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A UNIQUENESS PROBLEM FOR PROBABILITY
MEASURES ON LOCALLY-COMPACT
ABELIAN GROUPS

By INDER K. RANA

Indian Statistical Institule

SUMAARY, Supposo g and » arv probability on a Incally p abelion
group @ such that u(E+x) = »(E+x) for evory ze@ and for a fixeld xot E with compnrt
closure nud poaitivo ITnar menwuro.  Wo invostigato the rolation botween v amd p.

1. INTRODUCTION

Lot (X, 8) bo & measurable spr.co and let g2, v Lo two probability measures
on .@. Let §C .8 bo o subcless of .@ such that the o-lgebra generated by
8 is 8. Lot p(A) = v(d) for every de&. Thon, by the well-known oxtension
thoory for measures, g(d) = »(A) for evory A¢8. One canask tho question :
what happens whon & does not genersto .8 7 Answors to this question aro
known when X is a ‘nico’ spaco end & is somo ‘nico’ subelass of g. Tor
oxzmple, consider tho situation when X is & metric spaco and,g is tho o-algobra
of Borel subsuts of X.  Let B(e, r) donote the closed ball with conter at £ and
redius . X is suid to Lo finito dimensional if ovory ball of radius r can be
covered by a finito number of balls of radius »f2.  Anderson (1971) showed
that if X is & finite dimensional metric spaco and p[B(x, r)) = v[B(x, )] for
ovory ze X and r> 0, thon p{d} = »(A) for ovory A eB. A mensuro mona
metric spaco X is said to Lo uniform if 0 < m{B(x, )] < o forvvery xeX,
r> 0 and if m[B(x, )] is independont of 2. Lot X bo & motric space on which
thero exists some nuniform meuasure.  Christonson (1970) showod that on such
a metric spreo, if p[B(x, )] = v[B(x, r})] for evory 2eX and r > 0, then p(.d)
=1y(d) for overy Ae@. Considor the situction when X = R» and 8 ix the
a-algebra of Bovel subscts of B2, Supogov (1974) proved the following : lot
E bo n fixod set of positive Lobosgue mensuro such that p(B+x) = WE+r)
for cvory ze o, 1f E hue finite Lobesguo mousuro, thon ge = v, If the support
of the Foutior Lransform of yp contzing & non-ompty opon sot, thon i = v,
T tho prosent paper wo investigato the following situntion : leb ¢ be a locally-
compuct, xecond-countablo abalian group and lot 8¢ o tho o-algebra of Borul
subsets of (2. Let I bo o fixed subset of ¢4 of paositive Hanr measure such
thiat the closure of 12 is compuet. Lot ze and » bo two probubility measures on

Ad-1



310 INDER K. RANA

G such thet p(E+z) = v(E+z) for every 2¢G. We ask tho question : what
is the reletion Lotween g and v 7 When @ = R», it is easy to sco that g =
(sco Sapogov, 1974). Howover, in goneral, this is not truo. For oxamplo
consider the group G = Zx K, whero & donotoes tho intogor group and K is
somo compact abolian group. Chooso two probability moeasures s, and g,
on K such thet g, 5 p..  Choose somo probability measure A on &Z. Put
p=Axpend v=2Axp, Let E={0}xK. Then it is casy to chock that
J(E+2) = v(E+2) for overy xeZx K. Obviously g 3 v. However, if wo put
0 = 8,X Ag, whoro 8, donotes tho probability measuro dogencrato at 0e: and
Ax denotes the normalized Haar mossure of K, thon it i3 easy to seo that
Jte0 = ve.

Lot Ay donoto » Huar weasurce of a locally-compact group f1. Wo shall
prove tho following

Theorem 1: Let @ be a locally-compact, second-countable ubelian group
and let Gg be the a-algebra of Borel subsets of G. Let Ee.8qg be a fixed set such
that the closure of E is compact and Ag(E) > 0. Lel @, be the subgroup of @
generaled by E and let K be the maximal compact subgroup of G,. If for any
two probability measures p and v on 8g, p(E+x) = v(E-+x) for every xeG,
then ptedg = velg.

As an application of this thoorem, wo shall prove

Theorem 2: Let G be a locally-compact, second-countable abelian group
and let 8¢ be the a-algebra of Borel subscls of G. Let E¢ 8g be a fixed set such that
the closure of E is compact and Ag(E) > 0. Let G, be the subgroup of G gene-
rated by E andlet K be the maximal compact subgroup of G,.  Let p,,n = 0,1,2,...
be probability measures on 8¢ such that jt ,(E+2)— jio( E ) as n— oo for abnost
all 2(Ag). Then the following holds

(i) the set of limit points of {,}, n =1, 2,... is non-emply;

(i) Sfor every limit point v of {j,}, n=1,2, ..., vedg = pyelg;

(iii) {pno Ak}, n =1, 2, ... converges weakly to jedg.

2, PRELIMINARIES

Throughcut the diseussion, G will stand for u locally-compact, socond-
sountablo abelinn group. In particulir @ oan Lo viowod ns & completo and
soparnblo motric group.  Tat @g be the o-rlgobra of Borel subsets of @, A#(G)
the xot of all probahility morsuros on (¢, .Gg) with the wonk topology and lot
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bo tho convolution oporation in #(G) (sco Parthasarathy, 1067). For any
moasurablo function f on (@, 8p) and e A(G), lot for donots the function
Jz—y)p(dy), zeG, whenovor it is woll defined.

Lot I Yo any closed subgroup of @. A funetion f on @ is said to bo
Il-invariant if f(x+y) = f(x) for overy ze @, ye I1. Lot I(X) denoto tho sot of all
H-invariant Borel functions on (G, &g). Let ,g(G/H) denoto the spaco of all
Borul functions on the quotient group G/If with the natural quotiont ¢-algobra,
Dofine the map T': I(H)— &(G/H) by

(TH(z+H) = f(z),
for overy feI(H), x+H eGJI. Tt is onsy to sco that T is a well-defined ono-ono
map from I(I) onto S(G/H). Further, for any f,, fy€I(/I), the following rolation
holds in the sonss that whenover either side is well-dofined, so is other and
both are equal

T * 1) = (Th) *(Tf,) v D

with the above notations and definitions, we have tho following

Lomma: Let G be a locally-compact, second-countable abelian group.
Let E e B¢ be such that A¢(E) > 0 and the closure of E is compact. Lel G, be the
subgroup of @ generaled by E and lel K be the marimal compact aubgroup of G,
Let fe L\(G) be a continuous function such that [ f(x—y)Ag{dy) = 0 for every

E

zeG. Then (fodg)(z) = 0 for every 2¢G.

Proof : First noto thset G, is an opon subgroup of G. Further, since
@, i3 o locolly-compact, compaetly gonerated abolian group, by the structure
thoory, Gy = & X Rnx K where K is somo compact abolian group and r, n
aro non-nogative intogers (soo Howitt and Ross, 1063). Furthor X is tho
maximal compact subgroup of G.

To prove the lomma, lot us first assume that fe I(K). Wo shall show that
J=0. Choose 2,¢@ arbitrarily and fix it. Dut 1, (2} = flz,+z), zeG. Thon

]
f' eI(K) N Ly(@), and from tho givon condition on f, we have
(]
[ [, (z—yaldy) = 0 for every zeG.
B fo

Sinco the intogration js only over a subsct of G, we have
[ J, (z=A, (dy) = 0 for ovory zel,.
E "o (]

io., U,o‘xs)(z) = 0 for overy z6G,.
Thus [/, Ko 20)l(x) = [(feX5)e Ax)(z)

= 0 for evory ze@. ()
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Put ¢ = Xgedg. Then pel(K)is n non-trivinl hounded fumetion with compact
support,  Eequation (2) elong with (1) gives

(Tf,)+(T9) = 0 on OJK = Zrx R,
[}
Taking Fourier {ransform, wo have
A A
(T£,)(T¢) = 0 on I X Ry. e (3)

Hore Z denotes the cirelo group.  Sinee Tp is . non-trivial Lounded fune-

A
tion with compret support, the st {ye2rx Rr|(Te)(y) # 0} is donso in
Irx Rr. Thus (3) gives ('I{_\/ Ny) = 0 for all ¥ in & dense subset of 27 x R
]

Sineo the Fourier trunsform is a continuous function, wo havo
(7'5’“) =0 on JIrxRn
Ienco j’o(_:,) =0 a0 yAg,)
Sincof,“ is o continuous function on ¢y wo lm\'of’ (y) = flry+y) = O for cvery
#€G,. Sinco this holds for every 256G, we have f =0,

To prove tho lemma in the gencval caso, put f = fedx. Then fis a conti-
nuous function and fe:I(I\') N L(G). Turther, since | flr—y)A¢(dy) = 0 for
4

every xeG, wo havo

I f(x—y)/\a((l_l/) = 0 for every zeG,
E

Thus f = fe My setisfies ol the conditions required and thus by the abovo dis-
cussion, ]' =fodyg ==0.

This proves the lemma completoly.

3. PRooF OF THEOREM |

We aro given thet p(E+a) = v(E+x) for every xeG. Equivalontly, wo
have

(X_pep)(r) = (X_gev)(2) for overy xeG.
Now lot f Le eny continuous function on @ with compact support. Thon
[fo(X_pe))(2) =[fo(X_ge»)(x) for every xeG.
io., [(fo10) e X_g(2)] = [(fov) e X_g)(x) for ovory ze@.
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Put f = fop—fov. Then j-‘cl,,((.') and
(f.x_,;)(r) = 0 for ovory zeC.

Now applying tho lomma and noting that groups generatod by E and —F
aro the samo, we have

(feAr)(x) = 0O for evory xeC

i.e., [(fop)eAx)(x) = [(fov) s Ag)(r) for every xeG.
i.e., [fo{pe e A))(@) = [folv e AR)](2) for every xe(.

Sinco this holds for overy continuous function f with compact support, wo have
ftedg =vedg. Tnis proves Theorem 1.

4. PROOF OF THEOREM 2
Sinco @ is lacally-compact and sccond-countablo, it is a-compact. Chooso
a sequenco K, of compact subsots of & such that K, C K. C ... CK,C...,

6 K,=0ad K, = —K,_ for overy n.

n=1

To prove (i), wo shall khow that tho soquence {p,), » =1,2,... is uni-
formly tight. Lct ¢ > 0 Lo given. Let € = e.Ag(E)14Ag(E). Wo chooso
integers my, n, and n, as follows
Choose #, so large such that

EC l\"Il and /lo(l\'nl) > 11—, e (8
Chooso 2, > 2, such that l\'nl+l\'", CK,,.
Choose n, > n, such that K, +K, C l\'u’

Finally choose an integor .V such that for overy n > N,
{. 2AE+z)Ae(dr) > 'j\‘ JolE+2) Agldr)—€'. e (B)
n, n

Defino Ag, Ay, Ay C TXC 03 follows
Ay = {(x, )| 2€ l\'"‘, y—2€ I\’"l),

Ay = {{z _r/)|yel\',,l. x—ycl\’"l).

Ar={@ MyeK,, v—ye K, ).
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It is cusy to chock that 4, C A,C A,. Thus for any probability measuro
pon G

{ Xely—2zlpldy)Acldr) < { X e(y—z)pldy)Agldz)
H 0

< £ Xly—z)pldy)Ac(dz).
2

But
J Xely—2)pldyclde) = [ ([ Xaly—=z)Acldz))p(dy).
N lenl —ye n,
= [ ([ Xe(@o(dz)p(dy)
VERn, Ku
= J elBlpldn) = AelBip(K, ).
"y
Similarly
.L xs(y—2)p(dy)Ag(dz) = Ac(E)p(K ).
]
Finally

{x:(u—r)p(dy)ka(dz)= ¢I ( f  Xee(y)p(dyDAgldz)
0 z z

Kng yekn +

= 1{ PE+2)Apldz).

n2
Thus for any probability mensure p on @, wo have

Ae(Elp(K, ) € {( PAE+2)Acldr) < Ao(EN(K, ).
]

In particular takop = pt,,n=0,1,2,... . Then wohaveforn=0,1,2,...
"a(E)/'-..(Kﬂl) <)J{' 1alE+2)Agldx) € /‘a(E)Il..(Kn!) e (6)
Na
Lotn > N. Then
AG(E)a(Kng) > 1{ #in(E+2)Ag(dz) (by (6)
'n.

2
> [ mlE+aaldz)—¢ (by ()
g
> /‘G(E)/‘n(Kﬂl)—il by  (6))
2 AG(E)1—¢€]—¢". (by (4))

Since Ag(E) > 0 we have

#alK o) > 1—¢' ("::&gf—)) —1—¢, for n» A
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‘This shows that {u,}, n =1, 2, ... is uniformly tight and thus the xot of
limit points of x, n =1,2, ... is non-empty (so0 Parthasarathy, 1967). This
proves (i).

To prove (ii), lot » bo any limit point of {¢,}, n == 1,2, ... Lot {Ilnk} bo a
sub-soquonco of {x,}, » = 1,2, ... such that (/l".} convorges weakly to v as
k= c0. Since the Fourior transform is a continuous oporation on (@) (sco
Parthasarathy, 1967) we have ﬁ". (y)— 6(y) for evory yeC‘;’, the character
group of @. Thus

RetyI,, (- Xp (00) for overy yeli. e (D)

On tho other hand
/l."k(E—f-z)—» Jto(E+2) for overy zeG.

Thus

J < y>(f Xele o, dpeda— | <o, y> (f XA prafdmelis),

ng

for ovory ye@.  Thus
Re(y). R, 1) Xe)fuly) for overy yeG. e (8)
From (7) and (8) it follows that

Xe(r)aly) = Xs(rp(y) for every yel.
. /\ N\ N
io., (Ygo/to)(y) = (Xgov)(y) for ovory yeG.

Thus
(Xgosto)(z) = (Xpov)(z) for a.0. z(Ag).
Now let f Lo any continuous funetion with compuct support on @. Then for
ovory yeG
[fo(Xgo2t))(y) = | fly—2)X g o po)(z)Ao(d)
= [ Jly—2XXE +¥)(z)Ao(dz)

=[fe(Xg)](y).
Thus

|fe (Xpopt) () = [fo(Xgor))(@) for ovory xel
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and for ovory continuous function f with compact support on @. Now
proceeding as in tho proof of Theorem 1 we havo ygedg =vedg. This
provos (ii).

To prove (i) wo havo only to noto that tho soquence {y,e Ag}, n=1 2, ...
has one and only ono limit point, namely pyeAx. This proves Theorom 2
complotoly.
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