A UNIQUENESS PROBLEM FOR PROBABILITY MEASURES ON LOCALLY-COMPACT ABELIAN GROUPS

By INDER K. RANA Indian Statistical Institute

SUMMARY. Suppose μ and ν are probability measures on a locally-compact abelian group G such that $\mu(E+x) = \nu(E+x)$ for every $x \in G$ and for a fixed set E with compact closure and positive Haar measure. We investigate the relation between ν and μ .

1. Introduction

Let (X, \mathcal{B}) be a measurable space and let μ, ν be two probability measures on \mathcal{B} . Let $\mathcal{S} \subseteq \mathcal{B}$ be a subclass of \mathcal{B} such that the σ -algebra generated by \mathfrak{S} is \mathfrak{S} . Let $\mu(A) = \nu(A)$ for every $A \in \mathfrak{S}$. Then, by the well-known extension theory for measures, $\mu(A) = \nu(A)$ for every $A \in \mathcal{B}$. One can ask the question: what happens whon & does not generate &? Answers to this question are known when X is a 'nice' space and S is some 'nice' subclass of B. For example, consider the situation when X is a metric space and S is the \sigma-algebra of Borel subsets of X. Let B(x, r) denote the closed ball with center at x and radius r. X is said to be finite dimensional if every ball of radius r can be covered by a finite number of balls of radius r/2. Anderson (1971) showed that if X is a finite dimensional metric space and $\mu[B(x,r)] = \nu[B(x,r)]$ for every $x \in X$ and r > 0, then $\mu(A) = \nu(A)$ for every $A \in \mathcal{B}$. A measure m on a metric space X is said to be uniform if $0 < m[B(x,r)] < \infty$ for every $x \in X$, r > 0 and if m[B(x, r)] is independent of x. Let X be a metric space on which there exists some uniform measure. Christenson (1970) showed that on such a metric space, if $\mu[B(x,r)] = \nu[B(x,r)]$ for every $x \in X$ and r > 0, then $\mu(A)$ $=\nu(A)$ for every $A \in \mathcal{B}$. Consider the situation when $X=R^n$ and \mathcal{B} is the σ -algebra of Borel subsets of R^n . Supogov (1974) proved the following: let E be a fixed set of positive Lebesgue measure such that $\mu(E+x) = \nu(E+x)$ for every $x \in \mathbb{R}^n$. If E has finite Lobesgue measure, then $\mu = \nu$. If the support of the Fourier transform of y_R contains a non-empty open set, then $\mu = \nu$. In the present paper we investigate the following situation : let G be a locallycompact, second-countable abelian group and let \mathcal{B}_G be the σ -algebra of Berel subsets of G. Let E be a fixed subset of G of positive Haar measure such that the closure of E is compact. Let μ and ν be two probability measures on

G such that $\mu(E+x) = \nu(E+x)$ for every $x \in G$. We ask the question: what is the relation between μ and ν ? When $G = R^a$, it is easy to see that $\mu = \nu$ (see Sapogov, 1974). However, in general, this is not true. For example consider the group $G = \mathcal{L} \times K$, where \mathcal{L} denotes the integer group and K is some compact abolian group. Choose two probability measures μ_1 and μ_2 on K such that $\mu_1 \neq \mu_2$. Choose some probability measure λ on \mathcal{L} . Put $\mu = \lambda \times \mu_1$ and $\nu = \lambda \times \mu_2$. Let $E = \{0\} \times K$. Then it is easy to check that $\mu(E+x) = \nu(E+x)$ for every $x \in \mathcal{L} \times K$. Obviously $\mu \neq \nu$. However, if we put $O = \delta_0 \times \lambda_K$, where δ_0 denotes the probability measure degenerate at $0 \in \mathcal{L}$; and λ_K denotes the normalized Haar measure of K, then it is easy to see that $\mu \cdot \theta = \nu \cdot \theta$.

Let λ_H denote a Haar measure of a locally-compact group H. We shall prove the following

Theorem 1: Let G be a locally-compact, second-countable abelian group and let \mathcal{B}_G be the σ -algebra of Borel subsets of G. Let $E \in \mathcal{B}_G$ be a fixed set such that the closure of E is compact and $\lambda_G(E) > 0$. Let G_0 be the subgroup of G generated by E and let K be the maximal compact subgroup of G_0 . If for any two probability measures μ and ν on \mathcal{B}_G , $\mu(E+x) = \nu(E+x)$ for every $x \in G$, then $\mu \bullet \lambda_K = \nu \bullet \lambda_K$.

As an application of this theorem, we shall prove

Theorem 2: Let G be a locally-compact, second-countable abelian group and let \mathcal{B}_G be the σ -algebra of Borel subsets of G. Let $E \in \mathcal{B}_G$ be a fixed set such that the closure of E is compact and $\lambda_G(E) > 0$. Let G_0 be the subgroup of G generated by E and let K be the maximal compact subgroup of G_0 . Let μ_n , $n = 0, 1, 2, \ldots$ be probability measures on \mathcal{B}_G such that $\mu_n(E+x) \to \mu_0(E+x)$ as $n \to \infty$ for almost all $x(\lambda_G)$. Then the following holds

- the set of limit points of {μ_n}, n = 1, 2, ... is non-empty;
- (ii) for every limit point v of $\{\mu_n\}$, $n = 1, 2, ..., v \cdot \lambda_K = \mu_0 \cdot \lambda_K$;
- (iii) $\{\mu_n \cdot \lambda_K\}$, n = 1, 2, ... converges weakly to $\mu \cdot \lambda_K$.

2. PRELIMINARIES

Throughout the discussion, G will stand for a locally-compact, second-countable abelian group. In particular G can be viewed as a complete and separable metric group. Let \mathcal{B}_G be the σ -algebra of Borel subsets of G, $\mathcal{M}(G)$ the set of all probability measures on (G, \mathcal{B}_G) with the weak topology and let.

be the convolution operation in $\mathcal{M}(G)$ (see Parthasarathy, 1967). For any measurable function f on (G, \mathcal{B}_G) and $\mu \in \mathcal{M}(G)$, let $f \circ \mu$ denote the function $f(x-y)\mu(dy)$, $x \in G$, whenever it is well defined.

Let H be any closed subgroup of G. A function f on G is said to be H-invariant if f(x+y) = f(x) for every $x \in G, y \in H$. Let I(H) denote the set of all H-invariant Borel functions on (G, \mathcal{B}_G) . Let $\mathcal{B}(G/H)$ denote the space of all Borel functions on the quotient group G/H with the natural quotient σ -algebra. Define the map $T: I(H) \to \mathcal{B}(G/H)$ by

$$(Tf)(x+H)=f(x),$$

for every $f \in I(H)$, $x + H \in G/H$. It is easy to see that T is a well-defined one-one map from I(H) onto $\mathcal{B}(G/H)$. Further, for any $f_1, f_2 \in I(H)$, the following relation holds in the sense that whenever either side is well-defined, so is other and both are equal

$$T(f_1 * f_2) = (Tf_1) * (Tf_2)$$
 ... (1)

with the above notations and definitions, we have the following

Lomma: Let G be a locally-compact, second-countable abelian group. Let $E \in \mathcal{B}_G$ be such that $\lambda_G(E) > 0$ and the closure of E is compact. Let G_0 be the subgroup of G generated by E and let K be the maximal compact subgroup of G_0 . Let $f \in L_1(G)$ be a continuous function such that $\inf_E f(x-y)\lambda_G(dy) = 0$ for every $x \in G$. Then $(f \circ \lambda_E)(x) = 0$ for every $x \in G$.

Proof: First note that G_0 is an open subgroup of G. Further, since G_0 is a locally-compact, compactly generated abelian group, by the structure theory, $G_0 = \mathcal{L}^r \times R^n \times K$ where K is some compact abelian group and r, n are non-negative integers (see Hewitt and Ross, 1963). Further K is the maximal compact subgroup of G_0 .

To prove the lemma, let us first assume that $f \in I(K)$. We shall show that $f \equiv 0$. Choose $x_0 \in G$ arbitrarily and fix it. Put $\int_{x_0} (x) = f(x_0 + x)$, $x \in G$. Then $\int_{x_0} e I(K) \bigcap L_1(G)$, and from the given condition on f, we have

$$\int_{\mathbb{R}} f_{x_0}(x-y)\lambda_G(dy) = 0 \quad \text{for every } x \in G.$$

Since the integration is only over a subset of G_0 , we have

$$\int_{\mathbb{R}} f_{x_0}(x-y)\lambda_{\sigma_0}(dy) = 0 \text{ for every } x \in G_0.$$

i.o., $(f_{x_0} \cdot X_E)(x) = 0$ for every $x \in G_0$.

Thus

$$[f_{x_0} \circ (X_B \circ \lambda_K)](x) = [(f \circ X_B) \circ \lambda_K](x)$$

$$= 0$$
 for every $z \in G$ (2)

Put $\varphi = \chi_E \cdot \lambda_E$. Then $\varphi \in I(K)$ is a non-trivial bounded function with compact support. Equation (2) along with (1) gives

$$(Tf_{f_n}) \cdot (T\varphi) = 0$$
 on $G/K = \mathcal{L}^r \times \mathbb{R}^n$.

Taking Fourier transform, we have

$$(\mathring{T}_{f_n}).(\mathring{T_{\varphi}}) = 0 \text{ on } \mathscr{Z} \times R_n.$$
 ... (3)

Here $\mathcal J$ denotes the circle group. Since $T \varphi$ is a non-trivial bounded function with compact support, the set $\{\gamma \varepsilon. \mathcal J \times R^n \mid (\hat T \varphi)(\gamma) \neq 0\}$ is dense in $\mathcal J \times R^n$. Thus (3) gives $(\hat T \int_{x_0})(\gamma) = 0$ for all γ in a dense subset of $\mathcal J \times R^n$. Since the Fourier transform is a continuous function, we have

$$(T\hat{f}_{x_0}) = 0$$
 on $\mathcal{J}^r \times \mathbb{R}^n$.

Henco

$$f_{\tau_0}(y) = 0$$
 a.e. $y(\lambda_{G_0})$.

Sinco f_{x_0} is a continuous function on G_0 we have $f_{x_0}(y) = f(x_0 + y) = 0$ for every $y \in G_0$. Since this holds for every $x_0 \in G$, we have $f \equiv 0$.

To prove the lemma in the general case, put $\tilde{f}=f*\lambda_K$. Then \tilde{f} is a continuous function and $\tilde{f}\in I(K)\cap L_1(G)$. Further, since $\int\limits_K f(x-y)\lambda_G(dy)=0$ for every $x\in G$, we have

$$\int_{\Omega} \tilde{f}(x-y)\lambda_G(dy) = 0 \text{ for every } x \in G,$$

Thus $\tilde{f} = f \cdot \lambda_R$ satisfies all the conditions required and thus by the above discussion, $\tilde{f} = f \cdot \lambda_R \equiv 0$.

This proves the lemma completely.

3. PROOF OF THEOREM 1

We are given that $\mu(E+x)=\nu(E+x)$ for every $x\in G$. Equivalently, we have

$$(X_{-E} \circ \mu)(x) = (X_{-E} \circ \nu)(x)$$
 for every $x \in G$.

Now lot f be any continuous function on G with compact support. Then

$$[f \bullet (X_{-E} \bullet \mu)](x) = [f \bullet (X_{-E} \bullet \nu)](x)$$
 for every $x \in G$.

i.o.,
$$[(f \circ \mu) \circ \mathcal{X}_{-E}(x)] = [(f \circ \nu) \circ \mathcal{X}_{-E}](x) \text{ for every } x \in G.$$

Put $\hat{f} = f \cdot \mu - f \cdot \nu$. Then $\hat{f} \in L_1(G)$ and

$$(\tilde{f} \cdot X_{-E})(x) = 0$$
 for every $x \in G$.

Now applying the lemma and noting that groups generated by E and -E are the same, we have

$$(\bar{f} \cdot \lambda_R)(x) = 0$$
 for every $x \in G$

i.e.,
$$[(f \cdot u) \cdot \lambda_R](x) = [(f \cdot v) \cdot \lambda_R](x) \text{ for every } x \in G.$$

i.e.,
$$[f \bullet (\mu \bullet \lambda_K)](x) = [f \bullet (\nu \bullet \lambda_K)](x) \text{ for every } x \in G.$$

Since this holds for every continuous function f with compact support, we have $\mu \cdot \lambda_K = \nu \cdot \lambda_K$. This proves Theorem 1.

4. PROOF OF THEOREM 2

Since G is locally-compact and second-countable, it is σ -compact. Choose a sequence K_n of compact subsets of G such that $K_1 \subseteq K_2 \subseteq ... \subseteq K_n \subseteq ...$, $\overline{\bigcup}_{n=1}^{\infty} K_n = G$ and $K_n = -K_n$ for every n.

To prove (i), we shall show that the sequence (μ_n) , n=1,2,... is uniformly tight. Let $\epsilon > 0$ be given. Let $\epsilon' = \epsilon . \lambda_G(E)/1 + \lambda_G(E)$. We choose integers n_1, n_2 and n_3 as follows

Choose n1 so large such that

$$E \subset K_{n_1}$$
 and $\mu_0(K_{n_1}) > 1 - \epsilon'$ (4)

Choose $n_2 > n_1$ such that $K_{n_1} + K_{n_1} \subset K_{n_2}$

Choose $n_3 > n_2$ such that $K_{n_1} + K_{n_2} \subset K_{n_3}$

Finally choose an integer N such that for every $n \ge N$,

$$\int_{K_{n_{c}}} \mu_{n}(E+x)\lambda_{G}(dx) > \int_{K_{n_{2}}} \mu_{0}(E+x) \lambda_{G}(dx) - \varepsilon'. \qquad ... \quad (5)$$

Define $A_0, A_1, A_2 \subset G \times G$ as follows

$$A_0 = \{(x, y) \mid x \in K_{n_0}, \ y - x \in K_{n_1}\},\$$

$$A_1 = \{(x \ y) \mid y \in K_{n_1}, \ x - y \in K_{n_2}\},$$

$$A_2 = \{(x, y) \mid y \in K_{n_3}, x - y \in K_{n_1}\}.$$

It is easy to check that $A_1 \subset A_0 \subset A_z$. Thus for any probability measure ρ on G

$$\int\limits_{A_1} \chi_E(y-x)\rho(dy)\lambda_G(dx) \leqslant \int\limits_{A_0} \chi_E(y-x)\rho(dy)\lambda_G(dx)$$

$$\leqslant \int\limits_{A_0} \chi_E(y-x)\rho(dy)\lambda_G(dx).$$

But

$$\begin{split} \int_{A_1} \chi_E(y-x) \rho(dy) \lambda_G(dx) &= \int_{y \in K_{n_1}} (\int_{x-y \in K_{n_1}} \chi_E(y-x) \lambda_G(dx)) \rho(dy) \\ &= \int_{y \in K_{n_1}} (\int_{K_{n_1}} \chi_E(x) \lambda_G(dx)) \rho(dy) \\ &= \int_{K_{n_1}} \lambda_G(E) \rho(dy) = \lambda_G(E) \rho(K_{n_1}). \end{split}$$

Similarly

$$\int_{A_0} \chi_E(y-x)\rho(dy)\lambda_G(dx) = \lambda_G(E)\rho(K_{n_3}).$$

Finally

$$\int_{A_0} \chi_E(y-x)\rho(dy)\lambda_G(dx) = \int_{x \in K_{n_0}} \int_{y \in K_{n_1} + x} \chi_{E+x}(y)\rho(dy)\lambda_G(dx)$$

$$= \int_{K_{n_0}} \rho(E+x)\lambda_G(dx).$$

Thus for any probability measure ρ on G, we have

$$\lambda_G(E)\rho(K_{n_1})\leqslant \int\limits_{K_{n_2}}\rho(E+x)\lambda_G(dx)\leqslant \lambda_G(E)\rho(K_{n_3}).$$

In particular take $\rho = \mu_n$, n = 0, 1, 2, ... Then we have for n = 0, 1, 2, ...

$$\lambda_G(E)\mu_n(K_{n_1}) \leqslant \int_{K_{n_n}} \mu_n(E+x)\lambda_G(dx) \leqslant \lambda_G(E)\mu_n(K_{n_3}). \tag{6}$$

Let $n \geqslant N$. Then

$$\lambda_G(E)\mu_n(Kn_3) \geqslant \int_{K_{n_2}} \mu_n(E+x)\lambda_G(dx) \qquad \text{(by (6))}$$

$$> \int_{K_{n_3}} \mu_0(E+x)\lambda_G(dx) - \epsilon' \quad \text{(by (6))}$$

$$\geqslant \lambda_G(E)\mu_0(K_{n_1}) - \epsilon' \qquad \text{(by (6))}$$

$$\geqslant \lambda_G(E)[1 - \epsilon'] - \epsilon'. \qquad \text{(by (4))}$$

Since $\lambda_{\mathcal{O}}(E) > 0$ we have

$$\mu_n(K_{n_{\boldsymbol{\xi}}}) > 1 - \varepsilon' \left(\frac{1 + \lambda_G(E)}{\lambda_G(E)} \right) = 1 - \varepsilon, \quad \text{for} \quad n \geqslant N.$$

This shows that $\{\mu_n\}$, n=1,2,... is uniformly tight and thus the set of limit points of μ_n , n=1,2,... is non-empty (see Parthasarathy, 1967). This proves (i).

To prove (ii), let ν be any limit point of $\{\mu_n\}$, n=1,2,... Let $\{\mu_{n_k}\}$ be a sub-sequence of $\{\mu_n\}$, n=1,2,... such that $\{\mu_{n_k}\}$ converges weakly to ν as $k\to\infty$. Since the Fourier transform is a continuous operation on $\mathcal{M}(G)$ (see Parthasarathy, 1967) we have $\hat{\mu}_{n_k}(\gamma)\to\hat{\nu}(\gamma)$ for every $\gamma\in\hat{G}$, the character group of G. Thus

$$\hat{X}_{E}(\gamma)\hat{\mu}_{n_{E}}(\gamma) \rightarrow \hat{X}_{E}(\gamma)\hat{\nu}(\gamma)$$
 for every $\gamma \in \hat{G}$ (7)

On the other hand

$$\mu_{n_k}(E+x) \rightarrow \mu_0(E+x)$$
 for every $x \in G$.

Thus

$$\int < x, \gamma > (\int X_E(x+y) \mu_{n_E}(dy)) \lambda_G(dx) \rightarrow \int < x, \gamma > (\int X_E(x+y) \mu_o(dy)) \lambda_G(dx),$$

for every ye G. Thus

$$\hat{\chi}_{E}(\gamma)$$
. $\hat{\mu}_{n_0}(\gamma) \rightarrow \hat{\chi}_{E}(\gamma)\hat{\mu}_{0}(\gamma)$ for every $\gamma \in \hat{G}$. (8)

From (7) and (8) it follows that

$$\hat{X}_{E}(\gamma)\hat{\mu}_{0}(\gamma) = \hat{X}_{E}(\gamma)\hat{\nu}(\gamma) \text{ for every } \gamma \in \hat{G}.$$

$$(\hat{X}_{E} \circ H_{0})(\gamma) = (\hat{X}_{E} \circ \nu)(\gamma) \text{ for every } \gamma \in \hat{G}.$$

i.e., Thus

$$(\chi_R \circ \mu_0)(x) = (\chi_R \circ \nu)(x)$$
 for a.e. $x(\lambda_G)$.

Now let f be any continuous function with compact support on G. Then for every $y \in G$

$$\begin{split} [f \bullet (\chi_{E} \bullet \mu_{0})](y) &= \int f(y-x)(\chi_{E} \bullet \mu_{0})(x) \lambda_{O}(dx) \\ &= \int f(y-x)(\chi_{E} \bullet \nu)(x) \lambda_{O}(dx) \\ &= [f \bullet (\chi_{E} \bullet \nu)](y). \end{split}$$

Thus

$$[f \bullet (X_E \bullet \mu_0)](x) = [f \bullet (X_E \bullet \nu)](x) \text{ for every } x \in G$$

and for every continuous function f with compact support on O. Now proceeding as in the proof of Theorem 1 we have $\mu_0 * \lambda_K = \nu * \lambda_K$. This proves (ii).

To prove (iii) we have only to note that the sequence $\{\mu_n \cdot \lambda_K\}$, n = 1, 2, ... has one and only one limit point, namely $\mu_0 \cdot \lambda_K$. This proves Theorem 2 completely.

Acknowledgement. The author wishes to thank Professor K. R. Parthasarathy for helpful discussions.

REFERENCES

ANDERSON, G. (1971): Measures on Finite Dimonsional Metric Spaces. (unpublished thesis), Matematisk Inst. Aarhus University, Denmark.

CHRISTENSEN, J. P. R. (1970): On some measures analogus to Huar measure. Math. Scand., 26, 103-106.

HEWITT E. and Ross K. A. (1963): Abstract Harmonic Analysis-I, Springer-Verlag.

PARTHASARATHY, K. R. (1967): Probability Measures on Metric Spaces, Academic Press.

NAPOGOV, N. A. (1974): A uniqueness problem for finito measures in Euclodean spaces. Problems in the theory of probability distributions. Zap. Nauca. Sem. Leningrad. Otdel Mat. Skhlov (LOMI), 41, 165, 3-19.

Paper received: June, 1977. Revised: August, 1977.