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1. I n t r o d u c t i o n

C onsider th e  fo llow ing  fram ew ork  o f  fo rest m anagem en t, w hich  we shaJi 
refer to  as th e  o rc h a rd  prob lem . T here  is a  p lo t o f  land  o f  un it size. O n this 
lan d  are p lan ted  trees o f  various ages. T h is in itia l “fo rest” is inherited  by 
the “p lan n er” o r  th e  “m an ag er.” T he m a n a g e r  can  choose to  c lea r som e or 
all o f the lan d  u n d e r  trees o f any  age. T his cleared  lan d  is rep laced  with 
seedlings (trees o f  age zero). This ac t o f  c learing  and  rep lacem en t moves 
the system  to  a new  forest, w here the  u n to u ch ed  trees are n o w  one year
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older. At the next date, another process of clearing and replacem ent takes 
place, and this continues into the indefinite future.

Each tree has a growth pa ttern , defined by the fruit it yields in each year 
of its life. This growth pattern is identical for each tree. The yield of the 
forest at any date is obtained by m ultiplying the yield of age “s” trees by 
the num ber of such trees, and adding  up over all the ages present in the 
forest. The m anager possesses a one-period utility function  defined on this 
yield. The objective is to choose a policy of clearing and  replacem ent to 
maximize an infinite discounted sum of one-period utilities.

The orchards model, we feel, is a canonical example of w hat m ight be 
termed poin t-inpu t, flow -output cap ita l theory. Trees may be viewed as capi­
tal goods tha t yield a flow of o u tp u t net of costs over their lifetimes. C api­
tal goods age, and  finally die out. The orchards model m ay then be viewed 
as a fram ew ork for studying the optim al replacement policy and  age com ­
position of capital goods in a p lanned  organization (firm, econom y). For 
the interested reader we place our model in a broader context in Section 6 .

A related model of forest m anagem ent, which might be referred to as the 
timber m odel, has been much studied in the literature. In this model, a tree 
only yields an ou tput (its “tim ber content” ) when it is cut down. This 
corresponds to  “point-input, /?o/w/-output” capital theory, and  the formal 
fram ework is actually very different from the one studied here. F o r studies 
of the tim ber model, the reader is referred to  F austm ann [7 ] , Schreuder
[1 7 ], Sam uelson [1 6 ], M itra and  W an [11, 12], and M itra  and Ray [13].

W hy do  we wish to  study the orchards model? First, as we have already 
pointed ou t, it corresponds to  an  im portan t class of capital-theory models 
which has no t been well studied in the literature. Second, it turns out to  be 
an excellent device for illustrating certain aspects of global asymptotic 
stability in models of optim al econom ic growth; in particular, for under­
standing and evaluating certain “asym ptotic turnpike theorem s” that have 
been extensively studied in the literature. We shall presently expand on this 
theme.

We are interested in asking tw o types of questions. F irst: can one charac­
terize the class of optim al sta tionary fo re s ts l These are forests which have 
the property  tha t once you s ta r t with such a forest, it is optim al to carry 
out a policy which replicates the age com position of tha t forest period after 
period. They correspond to optim al stationary stocks in models of m ulti­
sectoral econom ic growth.

Second: if one starts from an  a rb itra ry  initial forest, is it optim al to carry 
out a policy tha t causes the age com position to converge over time to  that 
of an optim al stationary forest? Such a result would be analogous to 
turnpike theorem s obtained in m odels of economic growth.

We find the following answers. First, it turns out th a t the set of optimal 
stationary forests is invariant w ith respect to the utility function, as long as



the latter is increasing, twice continuously differentiable, and concave, 
(This property, for the “tim ber” m odel, was noted by M itra and Wan 
[11 ].) We find the result of some interest, because our model generally 
corresponds to  a m ultisectoral fram ework of intertem poral accumulation, 
where such an  invariance property is no t usually obtainable. In any case, 
the invariance result permits us to  easily com pute the set of optimal 
stationary forests by simply looking a t the grow th pattern of an individual 
tree and the discount factor. This entire exercise is carried out in stages in 
Propositions 3.1, 4.2, and 5.1. It m ight be of some interest to  note that in 
the proofs of these propositions, we do  no t use any duality arguments. An 
elementary prim al approach is em ployed throughout.

At a m ore dow n-to-earth  level, the  invariance result is of interest, 
because it requires limited inform ation. In  particular, apart from 
knowledge of the discount factor, no  knowledge of the utility function is 
required. The optim al stationary com position can be easily computed and 
used in practical applications of forest m anagem ent.

Now we turn  to  the second question. We consider two cases: one, where 
the utility function is linear, and the other, where the utility function is 
strictly  concave. In  the first case, if the initial forest is not an optimal 
stationary forest, then convergence to  an optim al stationary forest is 
generally not obtained. All trees are alw ays cut down at one of two possible 
ages, which can be exactly characterized. F rom  the point of view of optimal 
growth theory, this result (the aspect dealing with nonconvergence) is 
hardly surprising. W ith linear utility functions, one does not generally 
expect turnpike properties to be present.

By far the m ore interesting case is where the utility function is strictly 
concave. The analogous model is th a t of optim al capital accumulation with 
a strictly concave utility function. In such a framework the following results 
are now fairly well known:

(i) W ith no restrictions on the m agnitude of the discount factor, one 
does not usually obtain  convergence to  an optim al stationary program. 
Instead, optim al program s can “cycle” (for two early examples, see

\ Sutherland [1 9 ]  and K urz [ 8 ]; for an  example in the tim ber model of 
forestry, see M itra  and  W an [11]).

(ii) However, there exists, under some “standard” assumptions, a 
critical discount factor strictly less th an  unity, such that if the actual 
discount factor exceeds this critical value, all optim al program s converge to 
the stationary optim al program . V arious versions of this result appear in 
Brock and Scheinkm an [5 ] , Cass an d  Shell [ 6 ], Rockafellar [14], 
Scheinkman [1 8 ] , Araujo and Scheinkm an [1 ] , Bewley [4 ] , McKenzie 
[9 ] , and others.



The "s tan d a rd "  assum ptions in (ii) can, however, be v io la ted  for some 
fairly in teresting  m odels of cap ita l theory . F u rtherm ore , in  such models, it 
can be show n th a t the result s ta ted  in (ii) above fails to  hold. Sam uelson 
[15 ] reports  an exam ple due to  W eitzm an, which involves a pure aging 
process (w ine is produced from  grape juice), where for every positive 
discount fa c to r  less than one, op tim al p rogram s cycle a ro u n d  a unique n o n ­
trivial s ta tio n a ry  optim al p rogram . (F o r  further discussion of this example, 
see Scheinkm an [1 8 ] , M cK enzie [1 0 ] ,  and  B enhabib  an d  N ish im ura [2 ] .)

In the tim ber m odel of forestry, W an  [2 0 ] has p resen ted  an  exam ple in 
which there is a critical d iscount fac to r strictly less th an  one, such th a t for 
all d iscoun t factors which are less th a n  one and which exceed this critical 
value, all op tim al program s cycle a ro u n d  a unique non -triv ia l sta tionary  
optim al p rogram . [F o r  fu rther d iscussion of this exam ple, see W an  [2 1 ] ] .

It tu rn s  ou t th a t the feature d iscussed by W an [2 0 ] can  be considerably 
generalized and  extended to  the o rchards m odel (w here the “stan d ard ” 
assum ptions used to  ob ta in  th e  result in (ii) above are, interestingly 
enough, never satisfied). W e describe an  entire class of situations (no t ju st 
an exam ple) w here for every d iscoun t factor, and  for every initial forest 
which is no t an op tim al s ta tio n a ry  forest, optim al p rog ram s fail to  con­
verge. This is P roposition  5.2 below. W e feel th a t this resu lt is indicative of 
the in teresting  idiosyncracies o f th e  forestry  m odel. F o rm ally  it is a special 
case of the general fram ew ork of in te rtem pora l accum ulation . But the 
assum ptions th a t appear “n a tu ra l” in th a t fram ew ork, an d  are in fact 
em ployed, are ju s t not n a tu ra l here an d  cannot be invoked.

N evertheless, under a m ild cond ition  on grow th pa tte rn s, we do ob ta in  
a w eaker tu rn p ik e  property ; one th a t has been no tab ly  em phasized by 
M cK enzie [ 9 ]  in  the general fram ew ork of in te rtem pora l accum ulation. 
This is the neighborhood turnpike theorem, stated  in P ro p o sitio n  5.3. It is 
this: given any  e > 0, how ever sm all, there exists a critical d iscount factor 
5(e) e (0 , 1) such th a t for any d iscoun t factor d ^ S ( e )  an d  every initial 
forest, an  op tim al p rogram  u ltim ately  finds itself in the e-neighborhood of 
the op tim al s ta tionary  forest, an d  remains in th a t ne ighborhood  from  a 
certain  tim e onw ards. To sum  up , op tim al program s m ay n o t converge for 
any d iscoun t fac to r (viz. P ro p o sitio n  5.2), but the lim iting oscillations go to  
zero as the d iscoun t factor converges to  unity.

W e shou ld  rem ark  th a t even the  assum ptions needed to  guarantee the 
n e ighborhood  tu rnp ike theorem  in the general fram ew ork are  not satisfied 
here. C onsequently , we use a techn ique of proof, which, while inspired by 
M cK enzie [ 9 ] ,  is substan tia lly  m odified. This m odified use of Lyapunov 
functions m ay be of some technical in terest and  applicability. Finally, it 
should be no ted  th a t unlike the rem ain d er of the p ropositions, the p roof of 
this resu lt relies on  a duality  a rg u m e n t for the large part.



2 . O r c h a r d s

Consider a unit p lo t of land (say, the unit square of 9 i2) with trees ol 
various ages p lanted on it. Each tree lives for periods 0, 1 , T, after which 
it is incapable of bearing fruit. The tree yields an  am ount R(s)  in period s, 
s =  0,..., T. We assum e tha t there exist integers P, Q,  with 0 <  P  <  Q  <  T 
such that

R (O K  < R ( P ) =  ••• = R ( Q ) >  > R ( T )  (2.1)

with at least one strict inequality between 0 and P  and with i?(j) >  R( s  +  1) 
if Q ^ s < T .

We also norm alize returns so that R( s )  ^  0 for all .v.
O ur wider interest is, of course, in vintage capital models and  not 

orchards. It is easily seen that our assum ptions m ake perfect sense in this 
context. In particular, the assum ption th a t the maximum yield is reached 
at a positive  age is easily seen by netting out setup costs, and  indeed, 
purchase costs from returns in the period of installm ent of the new 
machine.

The m anager of the orchard inherits, a t time zero, a fo res t, which we 
identify with a vector a s  A, where A is the nonnegative unit simplex of 
5RT+1. The in terpretation  is that a (s),  5 =  0 ,..., T, is the fraction of land 
devoted to trees of age 5.

A forest a yields a harvest or consumption c(a),  which is given by

T
c (a )=  £  a(s)  R(s).  (2.2)

s = 0

Now, given a  forest a, at time t, t >  0, it is possible to  move to a new ! 
forest at time t  +  I. The set of possible new forests depends, o f course, on 
the existing forest a ,, and this point-set m apping will be denoted by <j>. It 
is given by the following:

^ (a) =  { a ' e A \there exist nonnegative reals 2(0 ),..., e( T)  with 

a '( s  +  1) =  a (j)  -  e(i), s =  0,..., T -  1, e(T)  =  a ( T ), 
and  a '(0 ) =  ^ ( , 6 ( 5 ) } .  (2 .3)

The in terpretation  of <j>(a) is tha t between any two periods, trees of age 
s grow to the age of j +  1. O f course, all trees of age T  are felled, while 
some, none, or all of the other trees m ay be felled. The num ber e(s) denotes 
the land originally devoted to age .s' trees which has now been cleared. All 

the cleared land is then planted with age zero trees.



Given an initial forest a. a (fe a s ib le ) program  from ot is a
sequence such that

x„ =  x and a, + , e^ ( x , ) ,  t ^ O  (2.4)

The corresponding consumption program  is the sequence ( c, } q , where 

c, =  c(a,) for all t ^ O  (2.5)

Now we describe preferences. We assume that there is a one-period 
utility function u defined on current consum ption, and  th a t the future is 
discounted by some discount factor <5e(0, 1). We will assum e further that 
u is increasing, concave, continuous on l5 i+ , and twice continuously 
differentiable on sJi + + .

The problem  o f  forest managem ent is: given an initial forest a, to choose 
a feasible program  <x,>o t 0  solve

m ax Yj d'u(c i)- (2 -6 )
r =  0

Given an initial forest a, a feasible program  <a, >0,; is optim al if it solves
( 2 .6 ).

A program  < a ,)o  is sta tionary  if a ,+ , = a ,  for all t. I t is easy to  see that 
the set of forests that can be a tta ined  as outcomes on stationary  programs 
is completely characterized by the condition ae«^(a), or equivalently by the 
set

S =  {at e  A | a(s) >  a( s +  1) for all s =  0,..., T — 1}. (2.7)

A sta tionary optim al program  is a stationary program  from some initial 
forest a 6  S which is also optimal. A stationary optim al fo re s t  is a forest that 
can prevail along some stationary optim al program.

In this paper, we explore some answers to the following two questions:

(1) Is it possible to provide an exact characterization of the set of 
stationary optim al forests?

The answ er to  (1) will provide some insight into the dynamics of forest 
m anagem ent, but is lacking in the following sense. The initial forest is 
historically given, and there is no reason to suppose tha t it will be a 
stationary  optim al forest. Generally, then, the forests along an optimal 
program  will vary with time. However, in a m anner perfectly analogous to 
turnpike theory in optimal grow th models, one can ask:

(2) F rom  any initial forest a 0, does an optimal program  <os,> exhibit 
a sequence of forests that “converge” to a stationary optim al forest, as time 
goes to  infinity?

The rem aining sections are devoted to  these issues.



We end this section with some rem arks on the orchards model, which 
amplify some poin ts raised in the in troduction  to  this paper.

It should be clear tha t the orchards m odel serves as a canonical example 
of frameworks involving “point inputs” and “flow outputs.” A tree can 
certainly be equated  to  a machine, which yields a flow of net outputs. The 
questions here then  translate into issues dealing with the optimal age 
com position of m achines. One caveat should be noted, however, in partial 
equilibrium applications. O ur m odel assum es th a t there is no “capital 
m arket,” so th a t in tertem poral fluctuations in consum ption cannot always 
be fully sm oothed out. If there is a capital m arket, however, the reader will 
easily note th a t this corresponds to  the  case of a linear utility function, 
which is fully analyzed and solved in Section 4.

Note, however, th a t our exercise keeps fixed the to ta l stock of machines. 
W e focus on the  intertem poral behavior of the com position  of vintages. For 
a brief sketch of a generalization, see Section 6 . It should also be clear that 
the orchards m odel can be placed in  the  general framework of optimal 
growth theory (e.g., th a t used in M cK enzie [9 ]) . The problem  is that the 
standard  assum ptions which are m ade in th a t general framework are 
simply no t satisfied here. Therefore, the results from that framework cannot 
be directly applied, and  the particu lar nuances of this model need to be 
exploited.

3. T h e  S i n g l e  T r e e  P r o b l e m : A P r e l u d e  t o  t h e  M a i n  E x e r c is e

Consider the optim al m anagem ent of a single tree, with respect to a 
sequence of cu tting  times, when the utility function is linear. T hat is, we 
take as our objective the m axim ization of

cc

I  S ' C ,
t =  0

'with respect to  a sequence of cutting times ( X l , X 2, ••■), where X ^ \  
denotes the num ber of periods the / th  installed tree is allowed to  exist.

F or the later developm ent of our m odel, it is essential to characterize the 
optim al solution to  this exercise. This is done in

P r o p o s it i o n  3.1. L e t the in itial tree be o f  age x, where O ^ r ^ T .  Then 
exist two integers N l and N 2 with N t , N 2 <  T  and Q ^ N 1^ N 2 ^ N l +  l 
such that the se t o f  optim al cutting sequences is given precise ly  b y  thosi 
sequences which allow  tree i, i ^  2 , to  ex is t f o r  N t or N 2 periods, and tree 
to exist fo r  m ax(0, N — t )  periods, where N = N t or N 2.



M oreover. N , N 2 f orm the se t o f  solutions to

2 ^ = 0 m s )  &s
0 si V  5 7 1 —  Smax.. C3-1!

The solutions A\ and N 2 will p lay a critical role in the rest of the paper.

4 . F o r e s t  M a n a g e m e n t : L in e a r  U t i l i t y  F u n c t i o n s

The following proposition completely characterizes the set of optimal 
program s from any initial forest a.

P r o p o s i t i o n  4 .1 . I f  u is linear then given an initial fo res t  a, a program  
( x , )  is op tim al i f  and only if

( i ) x,(s) =  0 fo r  all s >  N 2, and each t ^  1
(ii) fo r  all t >  0 , a ,+ 1 is a tta ined  fro m  a, only b y  cutting down some 

or all trees o f  age N it and all trees o f  age N 2 or more.

Proposition 4.1 characterizes w hat might be called the Faustmann solu­
tion to the forest management problem  (Faustm ann [7 ]) . Initially, all trees 
of age N 2 o r greater are cut dow n (and perhaps some o r all of age N t as 
well). Thereafter, trees are never perm itted to grow beyond the age of N 2, 
and are only cut at the age of N , o r N 2. Given the linearity of the utility 
function and  given  Proposition 3 .1 , the reader should no t find this result 
surprising a t all.

A program  satisfying (i) and (ii) above will be referred to  as a Faustmann 
program . Such program s will be of use in proving some of the results stated 
below. N ote  that if N t =  N 2, then for any oceA,  there is a unique 
Faustm ann program  from a.

Proposition  4 .1  allows us to  completely characterize (with only a little 
more w ork) the set of stationary optim al forests, when the utility function 
is linear. Define the stationary forest a*(/?, y), for any /?, y ^ O  and 
P +  y =  1 ; as

- 6f £ l ■ ... ° ) <4-‘ '
where the first +  1 entries in the above vector involve both and y, 
while the ( N 2-iV Jth  entries (if any) involve only y, and the remaining 
T —N 2 entries (if any) involve zeros. In the light of (2.7), it should be 
obvious tha t a*(/?, y) is a sta tionary  forest. We may now state:



P r o p o s it i o n  4 .2 . I f  utility is linear, then the set o f  sta tionary optimal
fo res ts  is given b y  {a*(/J, y) : ([}, y ) ^ 0  and  /? +  y =  1 }.

As a corollary: if N i  =  N 2 =  N,  so tha t the solution to the one-tree 
problem  has a unique cutting time N,  then there is a unique stationary 
optim al forest, given by

Proposition 4.2 completely characterizes the set of stationary optimal 
forests, and therefore fully answers the first of our two questions in the 
linear case. P roposition  4.1 provides the answer to our second question. In 
the linear case, there is no tendency f o r  optim al fo rests  to converge to a 
stationary optim al fo re s t i f  the initial fo re s t is not a stationary optim al forest. 
F or example, if N { =  N 2 =  N, then optim al program s from any initial forest 
which is not a sta tionary  optim al forest will exhibit, from time 1 onwards, 
a periodicity of length AT +  1.

5. F o r e s t  M a n a g e m e n t : S t r i c t l y  C o n c a v e  U t il it y  F u n c t i o n s

5 .1 . Introductory Rem arks

This section is the heart of our paper. T hroughout, we assume that the 
utility function is str ic tly  concave, w ith u"{c) <  0 for all c > 0 .  In Sec­
tion 5 .2 , we characterize the set of s ta tionary  optim al forests. In  Section 5.3, 

we take up the question of convergence. We recall that the issue of 
existence of an  optim al program  is n o t serious here; existence can be 
readily established using standard  com pactness-continuity  arguments.

5.2. Stationary O p tim al Forests

It is of some in terest tha t the set o f s ta tio n ary  optim al forests is invariant 
with respect to  the  utility function, as long  as it is concave. O f course, this 
property is no t generally true of m ultisectoral grow th models. Specifically, 
the main result of this section is

P r o p o s it io n  5 .1 . I f  u is concave a n d  tw ice continuously differentiable, 
then the set o f  sta tionary optim al fo res ts  is identical to  that in the linear case; 
namely, it is

N  + 1 times



To com pute the set of stationary  optim al forests, then, the exact form of 
the utility function is quite irrelevant. All one needs are the grow th charac­
teristics of a single tree and the d iscount factor, and these may be used to 
solve problem  (3.1). The solutions N t and N 2 may then be used to generate 
the set of stationary optimal forests, according to  the form ula (4.1).

The set of stationary optim al forests is therefore either uncountably 
infinite, o r it is a singleton. Here is an example of a m odel with uncoun­
tably many stationary optim al forests.

E x a m p i .k 5.1. T =  4. R (0) =  0, /?(1) =  12, R (2) =  20, rt(3) =  32, 
R (4) =  8 . The discount factor <5 =  5 . The solution to (3.1) yields N l =  3, 
N 2 =  4 . So. using Proposition 4.2, there are an uncountable num ber of 
stationary optim al forests.

However, the reader can easily verify the truth of the following assertion, 
a proof of which is omitted:

Given the grow th pattern  R, there are only a fin ite number o f  discount 
factors fo r  which N t and N 2 are distinct. Consequently, fo r  all but a fin ite  
number o f  discount fa c to rs , we have a unique stationary optim al forest.

5.3. Convergence o f  O ptim al Forests to a S tationary O ptim al Forest

Suppose tha t an initial forest which is not a stationary optim al forest is 
exogeneously given. Consider the sequence of forests generated along an 
optim al program . Does this sequence converge to a stationary optimal 
forest?

T hroughout, we shall concentrate on the case where there is a unique 
stationary  optim al forest. An assum ption to  formally guarantee this will be 
made shortly.

We first note that, in line with m ultisectoral capital theory models, such 
a result cannot be expected to  hold in general for the discounted  case. For 
an example in the context of optim al growth theory, see, for example, 
Sutherland [1 9 ]. The forest m anagem ent problem is no different in this 
regard, as we shall presently see.

In the literature an optim al grow th, it has therefore been customary to 
study asym ptotic turnpike properties; tha t is, turnpike properties when the 
discount factor is “close to” unity. In the present context, does there exist 
a discount factor S* e ( 0 ,  1), such tha t if 1 >  d ^  <5*, then every sequence of 
optim al forests converges to the stationary optimal forest? Under some 
“standard” assum ptions in optim al grow th theory, the answer is “yes” (see 
the references given in Section 1).

These “standard” assum ptions concern themselves with certain sm ooth­
ness and strict concavity properties of the utility function. It turns out that 
in the present model, these assum ptions are not satisfied. This by itself, of



course, does not im ply  th a t the m odel lacks asy m p to tic  tu rn p ik e  properties, 
b u t only th a t th e  proofs  follow ed in  the  lite ra tu re  are n o t directly 
applicable. H ow ever, for the “tim b er” m ode l, W an  [2 0 ]  has produced an 
ingenious exam ple  w here there is a c ritica l d iscoun t factor, <5*e(0 ,1). 
such th a t for every  d iscoun t fac to r 1><5^<5*, the m odel lacks turnpike 
properties.

W e first a rg u e  th a t th is feature o f n o n co n v erg en ce  holds good  for the 
“o rch a rd s” m odel. N o t only  th a t, we p ro v id e  a fairly general subclass ol 
cases w here th e re  is never any convergence to  the  s ta tio n a ry  op tim al forest. 
regardless o f th e  d isco u n t factor. T h is subclass of cases is obtained by 
m ak ing  the ad d itio n a l a ssu m p tio n  o n  th e  g ro w th  p a tte rn  of an  individual 
tree th a t Q = T  (recall (2.1)), o r in o th e r  w ords,

* ( 0 K * ( i x  ^ R ( T ) ,  (5-1)

w ith  a t least one s tric t inequality .
N ow  define a fo rest S e A  by

=  f o r  s  =  0 , . . . , T .  (5.2)

I t is easy to  check  th a t N l(d) =  N 2(d) =  T  w henever (5.1) holds, for all 
3, so that:

Under (5.1), a  is the unique op tim al sta tionary fo rest fo r  every 
5 e ( 0, 1).

W e can now  s ta te  an  im p o rta n t n o n -convergence  result:

P r o p o sit io n  5.2. Under (5.1), there do not exist any and any
S e  (0, 1) such th at i f  <oe,> is optim al fro m  a ( under 5), then a , -> a as t -+ oc.

W e re itera te  th a t  th is  resu lt s tan d s in  s tr ik in g  co n tra s t to  the  asymptotic 
stability  th eo rem s th a t have been o b ta in e d  fo r op tim al g ro w th  models. 
N onconvergence to  a is o b ta in ed  for every  d isco u n t fac to r (strictly  less than 
un ity ) an d  fo r every  in itia l forest (n o t eq u a l to  the s ta tio n a ry  optimal 
forest). The re a d e r  can  easily verify, u sing  a con tinu ity  a rgum ent, that 
P ro p o sitio n  5.2 im plies th a t optim al program s fro m  a /  a  do not converge at 
all to any a' e  A.

H ow ever, w hile o p tim al p rog ram s fail to  converge, this does n o t rule out 
the possibility  th a t  the  “am p litu d e” o f  th e ir  oscillations m ay  tend to 
“dam pen” as th e  d isco u n t fac to r goes to  un ity . This is w hat we tu rn  to 
next.

T he best resu lt th a t one can  h o p e  to  o b ta in  in  th is regard  is a 
“ne ighborhood  tu rn p ik e  th eo rem ” [M c K e n z ie  [ 9 ] ] .  Such a resu lt would



state that for any preassigned c-neighborhood of the stationary  optimal 
forest, there exists a discount factor (5(e) e (0 , 1) such th a t for any initial 
forest a and any discount factor S e  [<5(e), 1 ), the optim al program  even­
tually finds its way into the c-neighborhood of the stationary optim al forest, 
and never leaves it thereafter. It is, of course, obvious th a t a neighborhood 
turnpike theorem  of this sort is ob tainable under som ew hat weaker condi­
tions than  the asym ptotic results discussed earlier. U nfortunately, even the 
weakest know n conditions for the general model of capital accum ulation 
(see M cKenzie [9 ] )  are not satisfied in the present model.

The m ain result of this section is the presentation of a necessary and suf­
ficient condition on the param eters of the model such th a t a neighborhood 
turnpike theorem  will hold. The condition is necessary in the sense that 
when it fails, one can find some initial forest and an e > 0  such tha t for no 
discount factor close enough to  1 does the optimal program  permanently 
enter the c-neighborhood of the stationary optimal forest. And when the 
condition is satisfied, we should reiterate that it is not implied by the 
assum ptions m ade for the general capital accumulation model. For exam­
ple, the assum ption of uniform strict concavity of the utility function in the 
“general" case is not satisfied here. So, while our technique of proof is 
inspired by the argum ents of Bewley [4 ]  and McKenzie [9 ] , a substan­
tially different line of reasoning is involved.

We proceed in steps. First, we m ake an  assum ption th a t will guarantee 
that a stationary  optimal forest is unique, even in the limiting “undis­
counted" case.

(A) There is a unique integer N  tha t solves

The following lemma is a useful preparatory step.

L e m m a  5.1. There is 5 e ( 0 ,  1) such that i f  <5e[£, 1), then N 1= N 1 =  
N(S),  say. M oreover, N(S)  =  N, where N  is defined by  (A).

Lem m a 5.1 states that if the discount factor is sufficiently close to unity, 
then the stationary  optimal forest is unique and  invariant to the discount 
factor. Let

(5.3)

N  + 1 times

Then, given Lemma 5.1, for all 5 >  5, a* is the unique stationary optimal



forest. Because we are concerned with lim iting behaviour when <5 is suf­
ficiently close to  unity, we will simply suppose, w ithout loss of generality, 
that 8 ^ 8 ,  and consequently study “neighborhood convergence” to a*.

Now define an  ( N  +  1) x (JV+ 1) m atrix  in the following way: let 
y{ i )  =  R ( i +  1) — R(i ) ,  for i =  0 ,..., N — 1, and v ( N)  =  R(0)  -  R(N) .  Define 
the “circulant m atrix”

Y  =

> (0 )  y(1) 
j ( l )  y( 2)

y(N)
>’(0 ) (5.4)

Lj(Af) MO) ••• >,(Ar— 1 )J 

The basic tu rnp ike  result is the following:

P r o p o s i t i o n  5 .3 . Suppose that Y  is o f  rank N. Then fo r  each e >  0 , there 
is 8 e e  (0 , 1 ) such that fo r  every initial fo re s t  a and each 8 5= 8 r, i f  {oc,} is an 
optim al program , then

lim sup ||ot* — a,|| e. (5.5)
t -*• oc

On the other hand, i f  Y is o f  rank less than N, then there ex ist 6 >  0  and 
an initial fo res t a  such that fo r  all 8 close enough to  1, i f  ( a , )  is an optimal 
program , then

lim inf || a * — a, || >  e. (5.6)

Observe tha t while Y  is an (A^+ 1) x (N  +  1) matrix, its rank can never 
be equal to JV+ 1, because its row sum s are zero. However, its possession 
of rank N  is certainly generic in the space of all grow th patterns 
</?(5 ) ) J =0. F o r example, a sufficient condition for Y  to  have rank N  is the 
non-singularity of the circulant m atrix

R  =

R (0) t f ( l )

* ( 1 ) R ( 2 )

_ R( N)  R(  0)

R( N)
R(  0 )

R { N - l ) _

We conclude, therefore, that a neighborhood turnpike result is typical of 
the point-input, flow -output capital theory  framework. However, no con­
vergence result can  be expected for any discount factor <5 strictly less than 
unity. This is in sharp  contrast to  the standard  fram eworks of optimal 
growth theory w here “asym ptotic tu rnp ike” results have been obtained.



6. R e m a r k s  o n  t h e  V in t a g e  C a p it a l  I n t e r p r e t a t io n 1

At a n u m b e r of po in ts in the exposition , we have a le rted  the reader to  
the obv ious iinks between ou r exercise an d  a v intage cap ita l fram ew ork. An 
unsatisfactory  com ponen t of the exercise is the fixity o f  the  land  stock, 
which has no com fortable in te rp re ta tio n  in the con tex t o f  v in tage capital 
theory, except perhaps as an inflexible “space” constra in t. N evertheless, it 
served as a useful device for focusing on issues of com p o sitio n , an d  points 
the way to w ard s  a na tu ra l generalization .

C onsider an  extension of the m odel, where, a t a cost to  cu rren t co n ­
sum ption . the num ber of new trees installed  is a choice v ariab le  w hich is 
not lim ited by the available free lan d  from  “felling.” In such a m odel, one 
m ight focus on two state variables. T he first is the vec to r o f age composi­
tion. 7.. ju s t as it was present in o u r  exercise. The second is the  total stock, 
a new variab le. T o  cap tu re  the effect of varying retu rns to  scale, the re tu rn  
from  each m ach ine at each d a te  m u st now  be viewed as functions of the 
stock.

At this stage, all we can offer is speculation  ab o u t the  in te rtem pora l 
behav iou r o f such a m odel. B ut it is a reasonable conjecture th a t if retu rns 
to  scale a re  decreasing, the stock variab le  w ould converge to  a  steady state 
(even in the d iscoun ted  m odel, because there is a single o u tp u t) , while the 
age co m p o sitio n  w ould con tinue to  fluctuate in the m a n n er we have 
described.

7. P r o o f s

P ro o f o f  Proposition  3.1. F irs t consider the case w here t  =  0. 
D efine N *  as a so lu tion  to  the  follow ing m axim ization  problem :

m ax [ 1 - ^ A' +1]
Os:N^T

I  R(s)  d*

C learly  N *  exists, though  n o t necessarily  uniquely. 
If N *  >  0, we ob ta in

yv*~i — 1[1 - S N ]
/V* -  1

I  R ( s ) S s
L s = o

I  R( S) 5 ' , (7-1)

1 These suggestions for an extension owe m uch to  discussions with Aloisio Araujo and to 
com m ents by an anonym ous referee. In  th is connection, we would like to  draw  the readers 
a ttention  to the recent w ork on the choice of optim al capital vintages by Benhabib and 
Rustichini [ 3 ] .  W e became aw are of the ir w ork  after our paper was largely completed. While 
there are obviously several poin ts of overlap  between their paper an d  ours, a complete 
com parison of the m odels and results of the  tw o papers will not be a ttem pted  here.



w hich yields, afte r som e m an ip u la tio n ,

A'* -  1

X  [ / ? ( # * ) - i ? ( j ) ]  <5'>0.
.1 =  0

Also, if N *  <  T, we get

(7.2)

I  R ( s ) S ‘
L  s = 0

I  R( s ) 8 '
\ - s  =  0

(7.3)

w hich yields, afte r som e m a n ip u la tio n ,

(7.4)

F irs t we show  th a t  N *  ^  Q.  If no t, R { Q )  >  R ( N *  +  1) ^  R(s)  for all 5 = 0, 
w ith  s tr ic t inequality  for som e 5. T h is yields £ o  * [ R( N*  + 1 ) -  

i?(5)]  <5S > 0 ,  co n tra d ic tin g  (7.4). N o w  we show  th a t N *  can  take on at 
m ost tw o ad jo in in g  values. S uppose n o t. T h en  there are  N ’ an d  N" with 
^ " > ^ '  +  1 a n d  (7.2) an d  (7.4) satisfied, respectively, fo r N *  =  N ‘ and 
N *  =  N".  W e have

‘ [ R( N") - R( s ) l d '
s= 0

=  X  [ / ? ( i V " - l ) - / ? ( j ) ] ^ +  X  [ ^ t f " ) - * ^ " - ! ) ] ^
j = o 5 - 0

=  X  [ JR ( i V ' ' - l ) - / J ( 5 ) ] 5 I +  i p ^ - [ / ? ( i V ' ' ) - / J ( ^ ' ' - l ) ]
s =  0  I d

1 - S f=  S  [ / ? ( i V ' + l ) - i ? ( 5 ) ] ^  +  -
s =  0  l — o

1 -  SN"
+  ■■■+ [ R ( N ") -  R (N "  -  1 )].

[ JR(TV' +  2 ) - ^ ( A f ' + l ) ]  

(7.5;

N ote  th a t N ’ ^  Q,  by the sam e a rg u m e n t m ade  for N*.  So for all M >  
R ( M )  <  R( M' ) ,  an d  therefo re

\ - 5 h 

1 — <5
[ R ( M ) - R { M -  1 )]  <  0. (7.6;



But the left-hand side of (7.5) is non-negative and so together with (7.6) we 
get

.V

X  [_R(N'+  l ) - * ( . s ) ] ^ > 0 ,
0

contradicting (7.4).
This proves that N*  can take at m ost two values, A1, and  N 2, with Q <

A^ ^  A  ̂^  Arj -f- 1.
Next, we prove that any cutting sequence <A'()  with X,  =  N,  or N 2 has 

the same value and any other cutting  sequence has strictly sm aller value. 
For any ( X ,  >, the total value obtained, F (<A ',)), is given by

•V,

! • (< .¥ ,) )=  X  *U)<5S +  <5A''
1 = 0 

+  d x ' +  x '  +  2

^ [ 1 - < 5 V*+1]

.v = 0 
r .V

.\'*+ ln - 1

+

I  * (s )  5*
L 0

{ ( 1  - < 5 -V| + 1)

+  d (1 I+  (5*' + X2 + 2( \ - S X3 + ' ) +  •••}

(with strict inequality if any A', #  TV, or N 2, and with equality if all Xj  =  N t 
or N 2).

But the term  in the curly brackets equals unity because 6" -*■ 0 as n -*■ oo. 
Hence,

N *  +  1 “I -  1] =  v* (7.7)

with equality if and only if X,  =  N t or N 2 for all i. This completes the proof 
in the case r  =  0 .

F inally consider the general case where 0 <  x ^  T. We divide this into 
two cases:

(A) r ^ N 2: The proposition here immediately follows from the 
Principle of Optim ality and the previous argument.

(B) x > N 2. Here we need only show that ^  =  1 (that X i =  N l or 
N 2, 2, follows from the argum ents above). Define a sequence \ k by 
X t = k ,  and A', =  Â ] or N 2, 2. W e are done if we show that V(Xk) >  
V ( \ k+ ‘). We have



k -  1

V( Xk) =  X  <5-'7?(t +  s) +  <5*K*
s = 0 

k

F (X i + 1) =  X  +  i') +  (5* + 1 V*,
= o

where V* is defined in (7.7) above. Sub trac ting  (7.8) from (7.9) yields 

V( Xk+1) ~  V( Xk) =  5kR( z  +  k ) - 5 k( l - S )  V*,

so

< 5 -* [ K (X * + 1) -  K( X* ) ] (1  - 8 Nl+I)
N->

=  { l - 5 N2+l) R( z  +  k ) - ( \ - d )  £  K( s ) S s
s = 0

= (l-<5) I  lR{T +  k ) - R ( s ) ] d '
s =  0 

N2
< ( 1 - 5 )  X  [ W 2 + l ) - / ? ( s ) ] ^

s = 0

^ 0 .

This completes the  proof. Q.E.D

P ro o f o f  Proposition  4.1. If utility is linear, we can take it to  be of thf 
form u{c) =  c. C onsider any program  <a,>  from some initial forest a. Ther

oc oc cc / T  \

X d ‘u(c(ct,)) =  £  S' c(a, )=  Z  <M Z a/(-*) R(s) )•
I = 0 1= 0  t =  0 Vv = 0 /

Let /  deno te  the un it plot o f land, and  let E,(s)  be the (measurable 
subset o f J  w ith  trees of age 5 a t tim e t. Clearly, a,(.v) =  n(E, (s)) ,  where / 
is Lebesgue m easure. Let Xe be the characteristic  function of E.  Now

r  t -i °° r  t  . -1
Z Z  a t( s ) R ( s )  =  £  d ‘ \ £  f  XEA,)R(s)dn

t = 0 LJ = o J  t = 0 L., = o J J

< j  v *co)dp(w),  (7.10)



where I *,,,, is the maximum re tu rn  obtainable from the one-tree problem 
with initial age t. and where r ( « )  is the age of a tree “a t point cu” at time 
zero.

Using Proposition 3.1. it is now easy to check that the last equality in 
(7.10) can hold with equality if and  only if <a,> satisfies the conditions of 
P roposition  4.1. Q.E.D.

P ro o f o f  Proposition  4.2. It is immediate from P roposition  4.1 that 
all stationary  forests of the form a*(/9, 7 ), where /J, y > 0  and /? +  y = l ,  
constitute stationary optimal program s.

Now we will show that this is exactly  the set of sta tionary  optimal 
forests. Pick any 2 ; suppose that it is a stationary optim al forest. Then, by 
Proposition 4.1,

a (i) =  a (5 +  1 ) for all s =  0 , ..., N l — 1 

x(/V, +  1 ) sg x(jVi )
(7.11)

a(.s) =  a(.v +  1 ) for all s =  +  1,..., N 2 — 1

a(.s) =  0  for all s >  7V2.

Using (7.11) and the fact th a t Z . L 0 a (s ) = w e  have, defining <r = 
[ a(Af, ) — a(A,1 +  l)]/a(W,)> tha t

ot(0 )[N , +  ! ]  +  ( ! - o ) * m N 2 - N l ) =  1

or

a(0) { N l +  l )  +  ( l - a ) ( N 2- N l Y (7' 12)

Consequently, using (7.12) and  the fact that 0 ^ < r ^  1, we have

- > a ( 0 ) > -
N,  + 1 ' ' W2 + l  

so that there exist (/?, 7 ) 0  w ith /? +  7 =  1 such that

It is now easy to  check tha t x(s)  =  y / ( N 2 +  1) for all s  =  N t +  1 , ..., N 2, and 
this com pletes the proof. Q.E.D.

P ro o f o f  Proposition  5.1. This p ro o f is along the lines o f M itra and Wan
[11]. F irst we show that if <x* is a stationary  optim al forest under a linear



utility function, then it is a sta tionary  optim al forest under a concave utinu 
function, say u. Let c(a*) =  c*. F o r any  feasible program  <a,> from a*, wi 
have

cc x

X  < 5 ' [w ( c (a , ) ) -H ( c * ) ]  ^  X  < 5 ' w ' ( c * ) 0 ( a , ) - c * ]
t =  0  / =  0

x

=  w'(c*)  X  <5' [ c( 3 , ) - c* ]
/ = 0

< 0 ,

where the first inequality uses the concavity  of u and the last inequalit; 
exploits the fact th a t a* is an optim al sta tionary  forest for a linear utilit; 
function.

Now we show  th a t if a* is an optim al sta tionary  forest under a concav 
C 2 utility function, then it is so for a linear utility function. Suppose thi 
is not true. T hen there are a concave C 2 utility function u, a discount facto 
<5 e (0, 1), and  som e a* which is a sta tionary  optim al forest under u, but a 
the same time there is a program  < a '>  from  a* with

CO
X  <5'c(a,) >  -— (7.13

/ = 0 1 <7

O n the o ther hand, because a* is an  optim al stationary forest under u,

(7.14
00 uic*}
X  <5 'w (c(a ,)K y—

Pick i e ( 0 ,  1). F o r  any 0 no te  th a t the program  <a,>  given b
a , =  xa, +  (1 — A) a*, t ^ O ,  is a feasible program  from a*. Let c(ot,) =  c, 
c(<x,) =  c„  for t ^ O .  N ow

oO

X  <5'[w (c ,) -m (c * )]

(,t - c * ) 2

=  A u '(c*) X  S ' ( c , - c * )  +  A X  s ‘u"(Zt)
( c , - c * ) 2~

(7.15)

for some lying between c t and  c*. N o te  th a t c t =  AcI +  ( l —Ji )c*?  
(1 - 1) c*, so th a t for all r, £ ,^ m in { c ,,  c*} > (  \ ~ X )  c * >  0 . U sing the fact



that !/"(•) is continuous on S.K++ and  tha t (1 - / )  c* <  £,  < m a x , R(i),  
we know that there exists K >  — oc such that

I  S 'u ' t f .v  ' ^ K ,  (7.16)
1 = 0 ^

where the inequality in (7.16) holds uniformly in / e ( 0 ,  / ] .  Consequently, 
using (7.13), (7.15), and (7.16), we see tha t for k small enough but positive,

£  5 '[ u ( c , ) - u ( c * ) ] > 0 ,
/ = 0

which contradicts the fact tha t a* is a stationary optim al forest under u.
Q.E.D.

P ro o f o f  Proposition  5.2. We will use the following result.

C laim . Suppose that cue A is o f  the fo rm  a(s) =  1 fo r  som e 0 <  .v <  T. L et 
( £ , )  he the Faustmann program  fro m  a, and < a ,> be any other program  
with 2 ,(0 ) =  1. Then there is 0 ( 5 )  e  (0, 1) such that

0 ( 5 )  £  <5'c(a,)> X  <5'c(a,). (7.17)
,=o /=o

Proof. Fix any s e  {0,..., T — 1}, and oceA accordingly as given by the 
claim. Let <aj>  be the program  from a such tha t (i)oci(0) =  l and
(ii) <»;>,;>! is a Faustm ann program  from a T h e n ,  just as in Proposi­
tion 4.1,

oc 00

£  ^ c ( « ; ) > X  a 'c(a,), (7.18)
i= 0  ' = 0

where <a,>  is any program  from a satisfying <x ,(0)= l. M oreover, by 
Proposition  4.1 and using the fact tha t N i(5) =  N 2(5) =  T,  we have, for the 
Faustm ann program ,

cc 00
I  S,c ( &, ) >  £  S'c(a;). (7.19)

1 = 0 1=0

Because there are only a finite num ber of program s of the form <a;> 
(one for each 5 6  {0,..., T — 1}), there exists 6>(<5)e(0, 1) (possibly 
depending on such that

0 ( 5 )  |  <5'c(a,) >  I  5'c(«,'). (7.20)
( =0  t=o

Com bining (7.18) and (7.20), we have established the claim.



Now we tu rn  to  the main argum ent. Suppose the proposition is falsi 
Then there are 5 e ( 0 ,  1) and some a # a *  such that for some optimi 
program  <a,>  from  a, a, -> a* as / -> co.

Observe th a t there exists e > 0  with the following properties:

(i) ||a — a *  || >  e (7.21
(ii) there exist c, c ^ O ,  and  r j >  0 , with c — r j >  0 , such that if

||oc — a* || <  e, then

c ^ c ( a ) < c  (7.22|

u'(c +  r\) >  u'( c  — t}) 0 ( 3 ) ,  (7.23!

where 0(<5) is given by (7.17) above.

Now note th a t if a , -+ a *  as oo, there m ust exist som e date A/^C 
such that

ocm + 1( s +  1 ) <  a M( s ) for so m e  s =AT  (7.24'

| |a, — a* || < e  f o r a l l r ^ M .  (7.25'

To see this, it  suffices to  look at the first da te  t when <a,>  permanent!) 
“enters” the e-neighborhood of a*. By (7.21), 1. F o r M = t ~  1, (7.24 
and (7.25) m ust hold.

W ithout loss of generality, (by the Principle of O ptim ality) take Af=0 
So, by (7.25), c <  c ( a t) <  c for all t >  0. N ow  we can find A >  0 such that

A < a 0( i)  — a ] ( i +  1) (7.26

and

c - t i ^ c ( a , ) - X R ( T ) ^ c { o c , )  +  X R ( T ) ^ c  +  ri f o r a l l ? ^ 0  (7.27)

Now, it can be easily verified tha t because of our choice of X in (7.26), 
there exist two initial stocks a ' e A  and  oc" e  A and two program s <aj),
<a,"> from a ' and  a", respectively, such tha t

a, =  (1 — X) a ’t +  Xa.", t^ O  (7.28)

a " (j)  =  l, a " (j)  =  0 for s¥=s  (7.29)

a " (0 ) =  l, a " (j)  =  0  for .s^O. (7.30)

These follow from the fact that X can  be identified with the measure of 
a subplot which only possessed age s  trees th a t were all cut dow n at date
0 (see (7.24) and  (7.26)). O n this subplot, the initial forest (a") consisted



of only age v trees. The forest a ' m ay be identified with the initial forest on 
the rem ainder of the land.

Let <a,> be the Faustm ann program  from a". Define a program  <a,*> 
from a by

a* =  (1 — A) a , '+  Aa„ 0. (7.31)

Let c* =  c(x*) ,  c,  =  c(oi,), and c,' =  c(aj), t ^ O .  N ote th a t by virtue of 
(7.27),

c -  r\ sg (1 -  A) c ( a J X  c +  rj (7.32)

c — rj ^  c ( a * )<  c +  r\. (7.33)

Now, for / ^  1,

u( c* ) -  w(( 1 -  A) c ’t ) 3* m'(c,*) Ac(d,)

S? h'(c +  jj) Ac(a,)

>  u ' ( c - r i )  0 ( 8 )  Ac(a,), (7.34)

using (7.31), (7.33), and (7.23). At the same time, for t ^  1,

M(c,) -  M((l -  A) c J K  «'((1 -  A) c,') Ac(a")

< « '(c - f ;)A c (a ; ') ,  (7.35)

using (7.28) and (7.32).
C om bining (7.34) and (7.35), we have, for O  1,

« (c ,* )-h (c ,)  >  u'(c — rj) A{6>(<5) c(a,) — c(a")} , (7.36)

while c,? =  c0. Consequently,

X  S '{ m(c* ) - i/(c, ) } > i/ '(c - » / )  A <9(<5) X 5 'c ( a , ) -  X  * W )
( =0  ( = 0

> 0 ,

using (7.17). This contradicts the supposition that <a,> was optimal.
Q.E.D.

P ro o f  o f  Lem m a  5.1. Consider the m axim ization problem  (3.1), nor­
malized by the discount factor an d  augm ented to include the case 5 =  1,

m ax S(6, M ), (7.37)
M  «  T



where

1 - S  M

S(t5, M )  =  _  M- t X  R (s)  <5' for ^ 6  C°. 1)
5  =  0

By assum ption (A), there is e > 0 ,  such th a t for all O ^ M ^ T ,
5(1, M ) < 5 (1 ,  AO — 3e. Now, 5(<5, M )  is continuous in 8 on [0 , 1] for each
0 ^  M  ^  T. C onsequently, for each 0 <  M  ^  T, there is 0 <  5 M <  1 such that 
8 m ^  S <  1 implies |5(<5, M )  — 5(1, M) \  <  e. Define d =  max{(50, < 5 r }; then 
0 < ^ < 1 .  Furtherm ore, for £ ^ < 5 < 1 , we have S(d,  5(1, M) + e< 
5(1, N)  — 2s 5((5, N)  — e. Thus, for all <5 e [c5, 1 ], N  is the unique solution 
of (7.37). Q.E.D.

P ro o f o f  Proposition  5.3. We will break up the long proof of this 
proposition in to  a series of steps and  lemmas. First, let 5 be given by 
Lem m a 5.1.

Throughout this p r o o f  unless otherw ise sta ted , 5  will be taken to be in the  
interval [5, 1 ).

Define c* =  c(a*) and

Lemma 7.1. There exists a real-valued function  B ( a ) ^ B >  — oo for all 
oceA,  such that B(a)  ->Q as a —> ot*, with

W ( a . , 5 ) =  max £  ^*[w(c(a r)) —M(c*)]- (7.39)
< a , > ; * o  =  3t ,  =  0<a,>;*o = 3t

W ( a , 5 ) ^ B ( a )  f o r  al l  6. (7.40)

P ro o f  F ix a  e  A. Define

a =  m in a(j).
s e  {0, /V}

(7.41)

Clearly, 1 / ( N +  1), with equality holding iff a =  a*.  Let

X =  cc(N+  1 ) ^ 1 . (7.42)

Then there exists a ' e A  such that

a =  Aa* +  (1 — A) a '. (7.43)

Define a program  from  oc' in the following way:



for t =  I..... N,  a , '=  1 -

a 0 =  a ; 

t -  1 1

N + \ ’ N  + N + l '
; 0 , 0  ; (7.44)

(7.45)

a ’ =  a*, t >  N  +  1.

Clearly, <a,'> is feasible from a'. Now define a program  <a,>  from a by

a, = /.a* + (1 — A) a,', f > 0 .

N ote tha t c(x, )  =  c*,  for t ^ N +  1. And for f =  0 , ...,

c(x,) =  Ac* + (1 — A) <:(«,')

^  a(Ar +  1) c*. (7.46)

Therefore,

Define

W(«,<5)> t  <5'[W(c ( a ,) ) -« ( c * ) ]
/  =  0

r = 0

N

B(<x)= ^  <5'[w(a(Af +  l ) c * )  — m(c*)].

(7.47)

N oting tha t a -*■l / ( N  +  1) as a -» a*, it is easy to  see th a t B (a) has all the 
required properties. Q.E.D.

We start the m ain argum ent by constructing a suitable Lyapunov func­
tion. This will be done by first establishing a “price support property” of 
stationary  optim al forests. To this end, we define a “price vector” p ae ^ { T+ + 
in the following way: first, define q s e  91 + + , for d e  [^ , 1), by

?«(0 ) e 1

1 - S s 1
9s(s ) ~  1 +

for 5 = 1, . . . , ^  (7.48)

Q s { N  + 1) =  1 — e for some l > s > 0  

^ g(i,) =  l for 5 > A r + l .



For <5 =  1, define

9 i(0 ) s  1

<7i(-y) = , +  T7~T  £  X  ^ ,T)
^  1 t = 0  r <>

<11 (N  + l ) = l - £

<] i ( s )=  1 for s >  jV + 1.

N ow  define for 5 e [<>, 1 ]

Ps(s )  =  u'{c*)  q d(s) for s =  0 , . . . . T  |7,49l

and

£  d ' R { x ) - ( l - 6 )  if <5e [<\  1 )
1 — <5 

£ ? = „ * ( * ). .  if <5 =  1.
TV +  1

L em m a 7.2. The vector q s has the follow ing properties for i: sm all enough 
but p ositive:

(i) R ( N )  -  q s( N)  +  Sq6(0) =  R(s)  -  q»(s) +  dq, ( s  +  1)

►

Io
'II£II (7.51)

(ii) ? ,( 0 ) > 9 a(JV + l) (7.52)

(iii) ^ ( ■ y ) > ^ ( 0 ) f o r  s = l , . . . , N (7.53)

(iv) R( s)  -  q*(s)  +  <5 m ax{^6(0 ), q d(s +  1 )} <  w(<5)

f o r  s =  N + \ , . . . , T - \  

R { T ) ~ q a( T)  +  5qs ( 0 ) < W(d).

(7.54)

The value o f  e can be chosen independently o f  the discount fac to r.

Proof. We show (i), (ii), and (iii) for <5 <  1. The details for these cases 
a t S =  1 are easily w orked out. Subsequently, we prove (iv).

If N >  1, pick any s e  {1,..., N — { } .  Then,



/?(.v)-<y,s(.v) +  <5</,s(.y+ 1 )

1 -  ds
I + -

+

-  Z  a r/ i ( T ) - p  I  ^ ( T ) l
-I t = o o z = 0 j

, v + n  I  t  S * * ( t ) 1
- 0  0  T =  0  J

j __^  .V

=  -  <i -  <̂ ) +  , _  c v + i I  5 r / ? ( T ) s w ( g ) .  (7.55)
* " T = 0

For v = 0. we have

R ( 0 ) - c i , ( 0 )  +  S q s ( \ )  =  R ( 0 ) - l  

=  h(<5).

To complete the proof of (i), note finally tha t

R ( N ) - q ^ N )  +  Sq i (0)

- *<<>>]

= R ( N ) ~
l _ c , V  ,V j N - l  I

w(<5)

Part (ii) is obvious from the fact th a t £ > 0 . To establish (iii), note that 
by (A),

1 — <5 1 — S'
for all 1 O s ?  N.  (7.56)

Using (7.56) in (7.48) completes the argum ent.
Finally, we establish (iv). To do so, we first show th a t we can obtain

1 > f. >  0 such that
/?(.?)< e[w(<5) +  (1 — <5)] (7-57)

for all s =  N +  1,..., T  and all c5e[<>, 1]. By Proposition 3.1, it suffices to
show this for ,y =  jV + l ,  because N ^ Q  and  so R ( N  +  1 ) > R( s )  for all 
s > N + l -  Now, using Lem m a 5.1, we have for <5e(d, 1),

I ^ o 1^ )  ,Z ? = o  S W
l_ ^ y v  + 2 <  ! _ ^ + i

or
6 n + , R ( N +  1)

-< £  r  1 1 l

_____ 1  8 N + i V - S ]
X, 5sR( s )  / 1 - <5JV+1)(1-<5A, + 2)'

- v — 0 -J '



Therefore,

R ( N + \ ) <  [ ~ Z - t £  6'Ri s ) .
1 °  s  =  0

N ote also that a t <5 =  1, by assum ption (A),

Com bining these tw o inequalities with the definition of u (<5), we have

R ( N +  1 ) <  w(3)  +  (1 — 5)  for all S e  [<>, 1 ]. (7.581

Since w(<5), defined for S e  [^ , 1 ], is con tinuous in its dom ain , we can find
1 > e > 0  such th a t (7.57) holds for s  =  N +  1 and  for all 6 e  [<), 1 ].

N ow  pick e =  e/2. W e claim th a t for such £, (iv) holds (independently 
of the value of <5). T o  check this, first no te  th a t, for all <>e[d. 1], if 
s = N +  2..... T -  1,

£ C s ) - g « ( s )  +  < 5 m a x (^ (0 ) ,  qd(s +  \ ) ) = R ( s ) ~  1 +  6 < w { 6 ) .  

using (7.57). Also, if T > N +  1, (7.57) yields

R ( T )  -  q s( T)  +  S q ,(0) =  R( T) -  1 +  <5 <  u (<5) 

by the same argum ent; and  finally (if T  >  N  +  1),

R ( N +  1) -  qs ( N +  1) +  5 m ax {9 i (0), q 6( N  +  2 )}

=  R ( N +  1 ) -  1 +  e +  (5 

<  w(<>),

using (7.57). (If T =  N  +  1, use a sim ilar argum ent.)
This completes the proof. Q.E.D.

Lemma 7.3. For all  a, a ' e A  such that a ' e ^ ( a ) ,

u(c*) -  p s a*  +  8ps a*  >  u(c{cc)) -  p s oc +  Sp^x' (7.59)

with strict inequality holding in (7.59) whenever at least one o f  the following 
holds:

(a) a ' ( j + l ) < a ( s )  fo r  some s j = N

(b ) a '( A r + l ) > 0

(c) a ( s ) > 0  fo r  some s > N   ̂ ^

(d) c * ^ c ( a ) .



Proof. Pick any a, a ' e A,  with a 'e  0 (a). N ote that 

c { x ) - q , ^  +  Sqs oi’
T  T  T

=  Y. x ( s ) R ( s ) ~  X  q s(s)  a ( j)  +  <5 X  qs(s) a '(s)
v= 0 
A 1

=  X  a ( ?)[^(-?)-^<>(^) +  ^<5(‘y +  1 )]
.v -0

+ a(A 0[*(A 0-?,(JV ) +  <5?,(0)]
.V

+  ^ X  1 )] + a ^ a(0 ) [ a '( 0 ) - a (A f ) ]
•S’ — 1
T -  I

+  X  ^ ) W s ) - ? < ( j )  +  ^ m a x { ^ ( i + l ) ,  9 ,5(0 ) } ]
.v =  N  + 1

+  <x( T) \ _R( T) - qd( T)  +  8qs (0) ]  +  X  “ '(■*) ^ ( s )
J = 7V+ 1

T-  I
-  X  a(s)  <5 max  { 0 ,5(5 + l ) , ? a ( 0 ) } - a ( r )  <5^(0)

N

a '(0 )+  X  ( a '( . s ) - a ( j-  1))
s = 1

r
+  X  (“ '(■?) — a ( s — 1)) — a( N)  +  a.'(N +  1) — a( T)

s  =  N  + 2
, (7.61)

where the inequality above is derived from  the following: Lem m a 7.2, parts
(i), (ii), (iii), and (iv), and  the fact th a t q s{ N + 1 )=  1 — e, 0 a(O )= l, 
^ (̂.v) =  1 for s ^ N + 2 .  The reader is invited to  check, using the strict 
inequalities of Lem m a 7.2, tha t the above weak inequality will hold strictly 
whenever part (a), (b), or (c) of the current lemma holds.

But now note th a t the term  in the square brackets o f (7.61) exactly 
equals zero. So

c(a) — q s a +  Sqs a.’ <  w(<5) for any  a,oc’ e A  such tha t a ' 6  0(a). 

Furtherm ore, it is easy to  check using Lemma 7.2, part (i), tha t 

c* — q s <x* +  d q s (X* =  n>(<5).

So

c (a )  - q sa +  &qs{<*’) <  c * ~  ?<?«* +  < ^ a *



or

c (a) — c* ^  <y,sa — 5q6 a ' — +  <V/,, 2 *. (7.6]

N ow  observe th a t by strict concavity of

w(c(a)) — m(c*) ^  u '(c*  )(r(a )  -  c* ), (7.631

with strict inequality  holding if p a rt (d ) o f  the cu rren t lemma holds.
Com bining (7.62) and  (7.63), and  using the definition of />,, given in 

(7.49), we are done. Q.E.D.

N ow  define, for any a, a ' e A  w ith a ' e  and  for 6 e [<>. 1 ].

/(a, a ', <5) =  [m(c*) — p s a* +  — [ zv(c(a )) — />,** +  cty^x']. (7.64j

N ote tha t /(a, a ', d ) ^ 0 ,  with strict inequality  holding whenever (z. a'i 
satisfy at least one o f conditions (a), (b), (c), o r  (d ) of Lemma 7.3.

F o r any program  < a ()  from  a 0, define, for each t ^  0 and <> e [c>. 1).

£ ,(< a ,> , <5)= £  S ' -  ' l (xn a, + ,, c5). (7.65l
/ = .V

Lemma 7.4. For erery  « e / ( ,  e iw j  discount f a d  or <) e [<_>. 1), and each 
optim al program  <a,>  [under 5) /ro w  a,

L , « a f> , 5 K F < o o ,  .v>0. (7.661

M oreover, there ex is ts  a function  f .  R + -* R  + such that f(r. ) —► 0 a.v € -*0. 
vt’i//z the p roperty  th a t

L s« o c , > , S ) ^ f ( e ) ,  s > 0 ,  (7.67)

whenever ( a , )  is a« optim al program  under d fro m  som e <xeA and 
IK - a*| |  s£e.

Proof. I t clearly suffices to  establish these results for L 0. F o r any a eA , 
Qnd 8 e [d, 1 ), and any  optim al program  < a,>  from  a, it is easy to  see that

OO
L 0{ ( a . , y , S ) =  £  <>'[«(<?*) — w (c (a ,) ) ]  — p s a* + p soc

t =  0

- f i ( a )  +  P a ( a - a * )

^  - f i ( a ) + | | ^ | |  ||a — a* ||. (7.68)



Note that sup,ser,s n  | | p j  <  cc, and  so, using Lemma 7.1, (7.66) is true. 
Now defining

j \ i ' .)=  sup [ - £ ( « ) + {  sup | | p j }  | | a - a * | | ]  (7.69)
lii <5 e [<5. I ]

and again using Lemma 7.1, it is easy to  check that f ( e ) has all the requirec 
properties and that (7.67) is true. Q.E.D

L e m m a  7.5. Suppose that Y  is o f  rank N. Then there ex ists  a real valuei 
function g: 'Ji + + -+ sJl + + such that i f  ||a  — a*|| >  e, fo r  som e s >  0 , then foi 
every discount fa c to r  3 e [<5, 1 ) and every program  <a,> fro m  oc,

T -  1

X  /(a ,, a ,+  i, S ) ^ g ( e ) > 0 .  (1.70]
t = 0

Proof. It suffices to show that for every a such that a ^ a * ,  and for 
every program (oc, }  from oc, there exists t e  {0, 1,..., T — 1} such that

/ ( a „ a , + 1,« 5 )> 0  (7.71)

Let us first prove this claim. Suppose (7.71) is true bu t n o t (7.70). Then 
for some s >  0 , there exist a sequence Sk, a  sequence a k such that 

xk — a* || > £ , and  a sequence of program s < af>  from ock such that

lim / ( « ? > < .>  <5*) =  0- (7.72)
1 = 0

Without loss of generality we can suppose tha t dk -> 6 e  [£ , 1 ]  and that 
2a, <af>, converge pointwise to  som e initial forest and program , oc, <oc,) . 
Note that <a,>  is feasible from oc. The reader can also check, using the 
definition of q for 3 <  1 and  for <5=1, and  the definition of /, tha t /(a, a ', 3)  
is a continuous function on A x A  x [(>, 1], So, passing to  the limit and 
using (7.72),

X  /(a„  a , + i, <5) =  0
( =  0

which means that

/(« „  a ,+ |,<5) =  0 for all t e  {0,..., T — 1}. (7.73)

But (7.73) contradicts (7.71), and this proves the claim.
So we now establish (7.71). By Lem m a 7.3, it suffices to  prove that if 

and <a ,>  is feasible from a, then  there exists t e  {0 , ..., T — 1 } such 
that one of the following obtains:



r e  {0.....T). (7.771

(a )  a , + +  1) <  x(.?) for som e v ^  V

(b) ocr+1( ^ + D > 0
(7.741

(c) a ,(5 ) >  0 for som e .v >  N

(d ) c(<x, )^c*.

Suppose this is n o t true. T hen, it can  be checked that there exists a 

feasible program  <01, > from  some a ^  a*  such th a t

c{a, )  — c * for all t e  {0,..., T )  (7.751

a, (s)  =  Q for all 5 >  N,  for t e  {1..... T)  (7.761

a (+ l(s +  l )  =  a r(s ) f° r s — Q , . . . , N — l'
« , + , ( 0  ) =  « t(N)

This implies tha t there  exists a ^ a *  such th a t

a(0) i?(0) +  a( 1) /?(1) +  -t-a ( M ) R { M )  =  c* 

a (M ) R{ 0 )  +  a (0 ) 1) +  ••• 4 -a ( M -  1) R { M )  =  v* ?g|

a ( l ) /? ( 0 )  +  a ( 2 ) / ? ( l ) +  +  a (0 )  R ( M )  =  c*.

In  turn, (7.78) im plies tha t

Y<x =  0, (7.791

where Y  is defined in (5.4). The set of all a ’s satisfying (7.79) is, of course, 
the null space n( Y),  an d  it is well know n th a t

dim  n( F) +  rank( Y)  =  N +  1. (7.80)

If rank( Y) — N,  it follows that

d i m « ( F ) = l .  (7.81)

Therefore all a ’s satisfying (7.79) are sca lar m ultiples of each other, and 
given the additional restric tion  cceA,  it follow s th a t there is a unique solu­
tion to  (7.79). But we know  th a t a* is a so lu tion  to  (7.79). This contradicts 
the supposition th a t a  #  a* , and  proves the lem m a. Q.E.D.

The next two lem m as are  m uch w eaker v arian ts  o f w hat we finally want 
to  establish. The first (L em m a 7.6) essentially sta tes a “m axim um  theorem” 
when the discount factor param etrically  converges to  one; its p roo f is not 
covered by any stan d ard  m axim um  theorem  in  the  literature. The second



(Lemma 7.7) is a version of the w ell-known “visit lemma” (see Scheinkman
[18]) which states that for discount factors close enough to unity, an 
optimal program must “visit,” at some finite date, an e-neighborhood of the
stationary optim al forest.

L em m a  7 .6 . Suppose that r a n k  Y  =  N. L et ock be a sequence in A such 
that xA -> x* as k  -> x .  L et St: be a sequence o f  discount fa c to rs  in [c>, 1) 
such that 8k -> 1 as k -> x ,  and let <a*> be a sequence o f  optim al program s 
under Sk, from  ock. Then, fo r  each t ^  0,

as k - * c c .  (7.82)

Proof. Suppose not. Then for som e sequence (ock, d k) -* (oc*, 1), with 
dk< 1, and for the corresponding sequence of optim al program s <a*>, we 
can suppose, w ithout loss of generality, th a t

ock -*oc„ t ^ O ,

where, for some t >  0,
oc, #  a*.

Let s be the first date such tha t a v+ i # a * .  Clearly, because oc% =  ock for 
all k, and because ock -» oc*, we have s ^ O .  It is easily seen th a t w ithout loss 
of generality, we can regard s as equal to  0.

Recall p A as defined by (7.48) and  (7.49). W rite p Sk =  p k and  ck =c(ock) 
for all k and t ^ O .  Using (7.64), we have, for all t ^ O  and  for all k,

/(xf, xk+ l , S k ) =  [ u ( c * ) - p koc* +  Sk p kc c * ] ~  l u ( ck) - p kcck +  Skp kock+ J .

Multiplying bo th  sides by S'k, and tak ing  the infinite sum  over all t,

X  3'k l(ock, a f+ ,,<$*)= £  S'k[ u ( c * ) - u ( c k) ' } - p k(<x*-cck)
1 = 0 i=o

sS -B( ock) ~  p k( c c * - u k), (7.83)

where B(-)  is given by Lemma 7.1.
Now, by Lem m a 7.1, B(ock0) ^  0 as k - *  oo, because a j -» a*. Also, p k is 

bounded in k, so tha t
co

lim sup X  d'Jiu-n  a f+i> (7-84)
k  oc t = 0

However, by ou r construction, there is s >  0 such tha t for all k  suf­
ficiently large,



U sing Lem m a 7.5, we have

X  /(«?, a f +,, 5* ) > * ( * : ) >  0. (7.85i

r = 1

Therefore, using (7.85) and the fact th a t 8 ^ 8  for all t and that 0. we 
have, for all k,

co T

X  < 5 ' / « ,o c * + 1 ,<5*)^ X  S'k l(?.kr. * l  , . < M
< =0 r = 1

> S T £  /(a t, ^
i = i

^ 5 r g (e ) .  (7.86)

But (7.86) contradicts (7.84). Q.E.D.

Lemma 7.7. Suppose that rank Y  =  N. For each i: >  0, there exists
§  e  [5, 1) such that i f  b e  [J , 1), then fo r  each in itia l fo re s t y. e A, and optimal 
program  (oc,)  ( under <5) fro m  oc, there e x is ts  T  <  x  such that

| |a T— a* || <  f,. (7.871 

Proof. Let e > 0  be given. Pick 6 such th a t

g(£4 - > F ,  (7.881
1 -< 5 2

where g (-)  is given by Lem m a 7.5 and F  is given by Lemma 7.4. Now sup­
pose, on the con trary , th a t for some 8 ^ 8 ,  there  are ice A and an optimal 
program  <a,> (under <5) such th a t ||a, —«*|| > f. for all t~3z 0. Then, using 
Lem m a 7.5,

L 0« a I> ,5 ) =  £  < 5 7 ( a „ a (7.89)
/ = 0 1 — O l —o

But (7.89) and (7.88) together contrad ict (7.66). Q.E.D.

Now we prove the m ore im portan t p a r t o f P ro p osition  5.3.

P ro o f o f  (5.5) in P roposition  5.3. We are given som e e >  0. F irst, choose 
e >  0  and § e  [3, 1 ) such that

oceA,  l|a —« * ||< £ , and < a (> op tim al for 8 5 = 5



imply that

| | a , - a * | |< c  for t =  0 , \ , . . . , T .  (7.90)

This is possible by Lemma 7.6.
Now choose <5°e [5, 1) such tha t

I - ^ F ( 7 _ l ) < g(e-) for <5 ^  <5°. (7.91)

Next, pick e,' e  (0, e) such that

^ + Q - l j f ( r - l ) < g ( e )  for 8 ^ 6 ° .  (7.92)

Now, pick e "  e (0, e )  and e [(5°, 1 )  such that

(i) a e A,  <a,>  optim al for 8 ^ 8 t implies that there exists T  with

||a r - a * | |< e " ;  (7.93)

(ii) x e A ,  ||x — a * ||< e " ,  < a ,)  optim al for 8 >  <5 j implies that

||a, — a* || < e '.  (7.94)

The statem ent (7.93) follows from  Lem m a 7.7, while (7.94) follows from 
Lemma 7.6.

Finally, pick 8*  e [<51; 1) such th a t

^ - l ^ F T < g ( s ”). (7.95)

We will prove th a t for 8 ^ 8 *  and  for any a. and optim al program  <a,>, 
under 8,

lim sup ||a , — a*|| <  e. (7.96)
1 -*■ CO

By virtue of (7.93), we m ay presum e w ithout loss of generality that the 
initial forest a satisfies ||a — a*|] < e" .

Define, for any feasible program  <a, >, and  for any s, k  w ith k  ^  s,

a ( s , k )  =  ((ts ,a.s + l , ...,a.k). (7.97)

Next, define

d(<x(s, k), a * ) =  m in | |a , - a * | | .  (7.98)



By virtue of (7.90), it suffices to prove th a t

d ( o c ( t , t + T ) , o c * ) ^ e  for all t ^ O .  (7.991

W e now prove this claim, to  com plete the proof. Suppose, on the 
contrary, that (7.99) is false. Then there are  som e oceA with [|a — <t.  
some S ><5*, and a f ir s t  integer S  such th a t

d(a(S,  S +  T),  a * ) > £

for the program  <oc,> optim al from  a un d er <5.
In  other words, ||a, — a*|| >  e for all t =  S, S  +  1, ..., S -I- T. Because 

||a0 — oc*|| =  ||a — a* || <  e"  <  e, we have 5 ^ 1 .
W rite /, =  /(«,, a , + 1, 5) and L,  =  L ,(< « ,) ,  5) for the program  and 

discount factor in question. An easy co m pu ta tion  reveals that

S L , + i —L , =  —I,, f o r a l l f ^ O

so that

(7.100]
/  .1 = 0 a = o

Let K  be the greatest time period n o t exceeding 5  such that 
Hoc* — oc*|| <  e". T hen, using (7.94) and  the “principle of optimality." 

a *l! < £ '< £ •  So, if we define k  to  be the first integer such that

( * +  1 ) +  k T e  {S,  S +  1,. .. ,  5 +  r } ,  

we m ust have k  ^  1. N ow , for each i =  0 ,..., k  — 1, we have

L ( K +  1) +  ( i +  \ ) T ~  L ( X +  1) +  i T

\  r -  i r - i
M  I  L ( K + l )  +  i T + s ~  Z  ^  ( K  + 1)4- i T  + s 

'   ̂= 0 v = 0

* T ~ * i n < 0 .  (7101)

The second inequality in  (7.101) follows from  Lem m a 7.4, and  the fact that 
||ocs — oc*|| > e "  for all s e  { K +  I , S  +  T } ,  so th a t Lem m a 7.5 may be 
applied. The last inequality  follows from  (7.95).

N ote also tha t because H a ^ + i-a * !!  < e ',  we have, by Lem m a 7.4,

L k + i < / ( £  )• (7.102)



Combining (7.101) and (7.102), we get

L {k + I ) + k T< f ( E')- (7.103)

Now.

(A+ n + y tr+ i-
T-  1

(a:+  l i  +  t r + i

so that

L ( K  + I I +  [A- +  1 ) T h x +  l )  +  k T + s

< 0 , (7.104)

where the second inequality uses (7.103), Lem m a 7.4, and  the fact that 
|I*<a- + i \ + kr■— x*|| >  e by definition of k , so th a t Lemma 7.5 m ay be applied. 

But (7.104) yields a contradiction, because by construction, L , ^ 0  for all

To complete the p roo f of P roposition  5.3 in the case where rank Y < N ,  
we need a final lemma.

Lf.mma 7.8. Suppose that rank  Y  <  N. Then there ex is ts  a e  A, with 
*¥= a*, such that

R( 0)  a (0 ) +  i?( 1) a( 1) +  +  R ( N )  oc(N) =  c* 

R ( N ) a ( 0 )  +  R ( 0 ) a ( \ )  +  ■■■ +  R ( N -  1) <x(N) =  c*

/? ( l)o t(0 ) +  / ? ( 2 ) a ( l ) +  +  R( 0)  a( N)  =  c*. 

Proof. Suppose rank  Y  <  N. T hen, recalling the identity 

dim n( Y) +  ran k  Y  =  N  +  1

(see (7.80)), we have

Q.E.D.

dim n( Y ) ^  2. (7.106)



We know already  th a t a * e « ( F ) .  Because of (7.106), there is jien{}'\ 
such that a* and  /? are linearly independent. M oreover, ft can be chosen so 
that

N

X  /* (/)=  1. (7.107i
/ = o

Because a* > 0 ,  the reader can easily check tha t there exists / .e(0. Ii 
such that

a  s  [ / a *  +  (1 — A ) / J ]  e  A .  (7.108)

N ote  that a^oc* . M oreover, because a*, /? e /j(F ) , we have

Fa =  0. (7.109i

M ore explicitly,

[* (1 )  -  * (0 ) ]  «(0) +  [i?(2) -  R ( l )] a ( l ) +  • • •

+  [ R ( N ) - R ( N -  1 ) ]  <x(N-  1) +  [ / ? ( 0 ) -  R(N)~\ * (A ; ) =  0 

[ * ( 0 )  -  R(N)-\ a ( 0 )  +  [ J ? ( l ) -  R(0 ) ]  * ( ! ) + • • •

+  \_R{N) — R{ N  — 1)] a(iV) =0

C/2(2) — fl(l)] a(0 ) +  [i?(3) -  /?(2)] oc(l ) + ■ • ■ + [ / ? (  1 ) -  fl(0 )] a(N) = 0.
(7.110!

P u t «(0) J?(0) +  a ( l )  i ? ( l ) +  ■ • • +  ol( N)  R ( N )  =  K.
Then, using (7.110), it can be easily seen th a t

.R(O)a(0) +  /?(1) a ( l )  +  ••• +  R ( N )  x ( N)  =  K

R ( N )  a (0 ) +  7?(0) a( 1) +  ••• +  R ( N -  1) x( N)  =  K  ( 7 m)

f l ( l ) a ( 0 )  +  t f ( 2 ) a ( l )  +  . . .  + R ( 0 ) a ( N )  =  K.

It rem ains to  prove th a t K = c * .  This is done sim ply by adding up the 
left-hand sides and  the right-hand sides of all the  equations in (7.111), and 
noting tha t 0 &( s ) =  (N  +  1) c *. Q.E.D

W e may now com plete the proof of P ro p o sitio n  5.3.

Proof o f  (5.6) in Proposition 5.3. Suppose th a t rank  Y < N .  Pick a 7*3* 
as given by Lem m a 7.8. Define <a,> from  a  as follows:



a 0 =  2

x , + ,(.? +  1 ) =  a,(s) for all s #  N,  for all t >  0 (7.112) 

a, + ,(0 ) =  a r (jV) for all t ^ O .

Then it is easy to see that

c(x, )  =  c* for all t ^ O .  (7.113)

We know that there exists 8 e  (0, 1) such that for all 5 ^  3, a* is a 
stationary optim al forest. We claim now  th a t for all 3 ^ 3 ,  the program 
<*,> is optim al from x e A .  F o r any  o ther program  <a' > from  a and any
discount factor 3 ^  3, we have

X  8' [ u(c(x' , ) ) -u(c(oc, ) ) ]  =  £  5 ‘[u(c( c t ' , ) ) - u(c*) ]
1 = 0  t =  0

£ < 5 '[c (a ;)-c (a ,) ]
t =  Q

< 0 ,

where the last inequality follows by no ting  th a t < « ,)  satisfies conditions (i) 
and (ii) of Proposition  4.1.

It is now clear tha t the program  <(a,) satisfies (5.6) for every S e ( 3 ,  1). 
This completes the proof. Q.E.D.
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	The Economics of Orchards: An Exercise in Point-Input, Flow-Output Capital Theory*
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