one marker locus and intercross at the other.

We have used simulated data to assess the relative efficiency o f multipoint linkage 
analysis over two-point linkage analysis. The simulation parameter values used were a  = 
I; <r = I: P = 0, 2 ,4; p  = 0 .9 ,0 .7 ,0 .5  and different values o f 0i and 92. We first note that 
since the estimation of the trait parameters a, /?, o2, and p  do not involve marker infor­
mation. the classification of parents into their true genotypes is identical to the case of 
two-point linkage. The EM algorithm invoked in the second stage o f our proposed proce­
dure to estimate 0, and 0: is also similar to the previous case, except that we need to 
consider the conditional trait genotypic distribution of the offspring given information at 
both the marker loci. We assume that the value of 9, i.e., the recombination fraction 
between the two marker loci is known a priori. Based on our simulated Hqt.i we have 
found that the histograms of 9, and 02 (i.e., the estimated values of 0, and ft) are much 
more well behaved and concentrated than in the case of two-point linkage, especially 
w hen a marker locus is unlinked to the trait locus (i.e., when 0, or 92 is 0.5). Two repre­
sentative histograms are presented in Figures 12 and 13. We also find that using three-



TABLE III. Mean and Variance of $  and 95% Confidence Interval of flfor a = 5, tr2 = l ,p  = .9, 
0.7, 0.5; 0 = 0, 2,4; 6> = 0, 0.1, 0.3, 0.5

p  True 9

v -. - . ,  V W )

P Mean (0) Var (0) 95% C.l. of e

.9 0 0 0.015 0.000174 (0.009, 0.026)
2 0.044 0.000432 (0.017, 0.048}
4 0.075 0.000695 (0.051, 0.097)

0.1 0 0.103 0.000084 (0.099, 0.114)
2 0.117 0.000277 (0.095,0.126)
4 0.172 0.001008 (0.131,0.195)

0.3 0 0.303 0.000452 (0.291,0.311)
2 0.313 0.000747 (0.286, 0.328)
4 0.368 0.001739 (0.345,0.401)

0.5 0 0.478 0.000397 (0.438, 0.500)
2 0.471 0.000902 (0.415,0.500)
4 0.409 0.001335 (0.395, 0.487)

.7 0 0 0.021 0.000154 (0.019, 0.041)
2 0.053 0.000312 (0.023, 0.057)
4 0.081 0.000865 (0.063, 0.101 >

0.1 0 0.107 0.000087 (0.095,0.122)
2 0.122 0.000290 (0.097,0.128)
4 0.182 0.001064 (0.143. 0.204)

0.3 0 0.308 0.000497 (0.293,0.317)
2 0.317 0.000683 (0.284,0.321)
4 0.373 0.001867 (0.357.0.408)

0.5 0 0.491 0.000083 (0.477. 0.500)
2 0.487 0.000118 (0.472. 0.500)
4 0.413 0.001146 (0.401.0,494)

.5 0 0 0.038 0.000186 (0.022, 0.058)
2 0.067 0.000299 (0.035.0.073)
4 0.105 0.001018 (0.071. 0.112)

0.1 0 0.113 0.000129 (0.097.0.123)
2 0.115 0.000283 (0.089,0.124)
4 0.196 0.001153 (0.162. 0.208)

0.3 0 0.314 0.000512 (0.291.0.325)
2 0.321 0.000630 (0.287. 0.329)
4 0.381 0.001794 (0.358,0.416)

0.5 0 0.497 0.000056 (0.486. 0.500)
2 0.491 0.000068 (0.478. 0.500)
4 0.421 0.001062 (0.411.0.498)

point linkage analysis, the mean o f 0, (or <92) is closer to the true value ot 6, (or 6:) than 
in the case o f two-point linkage. The variances of the estimates in the case ot multipoint 
linkage are also lower than those in the case o f two-point linkage. Relevant statistics are 
provided in Table X. The relative efficiency o f the three-point linkage analysis over the 
two-point linkage analysis (defined as the ratio of the variance of the estimate in the case 
o f two-point linkage to that in the case o f three-point linkage) was found to be about 1.3.

DISCUSSION

The proposed method o f  linkage detection exploits the fact that knowledge o f  
parental genotypes at the QTL greatly eases statistical estimation o f 0. Since for a



A

Fig. 11. Empirical power of the test procedure for detecting linkage for different values of the pro­
portion of variance in QT explained by the major QTL.

quantitative character, the QTL genotype of an individual cannot be inferred with 
certainty because of intrinsic variability within genotype classes, we have used the 
EM algorithm coupled with a Bayes’ classification procedure to classify parents into 
QTL genotype classes. A similar EM approach to estimate the trait parameters was 
used by Kao and Zeng [1997] in mapping a quantitative trait locus in an interval 
flanked by two markers. However, their procedure was based on inherent knowledge 
o f haplotype information that is not readily available in human genetic studies. More­
over, the effect of marker genotype on trait value was assumed to be linear. The 
procedure proposed by us does not use these assumptions. In our procedure, esti­
mates o f  trait parameters and recombination fraction are obtained. The estimates of

TABLE IV. Mean and Variance o f Recombination Fraction in the Presence o f Linkage 
Heterogeneity (n = Proportion of Linked Families) Estimated From Simulated Data Sets With 
Differing Values o f A (Percentage of Variance Explained by the Major QTL) and Recombination 
Fraction = 0.1

It

A = 80% A = 60%
Mean (0) Var (9) Mean (8) V ar(0)

0.9 0.126 0.0041 0.1466 0.0075
0.8 0.1415 0.0062 0.1683 0.0112
0.7 0.167 0.0091 0.1975 0.0172
0.6 0.194 0.0143 0.223 0.0237
0,5 0.2268 0.0197 0.2549 0.0294



TABLE V. Effect o f Analyzing Two-Locus QT Data as a Single-Locus Data, on Estimated 0; 
When Its True Value is 0.1 (a i and a2 Denote the Effects of the Two QTLs), A Is the Proportion 
of Variance Explained Jointly by the Two QTLs and A, Is the Proportion Explained by the 
Linked QTL_______________________________

a  i «2 A A, Mean (0) Var (0)

5 1 0.91 0.88 0.1088 0.0007
5 2 0.92 0.79 0.1291 0.0016
5 3 0.93 0.68 0.1516 0.0031
5 4 0.94 0.57 0.1774 0.0058
5 5 0.95 0.47 0.2056 0.0094

trait param eters are used in inferring the parental QTL genotypes. The estimation of 
trait param eters, in the first stage o f  the proposed two-stage procedure, can be based 
either on data  o f a random sample o f  individuals or on data o f  parents (assumed to 
be unrelated) in fam ilies. The first stage o f  our procedure does not use marker geno­
type inform ation. Thus, even if  families are sampled, it will be prudent to initially 
obtain only measurements o f  the quantitative trait on parents. The EM algorithm 
implemented in the first stage will provide estimates o f trait parameters. Having ob­
tained these estimates, we can classify parents in families into major QTL geno­
types, using the proposed classification rule. This enables identification of potentially 
informative fam ilies (i.e., at least one parent heterozygous at the major QTL). Then, 
the investigator can obtain genotype information at marker loci on both parents and 
m easurem ents o f  quantitative trait on offspring in those families in which at least 
one parent is doubly heterozygous. Thus, the proposed two-stage procedure provides 
cost effectiveness in terms o f  data collection. In the second stage, based on data on 
only informative families, the proposed EM algorithm provides the maximum likeli­
hood estim ate o f  the recombination fraction between a marker locus and the major 
QTL. We note that in the context o f  human pedigree analysis, the EM algorithm was 
first applied by Ott [1977].

We have shown that our proposed method results in virtually error-free classifi­
cation o f  parental QTL genotypes, unless the dominance effect is very large. We 
have also shown, using simulations, that for a wide range o f parameter values that 
corresponds to w idely different values o f  the proportion o f variance in QT explained 
by the major locus, the estimates o f  recombination fractions and the power to detect 
linkage are quite good for reasonable sample sizes. We have shown that our method 
performs more efficiently when data on multiple markers flanking the trait locus are 
used. One major advantage o f the proposed method is that the estimation o f recom­
bination fractions is not as strongly tied to estimates of QTL parameters as in lod- 
score analysis. Through the use o f  EM algorithm, the present procedure extracts 
appropriate information from the quantitative data and then uses a Bayesian classifi­
cation rule to transform the QT data to qualitative genotypes before estimating 0 
from the transformed data by a likelihood-based method. This reduces the impact of 
error in estimating trait parameters on the estimate o f  6. Because o f the weak depen­
dence o f  6  on estimates of trait parameters, and because no separate segregation and 
linkage analyses need to be performed in the present approach, the earlier observa­
tions that model misspecification can seriously affect estimates of trait parameters
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Fig. 12. Empirical frequency distributions of 0 , and 0 2 for simulation parameter values p = .9, a = 5, 
/) = (), cf= I, 0, =0, 02 = 0.1.

Fig. I V l m p i i  i L. i l  frequency distributions of 0 1 and 0 2 for simulation parameter values p  = .7, a  = 5*
/)= :. rr'= 1. 0| = 0. 1. 0; = o.l.



TABLE X. Mean and Variance o f (flj) and ((?;) and 95% C.I. of &i and d2 for ce = 5 and g 2 = 1

p P 0i 02 M ean(0|) Var(02) 95% C.I. of 0, Mean(0]) Var(02) 95% C.I. of 02

.9 0 0 .1 .013 .000156 (.007, .023) .102 .000067 (.097, .115)

.7 2 .1 .1 .113 .000238 (.098, .124) .115 .000242 (.096, .126)

.9 4 .1 .3 .170 .000945 (.132, .194) .362 .001583 (.341, .395)

.5 2 .3 .3 .316 .000586 (.287, .328) .314 .000588 (.288, .325)

.5 4 .3 .5 .372 .001658 (.359, .416) .444 .000971 (.420, .498)

.7 0 .5 .1 .492 .000065 (.481,.500) .101 .000068 (.096, .119)

[Dizier et al., 1993; A twood et al., 1995] and that prior segregation analysis can 
reduce the power to detect linkage [Atwood and Slifer, 1997] become less relevant. 
Further, this approach leads to a considerable reduction in computational load, which 
in usual parametric segregation and linkage analyses o f a QT can be sufficiently 
heavy to require the use o f a supercomputer [Atwood and Slifer, 1997], Joint segre­
gation and linkage are computationally even more expensive, although there are some 
indications that it may be more powerful [Gauderman et al., 1997] than separate 
segregation and linkage analyses. We have shown that for reasonable levels o f link­
age heterogeneity, the proposed method performs quite well. Model misspecification, 
treating a tw o-locus QT as a single locus QT, even though yields biased estimates of 
9, leads to gross errors in inference only when both trait loci have nearly equal ef­
fects. Thus, the present method appears to be quite useful and robust for QTL map­
ping. Compared to numerical maximization o f the likelihood o f parental and offspring 
data, on all fam ilies jointly with respect to all parameters (recombination fraction, 
trait parameters and allele frequencies), the proposed stagewise procedure using the 
EM algorithm is computationally much more efficient and provides reduction o f data 
collection costs.
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