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This paper considers a stochastic fluid model of a buffer content process {X(¢), ¢ > 0} that depends on a finite-state, continuous-
time Markov process {Z(¢), ¢ = 0} as follows: During the time-intervals when Z(z) is in state {, X(f) is a Brownian motion with
drift p,;, variance parameter o and a reflecting boundary at zero. This paper studies the steady-state analysis of the bivariate

process {(X(r), Z(1)), t =

0} in terms of the eigenvalues and eigenvectors of a nonlinear matrix system. Algorithms are

developed to compute the steady-state distributions as well as moments. Numerical work is reported to show that the variance

parameter has a dramatic effect on the buffer content process.

Fluid flow models have been used extensively in mod-
eling high-speed communication networks (see
Anick, Mitra and Sondhi 1982, Kosten 1986, Mitra
1988a, b, Elwalid and Mitra 1991, Elwalid, Mitra and
Stern 1991, etc.) and as approximate models for queues
(see Vandergraft 1983, Chen 1988, Stern and Elwalid
1991, Chen and Yao 1992, Kella and Whitt 1992, etc.).
Typically, the fluid represents bits or packets of informa-
tion and the fluid flow model describes the stochastic be-
havior of the fluid level in the buffer. The arrival process of
the fluid into the buffer and the departure process from the
buffer are both modulated by a random external environ-
ment. Typically, the environment is described by a finite-
state, continuous-time Markov chain and the rate at which
the fluid enters and exits the buffer is assumed to depend
deterministically upon the state of the environment. We
call such models the first-order fluid flow models.

In spite of their success as a modeling tool in high-
speed networks, the fluid flow models have one draw-
back—they are ““first-order’” models. Hence, they work
well when the system characteristics are adequately de-
scribed through first moments. This is why they are so
attractive for the D|D|1 queues in random environment,
or the ATM networks where packets are of constant size
and the sources behave in ‘‘on-off”” fashion. They cannot.
account for the wvariability during an on-period, that
S, the variance of the amount of fluid coming into or
leaving the buffer during one environment state.

It is this limitation of fluid flow models that has
Prompted us to investigate the ‘‘second-order’> models—
models that take into account the first and second mo-
ments of system characteristics. Taking a cue from the
diffusion approximations in queueing systems (see
Heyman and Sobel 1982), we study diffusion processes

whose drift and variance parameters are dependent upon
an external random environment. Brownian motion has
been used to model simple stochastic flow systems (see
Harrison 1985). Hence, our model can be thought of as
an extension of that work. When the variance parameter
is zero in all states, this model reduces to the standard
fluid flow model. Thus, the current work extends the
first-order fluid flow models by addressing one of their
limitations. London et al. (1982) studied first- and
second-order fluid models (not quite the same setup as
considered here, but related to it) via Wiener-Hopf fac-
torization methods (see Kennedy and Williams 1990).
This approach does not seem to be computationally trac-
table for the second-order case, and hence we do not
discuss it here. Recently, we became aware of the inde-
pendent work of Asmussen (1992) that substantially
overlaps and complements ours. However, our approach
is different.

The paper is organized as follows: The model and the
notation is introduced in the next section. The main
equations satisfied by the transient and steady-state
probability distributions are derived in Section 2. Build-
ing upon the solution methods developed for first-order
fluid models, Section 3 describes a spectral solution to
these equations by using methods of eigenvalues and
eigenvectors. Several important special cases are studied
in Section 4. Section 5 contains several analytical and
numerical examples. These examples show that using
first-order fluid flow models (i.e., ignoring variability) can
lead to serious underestimation of congestion. Hence, it
is crucial to appropriately handle the variance compo-
nents. Finally, Section 6 describes two important exten-
sions and variations of this model to handle other
practical boundary behaviors.
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1. MODELS

Consider an infinite capacity buffer where fluid enters
and exits according to a random process. Assume that
the behavior of the random process is influenced by an
external environment. The dynamics of the environment
is modeled by a finite-state, continuous-time Markov
chain (CTMC) {Z(¢), ¢ = 0} taking values in E = {1,
2, ..., m}. We assume that {Z(¢), ¢ = O} is an irreduc-
ible CTMC with a generator matrix Q = (g;). Let X(z)
denote the amount of fluid in the buffer at time . We
describe the stochastic behavior of the {X(¢), ¢+ = 0}
process below.

Given that the environment stays in state / during the
interval [t, ¢ + h), the increment X(¢r + h) — X(z) in
the {X(z), t = 0} process over [¢, t + k) is assumed to
be normally distributed with mean w4 and variance o7,
and X(t + h) — X(¢) is independent of {(X(¢z), Z(z)),
0 < s < r}. In other words, while Z(¢) stays in state i,
the X(#) process is a Brownian motion with drift param-
eter u; and variance parameter o2, i = 1, 2, ..., m.
Typical sample paths of the {X(z), # 2 0} and {Z(¢),
¢ 2 0} are shown in Figure 1. Since X(z) is the amount of
fluid in the buffer at time ¢, it cannot be negative. We
model this by assuming that the state 0 is a reflecting
barrier for the Brownian motion in each state of the
environment.
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Figure 1. The sample paths X(t) and Z(r), where the

drift and variance parameters of X (¢) change
whenever Z(¢) changes.

Let [m] be the limiting distribution of th

77' =
{Z(¢), t = 0} process. Since we have assumed thy
{Z(¢), t = 0} is an irreducible CTMC, it is well knowy
that 7 is the unique solution to

7Q=0, % 7 =1. (1
Let

d =

N

Tik;. (2)

i=1

The quantity d is the mean drift of the {X(¢), ¢ > (}
process when the {Z(¢), ¢t = 0} process is in the steady
state. The {(X(z), Z(t)), t = 0} process has a limiting
distribution if 4 < 0. (This is identical to the stability
condition in the first-order models.) Hence, we assume
that d < 0 when computing the limiting distribution.

2. ANALYSIS

From the description of the model given in the previous
section it is clear that {(X(¢), Z(¢)), ¢ = 0} is a Markov
process on the state-space [0, =) X E. Since the reflect
ing behavior in environmental state j depends on
whether o;z = 0, and if so, on the sign of Kj> We intro-
duce the following partition of E: E, = {j € E: o} >
0}, Eg ={j €EE: 0} =0, y =0}, Eq, = {j EE
0]-2 =0,y >0}, and E,_ = {j € E: or]-2 =0, ,uj<0}.
Let m,, my, mgy,, and m,_ be the cardinalities of £.. -
Ey, Ey ., and E,_, respectively. Finally, let £, = E, U
Eq_andm, = my, + mqy_.

Next we describe the generator of the {(X(z), Z(t))
t 2 0} process. Let f be a real function from [0, ) x
such that f{(-, j) is twice continuously differentiable. D¢
fine the operator U, for ¢ = 0 by:

(Uif N, j) = E(flX(2), Z()|X(0) = x, Z(0) =j). ()
The derivative L of U, with respect to ¢ at ¢ = 0§

known as the generator of the Markov process, i.¢.,

(Lf )k, J) = lim ¢ LUL, ) = fx, ) g

Following the standard analysis (see Karlin and Tayl
1981), the following expression for L can be derived:

(Lf)x, j) = Voo if "(x, j) + uif (%, J)

+ X gu(fix, k) - flx, j))
kk=j

Vaaff(x, ) + pif ' (x, )
+ 2 duflx, k), g

where f'(x, j) and f"(x, j) are the first and second
derivatives of f(x, j) with respect to x. The last equall
follows from g;; = ~2kik=; Q- In order that (5) l?e
valid, f needs to be twice continuously differentiable y
the x variable, with



f'(o,]'):o fOrjeE+ UEO UE()_. (6)

The condition (6) arises because the X component of
the (X, Z) process has a reflecting barrier at x = 0. In
Jistates j € Egp U Ey U E,_ of the Z process, the
sate x = 0 acts as a reflecting barrier. We do not need
{6)to hold for j € E ., because in this case the bound-
ary is never reached from the interior.

Using the generator defined by (5) and (6) we can now
derive the equations satisfied by the distribution of (X(r),
Z(r)). Let

Ft,x, 3 y, 1) = P(X(1) < x, Z(¢t)
=jlX(0) =y, Z(0) = i) (7)

be the joint distribution of (X(¢), Z(¢)). The analog of the
Kolmogorov forward equation for £ is

d
p > Jf(x, HF(, dx, j; y, 1)

J

-3 j LAY, DF(E, x, 5 v, 1), ®)

J

where the operator L is defined by (5) and (6).

Intuitively, it is clear that F(¢, x, j; y, {) has a mass
C(t,j; v, i) (which may be zero) at x = 0 and a density
plt,x,j; ¥, i) for x > 0. This can also be deduced from
(8 with further analysis, which we do not report here.
We mention that the first-order models also have this
feature.

The next theorem gives the differential equations satis-
fied by the densities and the boundary conditions (we use
P"andp” to denote the first and second partial derivative
of p with respect to x).

Theorem 1. The densities {p(t, x, j; y, i)} satisfy the
following partial differential equations
9
PUUEN SN
=ROp, x, iy, i) = wip' (e, X, 5 ¥, 0)

PPl x, ks y, i)gy, x> 0, 1> 0 9)
With the boundary conditions
i
25y, i)

=hofp't, 0, s y, i) - wip(t, 0, j5 y, i)

+§ c(t, ks y, i)gy for all j (10)
and
G5y =0 forjeE, UE,,. (11)

Progf, See the Appendix.

y I]‘;‘S_Sllmi_ng that the Markov process {(X(¢), Z(¢))} has a
ting distribution, define
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pj(x) = lim p(z, x, j; y, i) (12)
and
¢j = lim c(z, j; y, i). (13)

(Note that we have implicitly assumed that the limits do
not depend upon the initial state (y, i)). The next theo-
rem gives the equations satisfied by {p;(x)}, {c;}.

Theorem 2. The limiting densities {p;(x)} satisfy

V2o pi(x) = wpj(x) + % Pr(x)qi =0 (14)

along with the boundary conditions

V20 ?pi(0) — w,p;(0) + g ckqi =0 (15)
and
Ck=0 fOl‘kEE+ UEO+. (16)

Proof. This follows by letting # — @ in (9), (10), and (11).

In the next section, we examine the spectral represen-
tation of the solution to (9) satisfying (10) and (11).

3. LIMITING DISTRIBUTIONS

In this section we use Theorem 2 to solve for {p;(x)} and
{c;}. It is convenient to introduce the following matrix
notation:

M

0
m=| b : (17)
Mm
1%} 0'12 X 0
S = 123 a3 . , (18)
0 V202
p(x) =[pi1(x), p2(x)s <o s Pm(X)], (19)
and
C=[C1,C2,..-,Cm]. (20)

With this notation, we can write (14) and (15) in matrix
form as:

p'(x)S —p'(x)M + p(x)Q =0 (21)
p'(0)S —p(OM +cQ =0, (22)

where p’(x) and p"(x) are vectors of first and second

derivatives of p(x), respectively.
From the general theory of linear differential equations
we know that a solution to (21) is a linear combination of

functions of the type

p(x) =e"¢, (23)

where A is a scalar and ¢ = [y, o, ..., ¢,,]. Substi-

tuting in (21) we get
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HIA2S —AM + Q]1=0. (24)
Thus, A must be a solution to

det[A%S —AM + Q1=0 (25)

and ¢ satisfies (24). We say that A is an eigenvalue and ¢
is an eigenvector of the system (24). The quadratic ma-
trix polynomial (24) is similar to the one in Elwalid, Mitra
and Stern.

We next show how one can compute the solutions A to
(25) and the corresponding vector ¢ in (24) by using stan-
dard matrix eigenvalues and eigenvectors. We need the
following matrix notation for the results.

Partition the Q, M, and S matrices over E ., E,, and
E . as follows:

(Os+ Qw0 Qs

Q={Co+ Qoo Qox | (26)
.Q*+ Q*O Q**
[M, 0

M= M, } 27)
LO M,
[S . 0

S = So . (28)
LO S«

Note that if £, = E, then X(¢) = X(0) for allz = 0, and
Z(t) is a CTMC with rate matrix Q. Hence, we assume
that £, is not the whole set E, so that Qg is invertible.
Also, notice that M, is invertible. Now denote

R+* = Q+* - Q+OQ0_01QO*3
R++ = Q++ - Q+0Q0‘01Q0+9

Rix =Q**‘Q*0Q60]Q0*, (29)
Ryi =Quy ~ Q*0Q601Q0+-
Finally, define
0 R.M;' -R.. 57
B={0 R.M;' =R, Si! (30)
I, 0 M S7!

where I, is an identity matrix of size m,.

Theorem 3

i L?t A be a solution to (25) if and only if Ais an
eigenvalue of B of (30).

i. If the pair (A, &) with - . .
(24), then ¢ (¢ ¢0’ ¢*) Satlsﬁes

0= -0.0.000 ~ 404004 (31)

and (<_1>+, bx, AP.) is an eigenvector of B corre-

sponding to the eigenvalue .

iil. Com’ersely,_ if (6., dx, ¥) is an eigenvector of B
corresponding to the eigenvalue A then ¥ = Ag,.
Fmﬂzer;more, (A, d) with ¢ = (¢, b0, bx), where
¢y is given by (31), satisfy (24).

Proof. A pair (A, ¢) will satisfy (24), i.e., $[A°S — M+
Q] = 0 if and only if it satisfies

@, 26)0 J2]=nes. a0l S @

Now partitioning over E ., Ey, and E as before, wri
& = (b, Py, ¢Px). Straightforward algebra (using M, =
Sy = 0) shows that (A, ¢) satisfy (32) if and only if ¢,
satisfies (31), and

(b4, ¢, ADL)B=A(d 1, du, Ao y). (33

Thus, if (A, ¢) satisfies (24), A is an eigenvalue of B wit
eigenvector (¢., ¢«, Ad.). Conversely, if A is an eigen
value of B with eigenvector (¢, , ¢«, ¥), from the struc
ture of B we get ¥ = A¢,. The above argument noy
shows that (A, ¢) with ¢ = (., ¢, ¢.) satisfies (24).

The next theorem provides information about th
placement of the eigenvalues A of (24) in the comple
plane when the drift d of (2) is negative.

Theorem 4. Equation (25) has n = 2m . + m, numbe
of solutions. Let n, and n_ be the number of solution
with positive and negative real parts and ny be the nun
ber of solutions which are zero. Then, under the cond:
tiond < 0,

n,=my +mo. —1l,ng=landn_=m, + my,.

Proof. Sece the Appendix.

Recall that we are dealing with the ergodic case, it
the case of d < 0. Index the n = 2m_ + m, solutior
Ay, Ay, <.., A, In such a way that

Re(Ay)s...<Re(r, )< Re(r, +)
=0<Re(A, 43) <...<Re(r,). (34

We also suppose for the time being that the As &
distinct. In this case, Theorem 3 implies that there is?
unique vector ¢(i) (up to a constant multiplier) ¥
solves (24) for A = A,.

Since (21) is a homogeneous system of equations, i
general solution is given by

px) =% e*¢(ay, &
i1
where a,(i = 1, 2, ..., n) are scalars. Since p(x) h#"

be a density, we must have a;, = 0 if Re(A;) = 0,1
a;, = 0 fori 2 n_ + 1 (from the indexing of (4
Hence, (35) reduces to

ah

p(x) =S e**é(i)a,. G
i=1]

o
The n_ unknown scalars a,, a,, ... , a, are detem”

by the boundary conditions (22) and the normai’”
condition



x

%cﬁz J pj(x) dx = 1. (37)
i=1 j=1 0

Alternatively, we can use

lim P(Z(t) =j) = m; =c¢; + j pi(x) dx. (38)
0

1%

Both these methods yield the vector equation:

-2 — o) =m. (39)
=] A¢

These provide m equations for the s unknowns a,,
ay---,a, andc, for j € E, U E,_. (Note again that
¢=0for j & Eq U E,_.) The above discussion is
summarized in the following theorem.

Theorem S. Let Ay, A, ..., A, be the eigenvalues of B
with negative real parts and assume that they are dis-
tinct. Let (d.(1), d«(i), A0, (i) be the eigenvector of
B corresponding to the eigenvalue A;. Let $(i) = (¢ (i),
0o(i), (i) where &by(i) is given by (31). Then, {(X(¢),
Z(t)), t = 0} has a limiting distribution with density
pix) over x > 0, and mass c; at (0, j), j € S. {p;(x),
¢} are given by

n-

plx) =2 a;e**$(i) (40)

i=1

where the constants ay, a;, ..., a, andc = (Cy, -+,

n

¢,,) are given by the m equations

n-

a;
- —dl)=m (41)
i=1 /\,‘

withe; = 0 for j & E, U E,_ and 7 satisfies (1).

The condition about the distinctness of the A’s can be
relaxed. Suppose that A;, A, ..., A, are k distinct
tigenvalues of B with negative real part. Suppose that
My, My, oo, my are their multiplicities. Under the as-
sumption of d < 0 we must have m; + m, + ... +
M = n_. Then it is known that the general solution
{p,(x)} has the form:

meo(Ax) !
———e"a;, ¢,(i). (42)

The vectors ¢,(i) (i = 1, 2, ..., k, 7 =1, 2, «o , m))
feed to be derived from the Jordan form of B. (This part
S computationally hard.) The constants a,, and ¢; for j €
EP U Eq_ can be obtained in a similar fashion to the
dl§tlnct eigenvalues case. Another alternative when faced
with multiple eigenvalues is to perturb the Q matrix slightly
so that the eigenvalues are no longer repeated. However,
this is a trial-and-error method and provides a solution to
fhe berturbed problem. Continuity of eigenvalue systems
mplies that the perturbed solution will be close to the orig-
nal solution if the perturbation is small.
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The next theorem gives the expected values and the
variances in steady state of the buffer content process.
Let 7, s* are the first and second moments of the limiting
distribution of {X(t), ¢ 2 0}. We have the following
theorem.

Theorem 6
m n- ai
=2 3 = ¢, (43)
j=1i=1 A}
) m n- al .
sc= =2 2 2 N &, (D). (44)
Jj=1i=1 A;

Proof. This follows by direct integrations of the steady-
state distributions.

Note that this theorem is a consequence of the spectral
representation and appears in various papers, e.g.,
Anick, Mitra and Sondhi.

4. SPECIAL CASES

In this section we consider several special cases of the
model studied in the previous sections.

of = 0 for all j € E: The Fluid Flow Case

In this case, £, = ¢, and we get the standard first-order
fluid flow model. The S matrix is identically zero and (21)
and (22) reduce to

p'(x)M = p(x)Q (45)
pOM = cQ. (46)

Following (23)-(25) we see that the general solution is
of the form

plx) =e™¢, (47)
where the pair (A, ¢) satisfies

$0 = A¢M (48)
and

det[Q — AM] = 0. (49)

Theorem 4 then implies that there are m, solutions (A, ¢)
satisfying (48) and (49) out of which m,_ — 1 have
Re(A) > 0, one is zero, and my, have Re(A) < 0, in
case d < 0. (The condition of ergodicity still is d < 0.)
Numbering the m , solutions {(A;, ¢(i)),i =1,2, ...,
m,} such that A;, A5, ..., A, have negative real part,
we see from (36) that the general solution is given by

g+

p(x) = -21 et p(i)a;, (50)

where a4, a3, ..., a,,  are unknown scalars. They can
be computed by (from Theorem 5)

mo+ .

-3 A—’_qu(i):vj,jezs (51)

i=1
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with ¢; = 0 for j € Eq.- These are m eq}xations for the
m unknowns a;, 1 < j <€ Mg, and c; for! €EE, U E,_.
This completes the analysis and is consistent with the
results known in the literature.

of >0foralje E

In this case E, = E, and hence, Eg, Eq4, Ey_ and E,
are all null sets. The S matrix is invertible. The partition-
ing of the matrices is very simple in this case. For exam-
ple, we get R, , = Q and the B matrix is given by

_[0 -0Ss ‘1]
B= [1 MS™ I (52)
The eigenvectors corresponding to the eigenvalue A of B
are of the form (¢, A¢). In the ergodic case (d < 0),
there are m eigenvalues with negative real parts
(Theorem 4). Assuming that these are distinct, and writ-
ing them as A;, Ay, ..., A,,, and their eigenvectors as
(B(1), Ad(1); ($(2), 18(2), -+ 5 ($(m), Anb(m))

we see that the steady-state densities are given by

P = 3 e lia, (53)

where the unknown scalars a; are given by the solution

DI p— (54)

Note that there is no mass at zero in any environmental
state, i.e.,c; = 0 for all j € E.

The contrast between these two special cases is worth
noting. In the first case, the signs of the w;’s play an
important role, while in the second case they do not. In
the first case if all u;’s are negative, X () will get ab-
sorbed in state zero and we will get ¢; = ; and
p;(x) = 0 for all j. However, in the second case, even if
all u;’s are negative, there is no mass at zero, and X(¢) is
absolutely continuous. Thus, even a small variance coef-
ficient is likely to have a significant impact on the behav-
ior of the process.

E0=d),E*¢(b,E+¢d)

In this case, there are no states j with o7 = 0 and m; =
0. However, there is at least one state j with o7 = 0 but
m; # 0. Then in the partitioning of matrices the block

corresponding to E, is missing. Hence, we have
_ Q++ Q+ *:l M+ 0 S+ 0
o-[gn Guhm=[" b s- A
(55)

Here §. = 0, and M, is invertible. Also,R., =0Q,.,,
etc. The matrix B becomes

0 Qs+ aM ! -Q.. S
B=10 QuaM 1 ‘Q,H_S;l . (56)
1+ 0 M+S:1

The rest of the results can be applied directly.

Eo’t‘b,E*:(b’E*#(b

In this case, 07 = 0 => m; = 0. In the partitioning of |
matrices the blocks corresponding to E. are missing
Hence, we have

Q++ Qo _[M IS
0=[0:" ou b M=["" w517 sl @
Here S, = M, = 0. The matrix B becomes

0 _R++S;1

= 58
B [1+ M+S_:1 ( )

Under the condition of ergodicity (d < 0), the above
matrix has 2m, eigenvalues of which m, have negative
real part. Let the eigenvalues with negative real parts be
A, Az, -+o 5 A, . The eigenvector corresponding to A
is of the form (¢, (i), A;¢.(i)). The general solution is
given by (assuming the eigenvalues to be distinct)

px) = 3 aid(ie, &
i=1
where
d(i) = (¢+(0), — ¢+ (D)2 +0Q00)- (60)
The scalars a; satisfy
c—mi—i¢(i)=‘rr (61)
i=1 A

with ¢; = 0 for all j € E,. Note that in this case we do
not get any mass at zero for the X process, i.e., ¢; =
for all j € E. Thus, the above equations will automat-
cally produce ¢; = 0 for j € E,.

5. EXAMPLES
Example 1

We start this section with a simple two-state environmer!
process. Such a process occurs naturally in applications
where the source generating the fluid that enters the bufft
behaves in an on-off fashion. Such a source spends exp
nential times in the on and off states and continually alter
nates between the two states. Typically, when the sourct
is on, the fluid content in the buffer will have a pOSiIin
drift and when the source is off it will have a negative drit

Formally, {Z(¢), ¢ > 0} is a CTMC on E = {1, 2} wif

=| % « 62
0-|; %) (
The drift matrix is

_[w1 O 63)
M [0 /1«2] Y(J

and the variance matrix is

219 () \
S = [31/2 022/2]. (64



We assume that 4, > 0 and p, < 0, i.e., state 1 is on and
state 2 is off. The steady-state distribution of {Z(¢), ¢ =

0} is

|8 _«
[71’72]_[0‘}’[3,04‘3 . (65)
The drift is

oy B SR
d’#]a+ﬁ+:u'-a+3 (66)
and we will assume that d < 0. This implies that
=L B s (67)

w1 M2
We study several special cases of this example below
to illustrate the influence of the variance parameters on
the behavior of the {X(¢), ¢ = 0} process.

Case 1. (02 = 0% = 0—The fluid flow case) This is the first
case of Section 4. There is no variance component to the
system. This simple on-off fluid model has been well stud-
ied in literature. We restate the final results for
comparison:

¢ =0; pl(x)=a—%ﬁl\e”x,x>0; (68)
oy =2 . Aps

et B o Ap, - B’

2 B
palx) B Boan, re M x> 0. (69)

Case 2. (0} > 0, 0% = 0) This is the third case of Section
4. We have

Ei={l, Egy=¢,Eg. = ¢, Eq- ={2} = E,.

The B matrix of (56) becomes

0 a/uz 2&/0‘12
B=10 -B/u, —2B/02|. (70)
Lo 2#1/0'12
The three eigenvalues are:
2
/\1=fl'_12‘1_ Bai
ol 2pypn
Bgz 2 20‘2
_ (1_ 1 ) +_L(i+_&)
2y K1 \H1 M2
)\2=0 (71)
;\3:%{1_ Boi
of 2uip,

2 \? 2
+M@_JEL)+EQ(1+£J}
2pypa K1 \Bp M2
It easy 10 see that A, < 0 and A; > 0. Using the left
“igenvector of B for A we get

(1) = {1 @ ] (72)

"B A,

H .
€0Ce, using Theorem 5, we get
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[p1(x), p2(x)] = {1 ajet”, (73)

Frat)
B+ oAy

where a; is a constant. Also, we have ¢, = 0. From (41)
we get

ai [ B a
0,c,]——1{1, —%—1|= ——|. (74
[0, €2 )‘1[ B+H2)\1] [ a ] (74)
Solving for ¢, and a, we get

o Arpo B

C = . — .

2 at+ B BH+Auy’ a+ B A1 (73)
Combining the above we get
=05 pi0 = Ea (apets x>0 (9)
)= . Arpa (x)

atB B+Aip, P2
-_ B (Caper=, x>0, (1)

at+pB B+Aju;

We should contrast these results with the case where
o? =0, i.e., the fluid model case. Equations (76)—(77) are
identical to (68)-(69) if A, is replaced by —A. We can
show that A, is an increasing function of o3, increasing
from —A at o7 = 0 and approaching 0 as o7 increases.
Thus, the presence of the variance component leads to
fatter tails and higher variances. Using flow models ig-
nores the variance component, thus leading to less con-
gestion. One can show that the expected buffer content
grows asymptotically linearly with o7.

Case 3. (02 = 0; o2 > 0) Now we have
E.={2}, E.=Ey, ={1}, Eo =E¢- = ¢.
The B matrix of (56) is

0 Blu 2B/}
B=|0 -a/p, -2aloi|. (78
1 0 2#2/0'22

Note that column 1 corresponds to state 2 (E ) and col
umn 2 corresponds to state 1 (E.). We now get twc
negative eigenvalues and one zero. These are:

2
2 aogz
ot (1)
! o’%{ 2pipn
2 \?2 2
N2
2uip K2 \H1 M2
2
M2 xXo;
et
2 a%{ 2p1p2
2 \? 942
+\/(1— 29 ) +—53(—"‘—+fi)]. (79)
2pq M2 \H1 M2
)\320.

It is easy to see that A; < 0, A, < 0. We also have

o0 =[1 oxim] =2
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as the vectors corresponding to A, A,. In this case there
is no mass at zero, and hence ¢; = ¢, = 0. The densities
are given by

[p2(x), p1(0)] = a (e +ard(2)e*™,

where a, and a, are constants that satisty:

a; aj _ o
“H¢(1>‘g¢(2)'[a+3"La+ﬁ]- (80)

The contrast with the fluid flow model (o3 = 0) in this
case is even more dramatic. The fluid flow case predicts
that ¢, > 0, while the presence of the variance compo-
nent makes ¢, = 0. As before, variance component gen-
erates fatter tails in the limiting distribution of {X(z)}. It
is interesting to study the limiting behavior as o3 ap-
proaches zero. In this case, A; approaches —A as before,
however, A, approaches —o, thus the A, component pro-
duces the mass at zero in the limit as o5 approaches
zero. (Note, however, that ¢, = 0 as long as o3 > 0).
The component of p,(x) corresponding to e*** generates
a spike at x = 0 as 05 — 0. The expected buffer content
in this case grows linearly with o3. In fact, one can de-
rive the following expression after much algebra:

_(1__#~ )_(L.L) 2

T (/\ a+B 2A M Mo 72 (81)
In contrast, in case 2, 7 increased linearly with o7 only
asymptotically.

Case 4. (07 > 0, 03 > 0) In this case we have
E+ ={1, 2}, EO =E0+ =E0_ =E* = d)

Hence, we are in the second case of Section 4. The ,
matrix in this case is:

0 0 2a/o} —2alo}
0 0 -28/0} 2Blos

B=11 0 2uy0 0 (82
0 1 0 2u, /0%

The eigenvalues of B have to be computed numerically.
However, we know from Theorem 4 that two eigenval
ues have negative real part (call them A,, A;), one is zen
(call it A;), and one has positive real part (call it A,). It
can be shown that the corresponding ¢ vectors are given
by (i) = [1, ba(i)], where

2 "
. 02 (2« 2/““ 1 2
===+ —7A; —A]]. 83
From the theory developed in Section 3 we see that
cr=¢, =0 (84)

[p1(x), p2(x)] = a1 ¢p(De** + ar ¢(2)e*, (85)

where the scalars a, and a, satisfy

_0 gy % gy [ B @
Cem-Peo=[Er 55l ®

The numerical results for these four cases are plotted
in Figures 2 and 3. Figure 2 shows the limiting cdf of the
{X(t), t = 0} process for the four cases. The fluid flow
case produces the topmost curve—stochastically th
smallest congestion. The case o} = o3 = 1 is the lowes,

F(z)
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Figure 2. The limiting cdf of the buffer content for a single on-off source.
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Figure 3. The plot of expected buffer content versus o*
for the two-state example.

stochastically largest congestion. The other two curves
lie in between these two extremes but they intersect, i.e.,
the case 02 = 1, 03 = 0 and o? = 0, ¢ = 1 are not
stochastically comparable.

In many applications, the buffer size is set to be the
oh percentile of the steady-state cdf of the X process
(typically & = 1 — 10™"!). It is clear from the curves that
the variance has a dramatic effect on the percentile.
Thus, one should be careful when choosing buffer size
based on first-order fluid models.

Figure 3 shows the expected buffer content as a func-
tion of the variance. The three curves represent the three
ases: 20t = ¢°, = 03 = 0), 3(o = 0, 03 = o°), and
Yoi = 03 = o?). They all start at the same ordinate at
¢ = 0, because this point corresponds to the fluid
model. Note that the expected value increases asymptot-
ically linearly with 0. (In case 3 it is exactly linear as
mentioned earlier.) Interestingly, case 2 dominates case 3
in the expected value setting. Thus, variance in a state
with positive drift seems to have a more pronounced
effect on the expected congestion than the variance in a
state with negative drift.

Example 2.

Here we study the effect of multiplexing a fixed number
of on-off sources from Example 1. Assume that there are
- ™ sources in the system. Each source behaves like an
onoff source, as described in Example 1, with drifts
Hi/m and variances o}/m(i = 1, 2). All sources are
ndependent of each other.

The environment Z(#) in this case is the number of
Sourcgs in on state in the system at time ¢. From the
description above {Z(t), t = 0} is a birth-and-death pro-
@sson {0, 1, 2, ..., m} with birth rates (m — )8, in
Satei, 0 < i < m, and death rates i« in state i, 0 < | <
m, Assuming additivity, when there are i sources in on
Yate, the fluid leve] in the buffer is a Brownian motion
With drift (i1, + (m — i)u,)/m, and variance coefficient
od + (m = i)oym.

From the theory of birth-and-death processes we get

Ti=lim P(z(t) < j} = (’:’)(a [j B)i(a j B)m_i- (87)
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Figure 4. The limiting cdf of buffer content for the case
of five multiplexed sources.

The drift is given by

B a
d*(ﬂ1a+B+#2m) (88)
which is the same as in the single source model of
Example 1. For ergodicity, we assume that d < 0. As
before, we study four cases numerically:

1. ol=03=0,

2. o>0; o2 =0,
3. o}=0; o3>0,
4. o}>0; o2>0.

The effect of variance coefficient on congestion is plot-
ted in Figures 4 and 5. In Figure 4 we show the steady
cdf of {X(¢), ¢ = 0} for the cases 2, 3, and 4 whenm =
5. The qualitative nature of Figure 4 is the same as that
of Figure 2. In Figure 5, we show the effect of increasing
m on the expected congestion. Note that the effective
load on the system (as characterized by d) is indepen-
dent of m. From the figure it seems that multiplexing a
large number of (correspondingly) small sources is help-
ful in reducing congestion. This is the beneficial effect of
multiplexing.

It would be useful to have closed-form results for
this case along the same lines as in Anick, Mitra and

=1, gy =-2,
.‘ a=f=1

25H
—_ Zr‘
Z .
=
o
o
&
= N
[
=1

] 3 9 w0 "

Figure 5. The expected buffer content as a function of
m, the number of multiplexed sources.
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Sondhi, however, we have been unable to obtain them
so far.

6. EXTENSIONS
6.1. Finite Capacity Buffer

An extension suggested by practical application is to
consider the buffer to have a finite capacity M. This
means 0 < X(z) < M for all r. This is achieved by
making the state M reflecting for the X(z) process.

In this case, the {(X(¢), Z(¢))} process is always er-
godic regardless of the drift 4. Now it could have point
masses at {(0, j), (M, j), j € E}. Let ¢; be the mass at
(0, j), k; be the mass at (M, j), and p;(x) be the density
over {(x, j): 0 < x < M, j € E}. The analog of
Theorem 2 is as follows.

Theorem 7
YVaapi(x) = w;pj(x) + % Pr(x)gy; =0 (89)
along with boundary conditions

Vaafpi(0) — u;p;(0) + Ek: ckqij =0 (90)
Valafpj(M) — p;p; (M) — ; hiqi =0 (91)
¢y, =0 fork€FE, UEg., (92)
and
hy =0 fork€E, UE,_. (93)

In this case, the general solution p(x) to (89) is still
given by (35). We can no longer conclude that a; = 0 if
Re(A;) > 0. The 2m . + m* scalars {a;} along with c;:
k&E, UEy,)and hy: k & (E, U E,_) form a total of
2m unknown constants. These are determined by the 2m
equations (90) and (91).

6.2. Absorbing States

In certain applications, the state x = 0 is an absorbing
state (rather than reflecting, as we have assumed so far)
for the {X(7)} process when the environment is in a set 4
of given states, e.g., A = {j: u; < 0}. It is reflecting in
other states. Here the generator of the {X(¢), Z(¢))} pro-
cess is still given by (5), however the class of function f
for which it is valid is: f twice continuously differentiable
in the x variable with

flx,))=0 forjE[E, UEQUE_]1NA® (94)
and

VaorJf (0, j) + wf'(0,j)=0 forjEAN E§.. (99)

Theorem 1 continues to hold with the following equa-
tions replacing (11).

clt,j3y,i)=0 forjeE(E, NA YU E,, (96)
and
pt,0,j5y,i)=0 forjE(E, NA). (97)

Similarly, the steady-state distribution is given by (i,
with boundary conditions (15) and

C}.:() forjE(E, NA) U Ey, (%
and
pj(0)=0 forjEE, NA. ®)

The explicit solution for the stationary distribution ca
be obtained following the development in subsection 35,

It is also possible to consider the case of finite buffer
where (M, j) is absorbing for j in a subset B of E. We g
not go into the details of this case.

APPENDIX

Proof of Theorem 1. Since the initial condition (y, i)is
fixed throughout, we drop it from the notation and writ
F(t,x,j;y, i) as F(t, x, j), etc. Substituting for L fron
(5) in (8), we get

S A0, et ) + S J o, e, %, ) dx
J J

4
dt 0

=3 {2aff"(0, ) + pf (0, )) + kzl ;i f(0, k)}
J =

et )+ 3 j ao2f ", ) + wyf (%)
J

0
+ /21 g f(x, K)p(t, x, j) dx, (Aldl

where f'(x, j) and f"(x, j) are the first and second
derivatives of f(x, j) with respect to x.

Restricting f to be such that f(x,j) = 0 for x > Tan
using integration by parts, we see that

T

T
J £70es (e x, ) dx =[x, ples % )|
0

T

—j F'e, Dp'(t, x, j) dx
0

T

=10, p, 0, j) ~ fix, HHp'(t, x, J)

0

T
+f e, Dp' (e x, ) dx
0

_f/(o’ ])P(t’ 0) ]) +f(0’ j)Pl(t, 0’ .])

T

+J' fx, Hp'(t, x, j) dx. (A
0

Similarly
T

J £106 NP2 x, J) dx = —£(0, j)p(t, 0, ])
0

T
) j fx, p'(e, x, j) dx. (A
0



Substituting in (A.1) and collecting terms, we get

x

d . 2 ; ' i
EJ {a—t-p(t,xyj)—‘/la‘fp (t,x,])+/~1~,p ([,X,_])
I Jo

- St x. gk }f(x, j) dx

a
+ Ef((),/’)[;; c(t, j) =~ ; c(t, kK)qi ~ 1/30—1.21)'(1, 0, j)
J

+uipt, 0, j)}

+ 2 £10, ){2afple, 0, )) = wict, Ny = 2 £(0, j)
/ J

v afelt, j)} = 0. (A.4)

In (Ad), {f(x, j)} is any smooth function, vanishing
forx 2 Tand such that f'(0,j) =0forj €EE, UE, U
E,.. By first taking {f(x, k)} such that f0, j) = f'(0, j) =
10, j) = 0, for a fixed j and f(x, k) = 0 fork # j, we
get

i . 3 . , .
5['17(’, Xa]) = l/lo'fp (t, X, ,}) - /L]P ([, X, j)

+ z p(t’ X, k)qk] (A'S)
K

which is (9). Arguing similarly, we will get that the coef-

ficients of £(0, j), £"(0, j) are zero and the coefficients of

f'{0,) are zero for j € E, ., thus yielding (10) and (11).

Proof of Theorem 4. The proof closely follows that of
Gerschgorin’s theorem (see Horn 1990). It is clear that
det{A’S — AM + Q] is a polynomial of degree 2m, +
My, and hence, has 2m, + m, solutions.

Now write Q = 0, + Q,, where Q, = diag (Q). For
0<es< 1, define Q¢ = Q, + (1 — €)Qo. Thus Q° = Q.

We now study the roots of
etfA’S =AM + Q€] =0 (A.6)

for € > 0. If A satisfies (A.6), then there is a nonzero

vector ¢ such that
SA%S —AM + Q1 =0 (A.7)

It the rth component of ¢ has the largest modulus,
nomalize ¢ = (@;, ¢, --- » ) Such that ¢, = 1 and
19/ <1,1<i < m. The rth component of (A.7) yields

A<, = $,(Q =0

Le.

’

1/20,2/\2—)\/L,—q,+ > bi(l-e€)g, =0 (A.8)
izr

Where g, = -4, is positive). Hence

= A, < g i< Sl - e)gnl <(1—€) D qir

iy i#r

=(1-€)q,. (A.9)
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It now follows that all solutions A of (A.6) must belong to
UL, A where,

AF={AEC: 2202 - Ap, —q,| <1 - €)q,}. (A.10)

It is easy to see that for r € E_., A is a union of two
disjoint regions, one in C~ = {A € C: Re(A) < 0} and
one in C* = {A € C: Re(A) > 0}. Furthermore, for r €
Eqy, Af is empty, r € Ey,, A C C” and forr € E,_,
A; C C*. Thus, there are 2m_, + m* nonempty regions
of which m, + m,_ are in C*, and m, + m,, are in
Cc.

Using the fact that the solutions A of (A.6) follow a
continuous trajectory as a function of e and following the
proof of Gerschgorin’s theorem, we can show that ex-
actly m, + my_ solutions are in C* and m, + mg,
solutions are in C ™.

We are interested in limiting case e = 0. Ate =0, A =
0 is a solution to (A.6). Let A® be a solution of (A.6) with
the property that A° — 0 as € — 0. This can be done in
view of the continuity of solutions mentioned above.

Arguing as in Horn, Article 6.3.12, it can be deduced
that

drc 2 mid;

== (A.11)
de le=0 > ik
Since d = XY™, w;m; is assumed to be negative, and

> mq; is positive, dA%/de is positive at € = 0. Thus A° €
C* for e near zero. Hence, in the limit we get m, +
mg_ — 1 solutions to (25) in C*, m, + m, solution in
C~, and one solution A = 0.
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