
INFORMATION SCIENCES 80, 213-234 (1994) 213

Selection of Optimal Set of W eights in a Layered Network Using
Genetic Algorithms

SANKAR K. PAL

and

DINABANDHU BHANDARI

Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035,
India

Communicated by Abe Kandel

ABSTRACT

Genetic algorithms represent a class of highly parallel robust adaptive search
processes for solving a wide range o f optimization and machine learning problems. The
present work is an attempt to demonstrate their effectiveness to search a global optimal
solution to select a decision boundary for a pattern recognition problem using a
multilayer perceptron. The proposed method incorporates a new concept of nonlinear
selection for creating mating pools and a weighted error as a fitness function. Since
there is no need for the backpropagation technique, the algorithm is computationally
efficient and avoids all the drawbacks of the backpropagation algorithm. Moreover, it
does not depend on the sequence o f the training data. The performance of the method
along with the convergence has been experimentally demonstrated for both linearly
separable and nonseparable pattern classes.

1. INTRODUCTION

One of the remarkable developments of the artificial neural network
(ANN) is classifier design, viz. multilayer perceptron (MLP) [1]. Initially, in
designing a classifier, a set o f objects with known class levels is used
for training (learning). The system is then asked to classify an unknown
object based on the information acquired during training. The training
method in MLP is supervised and is accomplished through the well known
backpropagation technique.

It has been found that M LP can model highly complex decision bound­
aries for pattern classification, bu t has the major problem of getting stuck

at local optimal solutions during training. Moreover, the method of cor­
recting the weights through backpropagation of error is time consuming.
A nother drawback of the existing backpropagation learning in MLP from
the point of view of classifier design is that its convergence at the proper
decision boundary depends on the sequence of the input data without
taking into account the global effect of the training set.

Researchers are now trying to incorporate genetic algorithms [2, 3] in
designing and learning neural networks. In [4], Bornholdt and Graudeng
described a m odel for a genetically altered neural net. Muhlenbein [5]
proposed a genetically inspired modular neural network instead of MLP in
the task domain o f Boolean functions. In [6], Whitley et al. developed a
genetic algorithmic approach for optimizing connections and connectivity
of neural networks and tested it by pruning a fully connected two-bit adder
and XOR. They discussed new developm ents of genetic algorithms
and also proposed a new mutation process, called adaptive mutation, to
maintain the genetic diversity in the population.

In this article an attem pt has been m ade to incorporate the genetic
algorithms in selecting the global optimal set of weights in an MLP for
pattern recognition. The proposed m ethod is highly parallel, robust, and
avoids the conventional backpropagation technique, thereby reducing the
computational overhead. Since the algorithm does not need the backprop­
agation technique, its performance does no t depend on the sequence of
training data and the choice of learning rate is no longer required. Unlike
the error function used in conventional learning, the proposed algorithm
uses a weighted m ean square error (depending on the probability of
occurrence of the classes) as the basis of the evaluation function. A new
concept of the nonlinear selection process is introduced for creating
mating pools. A comparative study has also been made regarding the
computational time required for the parallel implementation of the con­
ventional backpropagation technique and the proposed method.

The algorithm is implemented on two different sets of linearly
separab le/ nonseparable patterns. The perform ance of the method along
with the convergence is provided for different training sets, population
sizes, and initial populations.

2. GENETIC ALGORITHM S: BASIC PRINCIPLES AND
FEATURES

Genetic algorithms (GAs) [2, 3] are highly parallel and adaptive search
and machine learning processes based on the mechanics of natural selec­
tion and the natural genetic system. GAs are capable of solving a wide

range of complex optimization problem s [5, 7-9] using genetic opera­
tors (reproduction/selection, crossover, and mutation) on coded solutions
(strings/chromosomes) in an iterative fashion. They efficiently exploit
historical information to speculate on new search points with expected
improved performance. GAs deal simultaneously with multiple points
(called population), not a single point, which helps to find the global
optimal solution without getting stuck at local optima. GAs are theoreti­
cally and empirically proven to provide robust search in complex spaces,
even if the searching (e.g., optimization) function spaces are not smooth or
continuous, which are very difficult (sometimes impossible) to handle using
calculus-based methods. GAs are also blind, that is, they use only the
payoff or penalty (i.e., objective) function and do not need any other
auxiliary information. A schematic diagram of the basic structures of a
genetic algorithm is shown in Figure 1.

Reproduction is a process in which individual strings are copied accord­
ing to their objective function values, / , called the fitness function. This
operation is an artificial version of natural selection, a Darwinian survival
of the fittest among string creatures. M ore highly fitted strings have a
higher number of offspring in the succeeding generation. These strings are
then entered into a mating pool, a tentative new population, for further
genetic operator action.

The crossover operation generates offspring for the new generation
using the strings (parents) selected randomly from the mating pool. The
crossover may be thought of as an inform ation exchange procedure between
two potential strings and it produces a pair of offspring.

Fig. 1. Basic steps o f the genetic algorithm.

216 S. K. PAL AND D. BHANDARI

In a simple GA, mutation is an occasional random alteration of the
value of a string position. The mutation operator plays a secondary role in
the simple GA. The frequency of m utation to obtain good results is on the
order of one per thousand bits (position) [3]. Like an insurance policy, it
helps to prevent the irrecoverable loss of potentially important genetic
material.

Let us now describe, in brief, multilayer perceptron (MLP) before we
demonstrate the capability of GAs to select its optimal set of connection
strengths (weights) for classifying patterns.

3. M ULTILAYER PERCEPTRON AND CLASSIFIER DESIGN

One of the most exciting developments during the early days of pattern
recognition was the perceptron. It may be defined as a network of elemen­
tary processors arranged in a m anner reminiscent of biological neural
nets that are able to learn how to recognize and classify patterns in an
autonomous manner. In such a system, the processors are simple linear
elements arranged in one layer. This classical (single layer) perceptron,
given two classes o f patterns, attem pts to find a linear decision boundary
separating the two classes. If the two sets of patterns are linearly separa­
ble, the perceptron algorithm is guaranteed to find a separating hyper­
plane in a finite number of steps. However, if the pattern space is not
linearly separable, the perceptron fails and it is not known when to
terminate the algorithm in order to get a proper decision boundary. Thus,
a single layer perceptron is inadequate for situations with multiple classes
and nonlinear separating boundaries. This motivated the invention of
a multilayer network (MLN) with nonlinear learning algorithms that is
known as the multilayer perceptron (M LP) [1], The MLNs can produce
boundaries for complex linearly nonseparable classes.

A schematic representation of a multilayer perceptron (MLP) is given in
Figure 2. The outputs of nodes in one layer are transmitted to nodes in
another layer via links/ connections that amplify, attenuate, or inhibit such
outputs through weighting factors. The total input to the z'th unit (node) of
any layer, except the input layer, is

V i - Z W i f t . (1)
j

Here Vj is the output of the ; th unit of the previous layer and Wtj is the
connection weight between the z'th node of one layer and the ;th node of

OUTPUT PATTERN

Fig. 2. Schematic representation of an MLP.

the previous layer. The output o f a node i is

V '=8 (U t), (2)

where g(-) is the activation function. The activation function is mostly
sigmoidal, with the form

^ ' i + e x p { - { u r e5)) ' (3)

where 0. is the threshold associated with the node.
The learning (training) system in the multilayer perceptron (MLP) is

supervised through the well known backpropagation algorithm, which is
based on the gradient descent technique. In this method, the correct set of
weights is obtained by reducing the error. This is achieved by moving in
the direction of the negative gradient of the error function (E), defined
in (4).

During training, each pattern of a training set T is used in succession to
clamp the input and output layers of the network. Feature values of the
input patterns are clamped to the input nodes, whereas the output nodes
are clamped to class labels. T he network gets (sequentially) patterns like

x k = {xkl} e T, where x kl is the / th com ponent of the vector x k, as input.
The input is then passed on to the output layer via the hidden layers to
produce output \ k = {Vkj}. In general, the outputs {Vk]} will not be the
same as the targeted or desired values {tkj). For a pattern \ k, the error
(E k) is calculated as

Ek = E (t kj- K j) 2- (4)
j

The overall error (E) for the training set T is calculated as

E = ^ E k = ^ Y . Z { t k i - V ki) \ (5)
l k j

where K (= |T|) is the num ber of training samples.
For every input pattern x k, the corresponding error Ek [(4)] is backprop-

agated to modify the weights so that the desired outputs {tkj} are obtained
at the output nodes. A sequence of forward and backward passes is made
for each input pattern of the training set for the stabilization of the
network. After the network has been settled down, the weights specify the
boundaries of the classes. Thus, learning in an M LP for classifier design
involves finding an optimum set of weights (minimizing the error) that take
information from the given training data set in order to classify unknown
patterns properly.

Two problems with the existing learning process of the MLP are (1) it is
computationally expensive and (2) the backpropagation process does not
guarantee the convergence at the global optimum, i.e., one may get stuck
to local optima of the error function. It is also to be mentioned here that
the backpropagation is a gradient descent m ethod and, therefore, it needs
the objective functions to be derivable. In various problems of pattern
recognition, particularly in image processing, the objective functions are
not so.

In the conventional learning strategy for classifier design, the weights
are usually updated for each pattern instead of accumulating information
about the whole training set. Therefore, the convergence of the network
depends on the sequence of the input pattern (training set). Besides these,
there is a difficulty in selecting the learning rate (e) [1], A high value
of e may make the network oscillatory, and a low value results in slow
convergence.

In the following section, we propose a methodology, based on genetic
algorithms, which is capable of searching the global optimum solution. The
proposed algorithm selects the appropriate weights randomly from a set of

potential solutions and there is no need of the backpropagation technique.
As a result, the algorithm is com putationally less expensive, and the
selection of learning rate e and the derivability of objective function are
no longer required. M oreover, it considers only the global effect of
training set in updating weights; therefore, it does not depend on the
sequence of the training data set.

4. INCORPORATION O F G E N E T IC ALGO RITHM S IN MLP

Let us consider an MLP having L layers, including the input (1st) and
output (Lth) layers. Let p, be the num ber of nodes in the ith (1 < ; < L)
layer. Let a threshold (bias) be associated with each node (except the
nodes in the input layer). Therefore, the num ber of param eters in such a
network is

For example, for a two-layered netw ork (L = 2) having two nodes in each
layer (p]= p1 = 2), the num ber of param eters is P = 2 X (2 + 1) = 6.

In the following subsections we shall describe the basic components
of genetic algorithms in the context of assigning link weights during
learning/training in an MLP.

4.1. CHROMOSOMAL R E P R E SE N TA TIO N OF W EIG HTS A N D
INITIAL POPULATION

GAs search for the global, near optimal solution under the complete
lack of knowledge about the search spaces. Usually in GAs, the initial
approximations are random binary strings. A binary string of length Pq
can be considered as a chromosom al representation of the param eter set.
Here, the first q bits are assum ed to be the representative of the first
parameter, the next q bits are for the second param eter, and so on.
Therefore, in the previous example, when q = 10 the representation of the
parameter set is

(6)

1100010101 0100011010
pari p a r2

0111110001

Par6

Each substring of length q is then decoded into [-1 ,1] and multiplied by
some suitable constant to make the param eter values lie in some desired
domains.

It has already been mentioned earlier that GAs start with multiple
points (approximations), not with a single point, unlike other search
processes, and generate an improved set of approximations from the
potential strings of the previous generation. The set of strings in a
generation is called a population. A set of random binary strings each of
length Pq (q bits for each param eter) can be considered as an initial
population.

Selection of the size (AO of the population, i.e., the number of strings in
a population is an im portant task in GAs. The size may be fixed in each
generation or varied with generation. O ne can keep it constant by ignoring
the strings that have lower fitness values and taking into consideration the
offspring produced from the potential (highly fitted) strings of the previous
population. It is to be noted that the greater is the number of strings in the
population, the higher is the processing time required for each iteration
and the smaller is the number of generations (iterations) to be executed
for convergence.

4.2. FITNESS FU N C TIO N

In GA the objective/fitness function is the final arbiter of the string
creators. Here, a highly fitted string should have higher fitness value and it
should result in low classification error. Therefore, any decreasing function
F{E) of overall erro r E [(5)] can be considered as the fitness function. For
example, F(E) can be taken as

where E max is the maximum possible value of the error function.
It is also to be m entioned here that the num ber of patterns of each class

is usually different. Therefore, during training, the contributions of differ­
ent classes in evaluating overall error are different and, as a result, may
produce im proper decision boundaries. In order to avoid this situation, we
introduce a weighted sum [10] in (5) such as

F (E) = E max- E , (7)

E \v~ VkJ) Xotj,
* j

with a(= 1 -p , = 1 — |r (\/K . p i is the apriori probability of class Cj, |c; | is
the number of training patterns of the /th class, and K is the size of the
training data set. The weighting coefficient takes care of the effect
of unequal proportion of training samples in positioning the decision
boundary.

U GHSET1C OPERA JO RS

4.3.1. Reproduction/Selection

The reproduction (selection) process is executed (as described in Section
2) by copying the individual strings, according to their fitness function
values, into the mating pool for the purpose o f crossover and mutation
operations. Let /, be the fitness value obtained for a training set T
corresponding to the /th string S,, / = 1 ,2 ,... , N. Then the mating pool will
consist of copies of 5,, where,

n,= Y J i N ' ^

Note that n, may not be an integer. In that case, we round it off such that
Liti j = N.

The purpose of the above selection procedure is to mimic natural
selection: Darwinian survival of the fittest. In o ther words, the procedure
allows generation of more offspring for the next generation from potential
strings (strings with high fitness values).

Nonlinear selection. The above linear selection process improves the
performance by maintaining the potential of the population, but it is not
enough to improve the search speed and to maintain the genetic homo­
geneity in the population. M oreover, the natural selection process is not
linear. In order to take these factors into account, one may introduce some
nonlinearity in generating the m ating pool such that it would increase the
genetic homogeneity in the pool by reducing the discrepancy between
strings with higher (or lower) fitness values. A t the same time, we also
need to increase the number o f copies o f a string having high fitness value
in the mating pool and to decrease that of a string having low fitness
value. This can be implemented using a nonlinear function, e.g., 5-type

function [11] of the form

S(x : = 0

f m i n
i f + / m a x) / 2

(/ m a x f m i n

i f (/ min+ / ma x) / 2 W / rmax

= i otherwise. (10)

Here, / min and / max are, respectively, the minimum and maximum fitness
function values corresponding to the strings of the considered population.

This can be viewed as putting a soft threshold over the strings to employ
their unequal im portance in generating a mating pool. This nonlinear
selection m ethod therefore enables m aintainence of genetic homogeneity
besides producing a potential mating pool, thereby enhancing the chance
of crossover betw een two highly fitted strings for future processes.

4.3.2. Crossover

Since the size of the param eter set, and consequently the length of the
chromosomes, is not small, it is intuitive that the single point crossover
operation (as described in Section 2) may not be useful for fast conver­
gence. Therefore, instead of applying a crossover operation at a single
point over the entire string, we applied this operation on each substring
(chromosomal representation of an individual parameter). The proposed
multiple point crossover operation is dem onstrated below for the substring
length q =10. Let

a = 1100010101 0100011010 ••• 0111110001,
b =1000101110 1110110001 ••• 0011010100

be two strings (parents) selected for crossover. Let the random number
generated by the crossover operation be 7 ,5 ,. .. ,4 . Then the newly pro­

duced offspring will be

«' = 1100010110 0100010001 ••• 0111010100,
b' = 1000101101 1110111010 ••• 0011110001.

4.3.3. Mutation

The mutation operation is perform ed with very low probability
but it is difficult to determ ine the probability of performing this operation
in order to produce good result. W e have chosen Pmut in the range of
0.002 to 0.001. A random bit position of a random string is selected for
mutation and the status of the bit at that position is reversed (i.e., 0 is
replaced by 1 and vice versa).

4.4. ALGORITHM

The block diagram of the proposed algorithm is presented in Figure 3.
Given the pattern classes, a training data set T is selected for learning the
neural network parameters. Initially, a binary string, generated randomly,

Fig. 3. Block diagram o f the proposed algorithm.

of length pq (substrings of length q are taken for each parameter) is
considered as the chromosomal (string) representation for the parameter
set associated with the network. A set of N such strings is considered as
the initial population. In our experiment, we have assumed N = 50. The
substrings of a string are then decoded into a real number in the interval
[— 1,1] and m ultiplied by some constant to make them lie in some desired
domain. The fitness value corresponding to each string is calculated [using
(7)] for the entire training set. For a pattern \ k, if the output obtained at
the nodes of the output layer is Vkl and Vk2, then we say \ k is in class 1 if
Vkl > Vk2; otherwise x k is in class 2.

A mating pool is created using the reproduction operation (explained in
Section 4.3.1) with highly fitted strings and a new population of size N for
the next generation is then generated by the crossover and mutation
operations on the strings selected randomly from the new mating pool.

The learning process of the network is then repeated with the parame­
ter sets corresponding to this new population for the same training set T
of patterns and, consequently, a new population is generated further. The
process term inates when the minimum value of the error over a population
becomes less than some small preassigned value e. The decoded version of
the string having minimum error value then represents the optimum
param eter set for the network.

5. COM PARISON OF CO M PU TA TIO NAL TIM E

Here we have m ade an attem pt to determ ine the computational time
required for parallel implementation of the conventional backpropagation
technique and the proposed method. In determ ining the time of computa­
tion, we have assumed that the time required for multiplication, function
call, and exchange are the same and are equal to 1 unit (say).

Let us consider an M LP that has L layers and let Nd be the size of the
training data set. For the backpropagation technique, let

A? = average time taken by each node during forward pass,

AT = average time taken for weight correction in each link,

Nj = the num ber of iterations required to get the desired output.
I

Then, the total tim e required is

r BP = (L - A f + (L - l) - A T) ><Nd X N i . (11)

j Now, A/ - 2 (one multiplication step and one for function call) and A7’= 3
(two multiplication steps and one for function call and multiplications
simultaneously). Hence,

7 hp = (5L — 3) X N d xNj . (12)

For the proposed algorithm, let the same training data set be used for
learning and let Np be the population size (number of param eter strings
considered).

lT n = time required for decoding the strings,

ATc = time taken for crossover,

ATst = time taken for m utation,

1TS = time taken for sorting the fitness values,

JVe = the number of iterations required to get the desired output.

I
Then the total time required is

Tca = (L ■ A/ X Nd + ATd + ATC + ATM + ATS) X Ng. (13)

Again, AT,, = 1 (one multiplication step), ATc = 1 (one step for function
calls), A7m = 1 (one step for function calls), and ATs = l x N p. Hence

r (iA = [2L X A /, + (3+ iV ,)]xJV r (14)

' Now,

T’bp - ^ga = 2 LNd(N - N g) + [3 (L - l) N dN' - (3 +%)7V g] - (15)

We have 2. Let us assume that Â =7V? (i.e., the num ber of iterations
required in backpropagation is equal to that required in the genetic
algorithm to obtain a desired output). Therefore, from (15),

I ^ b p - ^ Ga > [3 A ^ - (3 + A O A ';] .

Here, r Bp > TGA if Nd >Np/ 3 + 1.

S. K. PAL AND D. BHANDARI

I 11 ! 111! ! 2 f 1 2222 I 22 2 2
1 1 1 1 2 2 2 2 2 22 2 2 2

11 1 22 2 2 2 2 2 2 2222 2 2
1 1 11 1 2 2 2 2 2 2 2 2 2 22 2

1 11 1 1 1 2 2 2 2 2 2 2 2 2 2
1 11 1 1 2 2 2 2 2 2 2 2 2 2

1 1 1 I 1 1 2 222 22 22 2 P 22 2
1 11 i j 2 22 22

11
1 1

1
1 111

1 1 1
11

(a) A, linearly separable

11
1 1 11 1 1

1 11 1 1
11 1 1

1 1 1 1 1
1 1

11 11
1 1

1 1 1 1
11 11 1

11 1 1
11 1 1 1

1 11
11 1 1
1 1 1 1 1
11 11 1

1 1 1 1
1 1 11

11 2 1 1
11 1 1
1 1 2 2 22
1 2 2

1 1 2 2 2222
11 1 2 22 2 2
11 22 2 2

. 1 2 222
1 1 , 222

1 2
1 11 22 2

1 111 2 2
1} 1, 2 2 2

1 1 2 22
1 1 1 2 2

1 111 1 2 22 2
1 111 11 2 2

1 1 11 2 2 2
222

22 2
22 2
2 2

2 2
22

2 2 2 22 2
r? „ 22 22 2 2 2 2
2 2 2 22 2
2 2222 2 2 222 2

2 222 222
2 2 2 2 2

2 2 22

(b) B, linearly nonseparable.

Fig. 4. Input patterns.

Usually, Ntl >yV;,, so we can conclude that for the same number of
iterations, THi,> T CiA. Again the experiment shows that N, is always
greater than (Figures 8 -11) for a desired output. This means the first
part (2LNj(N, - N^)) of (15) is g reater than zero, thereby making the claim
more valid.

6. IMPLEMENTATION A N D RESULTS

To demonstrate the effectiveness of the proposed algorithm for select­
ing the appropriate weights of an MLP, we considered both linearly
separable and nonseparable patterns having two features taken from two
classes. Two such pattern sets A and B (Figure 4(a)-(b)), artificially
generated, consisting of 200 pattern points have been considered here for
simulation. Set A is linearly separable and set B is linearly nonseparable
and involves nonconvex decision regions. The size of the training sets is
considered to be 40% of all classes. The existing backpropagation tech­
nique is also implemented for pattern set B for its comparison with the
proposed method.

The two-layer network consisting of two input nodes, two output nodes,
and four links is considered to classify the linearly separable pattern set A.
There are six param eters (four are associated with the four links and two
for the biases of two output nodes). Therefore, strings of length 60

Generation

Fig. 5. Performance of the proposed algorithm on pattern set A for four training data
sets.

(substring of length 10 corresponds to each parameter) are considered
here for the chromosomal representation of the solution. The sigmoidal
function of (3) is used here as the activation function. We have used the
error function given in (8) and the linear selection process [(9)].

Figure 5 shows the performance of the proposed algorithm for pattern
set A. Four different training data sets (T l.T 2,T 3,T4) of same size have
been selected randomly to learn the network parameters. For each training
set, a separate initial population of size 50 (generated randomly) has been
considered. In each case, it was found that the algorithm correctly classi­
fied all the patterns of the set. Only a few generations (10 to 20) were
required to classify the patterns. The algorithm has also been tested with a
population of size 20 and, as expected, it is found to take more generations
for correct classification (Figure 6). Figure 7 depicts the gradual conver­
gence of the algorithm (for population size 20), i.e., how the error of
classification reduces with generation.

For pattern set B (with linearly nonseparable classes), a network having
three layers (as shown in Figure 2) is used. H ere we have demonstrated the
effect of training set and initial population on the classification perfor­
mance. Figure 8 shows the results obtained using four different training
sets for a fixed initial population Px. In each case, the performance of the
proposed technique is found to be satisfactory after 50 generations. The

Fig. 6. Performance of the proposed algorithm, when the population size is 20, on A
for four training data sets.

Generat ion

Fig. 7. Gradual convergence of the erro r of classification with respect to generation.

Fig. 8. Performance of the proposed algorithm on B for four training data sets and a
fixed initial population P v

Fig. 9. Performance of the proposed algorithm on B for four initial populations and a
fixed training data set T4.

results obtained for four different initial populations and a fixed training
data set T4 are shown in Figure 9. N ote from Figures 8 and 9 that the
algorithm perform s well in any environm ent except for the population
P3. Though the perform ance in the case of f \ was better in the early
generations as com pared to many others, ultimately it failed to improve
the performance. This may possibly be due to improper crossover and
mutation operations. As in the case of A , the number of generations
required for desired performance increases with decreasing population
size.

The existing backpropagation technique is implemented on the same
network for comparison, keeping T x, T2, T3, and 74 the same as before.
This investigation has two parts. In one part (Figure 10), the initial
approximation of weights is kept fixed and in the other (Figure 11),
training set T4 is kept fixed. It is seen that the network needs a huge
number of iterations to provide results com parable (except I2 and /3 in
Figure 11) to that of the proposed algorithm . For I2 and / 3, the system
is unable to improve even after about 200 iterations, thereby demonstrat­
ing the dependency of the backpropagation technique on the initial
approximation of weights.

In the final part of the investigation, we have investigated the effect on
the nonlinear selection process on system perform ance for pattern set B.

Fig- 10. Output performance of backpropagation technique for a fixed initial
approximation /, on B for four training data sets.

Generat ion

Pig- 11. Output performance of backpropagation technique for a fixed training data
set Ta on B for four initial approximations.

As an illustration, we have shown in Figure 12 such an effect when
different initial populations P x, P2, P3, and P4 (as described for Figure 9)
were considered for a fixed training set T4. With the nonlinear selection
method [(10)], the algorithm is able to produce comparable results (see
Figure 12) even with the initial population P3 for which the linear
selection process could not provide better result (Figure 9). Note that the
rate of correct classification with respect to generation is higher (except
P4) than that o f the previous experiment. For P4, although its initial
classification score was much higher than that in Figure 9, the final output
is not so high comparatively. It was revealed under investigation that the
populations in early generations for P4 did not have homogeneity among
the potential strings as compared to the cases P v P2, and Py The
application of nonlinear selection therefore rejected some of the important
genetic inform ation for P4, thus slightly reducing the scope of further
improvement.

7. CONCLUSIONS

The effectiveness of GAs in selecting the optimum set of parameters of
a multilayer perceptron for pattern recognition problem is demonstrated.
The classification method is found to be suitable not only for providing an

Fig. 12. Effect o f nonlinear selection on B for four initial populations and a fixed
training data set T4.

optimal (global) set of weights of the neural network, but also for reducing
the computational time (because of the avoidance of the backpropa­
gation task). This algorithm is implemented for a two-class linearly
separable/nonseparable pattern for different training sets, population
sizes, and initial populations. T he algorithm is seen to be robust (as in
[4-6]) and the results obtained are satisfactory.

The number of generations required for a desired performance is seen
to decrease with increasing population size. The time of computation for
parallel implementation of the proposed algorithm and the backpropaga­
tion algorithm has been determ ined. It has been found that the backpropa­
gation technique requires a larger num ber of iterations to produce results
comparable to those of the proposed algorithm. Unlike the backpropaga­
tion technique, the proposed m ethod does not depend on the sequence of
the training data. The incorporation of the weighted average as a fitness
function is found to take care of the unequal occurrence of classes in
positioning decision boundaries. The nonlinear selection process, which
increases the genetic homogeneity of the population, is found to enhance
the search speed. However, this needs further investigation for determin­
ing the appropriate selection procedure.

The proposed algorithm determ ines the optimum param eter set, not
the individual parameters, in selecting an appropriate decision boundary.
Although GAs consider a large search space (which increases the possibil­
ity of getting better results), they require, in practice, only a smaller
number of points to achieve the result. The domains of the parameters
here are continuous. Therefore, to obtain a more accurate solution, one
needs to increase the length of the strings, though it will increase the
computational time. The proposed approach of selecting an optimum set
of parameters can be used for stabilization of any other connectionist
model.

The authors gratefully acknowledge Dr M. K. Kundu and A . Ghosh for helpful discus­
sions.

REFERENCES

1. D. E. Rumelhart, J. McClelland, and P.D.P. Research Group, Parallel Distributed
Processing: Explorations in the Microstructure o f Cognition, Vol. 1, MIT Press, j
Cambridge, MA, 1986.

2. D. E. Goldberg, Genetic Algorithms'. Search, Optimization and Machine Learning
Addison-Wesley, Reading, MA, 1989.

3. L. Davis (ed.), Genetic Algorithms and Simulated Annealing, Pitman, London, 198'

4. S. Bornholdt and D. G raudenz, General asymptotic and neural networks and
structure design by genetic algorithms, Neural Networks 5:327-334 (1992).

5. H. Muhlenbein, Lim itations of multi-layer perceptron networks—steps towards
genetic neural networks, Parallel Comput. 14:249-260 (1990).

6. D. Whitley, T. Starkweather, and C. Bogart, Genetic algorithms and neural net­
works: optimizing connections and connectivity, Parallel Comput. 14:347-361 (1990).

7. W. Siedlecki and I. Sklansky, A note on genetic algorithms for large-scale feature
selection, Pattern Recognition Lett. 10:335-347 (1989).

8. C. A. A nkerbrandt, B. P. Unckles, and F. E. Petry, Scene recognition using genetic
algorithms with sem antic nets, Pattern Recognition Lett. 11:285-293 (1990).

9. D. Bhandari, S. K. Pal, and M. K. Kundu, Im age enhancement incorporating fuzzy
fitness function in genetic algorithms, in: IE E E International Conference on Fuzzy
Systems (F U ZZ -IE E E ’93), IEEE, San Francisco, 1993, pp. 1408-1413.

10. S. K. Pal and S. M itra, Fuzzy versions of K ohonen’s net and mlp based classifica­
tion: performance evaluation for certain non-convex decision regions, Inform. Sci.
To appear.

11. S. K. Pal and D. D. Majumder, Fuzzy Mathematical Approach to Pattern Recognition,
Wiley (Halsted Press), New York, 1986.

Received 13 January 1993; revised 14 June 1993; accepted 15 October 1993

	^'i + exp {-{ure5))'	(3)

	(6)

	E\v~	VkJ) Xotj,

