


calculating the connectivity ratio and resiliency. We study the connectivity and resi-

liency of the network taking the Lee distance into account. The importance of such

analysis of Lee distance lies in the fact that we can change the Lee distance according to

power requirements.

Given any kind of deployment, the key predistribution techniques may be randomized,

deterministic, or hybrid. Key predistribution in sensor networks was first discussed in by

Eschenauer and Gligor in [9]. Other key predistribution schemes were discussed in [5, 8,

13–15, 23]. For application of combinatorial designs in key predistribution, one may refer

to [2, 4, 16, 17, 20]. In particular, in [16] Lee and Stinson transversal designs for key

predistribution has been presented that has been extended later in [4] by Chakrabarti,

Maitra, and Roy.

We consider r2 blocks (identify them as sensor nodes) of the TD which are placed on a

deployment grid of dimension r � r. The connectivity of the network is then analyzed

taking into account the Lee distance. The block indexed by (i, j) is placed in the (i, j) th

location of the grid. We give a comparison of our scheme with that given by Ruj, Maitra,

and Roy in [19]. We show how the connectivity ratio changes with the change of the Lee

distance and number of keys in each node. The main idea where our proposal differs from

the scheme given by Lee and Stinson [16] in that in their scheme sensor nodes are scattered

randomly on an unknown geometry unlike our model where we consider a known grid

based deployment.

The rest of this article is organized in the following way. In Section 2, we define

basic concepts. In Section 3, we calculate the connectivity ratio (the fraction of nodes

that a given node can communicate with within the Lee distance). For interior nodes

we calculate the exact number of nodes with which it can communicate, for any

given Lee distance. In Section 4, we study the resiliency of the network. We give two

parameters for resiliency and find a tight theoretical bound for the first parameter and

present experimental results for the second. We conclude in Section 5 with some

open problems.

2. Preliminaries

A transversal design [26, Section 6.3] TD (k, l; r), with k groups of size r and index l, is a

triple (X, G, A) where

1. X is a set of kr elements (varieties),

2. G ¼ {G1, G2, . . ., Gk} is a family of k sets (each of size r) which form a

partition of X,

3. A is a family of k-sets (or blocks) of varieties such that each k-set in A intersects

each group Gi in precisely one variety, and any pair of varieties which belong to

different groups occur together in precisely l blocks in A.

We denote a transversal design with l ¼ 1 as TD(k, r). It can be shown that if there

exists a TD(k, r), then there exists a (v, b, r, k) design with v ¼ kr, b ¼ r2.

Let us now explain X, A in a transversal design TD(k, r).

1. X ¼ {(x, y): 0 � x < k, 0 � y < r},

2. For all i, Gi ¼ {(i, y): 0 � y < r},

3. A ¼ {Ai,j: 0 � i < r & 0 � j < r}.
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We define a block Ai,j by

Ai; j ¼ fðx; xiþ jmod rÞ : 0 � x< kg (1)

We consider an r� r grid such that there are r2 points of intersection. For our purpose,

we take a prime power r. We map the r2 blocks to the r2 sensor nodes and place block Ai, j at

the location (i, j) of the grid as shown in Fig. 1a. We represent the node at (i, j) by ni, j. The

varieties are mapped on to the secret keys in the sensor nodes. Thus we establish a

correspondence between TD(k, r) and the placement of sensor nodes on a r � r square

grid. Note that any two blocks have either no key or one key in common and the algorithm

to check whether the two nodes actually share a common secret key is efficient (see [16] for

more details).

The sensor nodes can carry on effective communication only inside a particular range

called the Radio Frequency (RF) range. The RF range with respect to a particular point is

actually a circular region with center as that point and some radius around that. The

Manhattan distance between two points is the sum of the horizontal and vertical distance

between the points.

Consider a square grid (as shown in Fig. 1a). A Lee Sphere [1] of radius r centered at a

given point P consists of the set of points that lie at a Manhattan distance of at most r from

P. r is called the Lee distance. The triangle inequality implies that the Manhattan distance

between two nodes is greater than the Euclidean distance. This implies that all the nodes

within the Lee sphere of radius r centered at a point P are also contained in the RF region of

radius r centered at P. We see that a Lee sphere is a better approximation than a square RF

region. (As given in Fig. 1a and b). We assume that two nodes can communicate with each

other provided they are within Lee distance and have a common key.

Definition 1. Physical neighbor: For a given node a located at (i, j) and a given Lee

Distance r, a node b (� a) located at (i0, j0) is said to be a physical neighbor of a, if b is

within the Lee sphere of radius r centered at a. Mathematically, ji� i0j � r and

jj� j0j þ ji� i0j � r.

(0,0) (2,0)(1,0) (3,0) 4,0) (5,0)

(a) RF region is a Lee Sphere

(0,2)

(0,3)

(0,4)

(0,6)

(0,5)

(3,3)

(6,0)(

(b) RF region is a Lee Sphere

(0,0) (2,0)(1,0) (3,0) 4,0) (5,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,6)

(0,5)

(3,3)

(6,0)(

Figure 1. A 7� 7 grid with k¼ 3, r¼ 2. The physical neighbors of the node at (3, 3) occur along the

dark lines and the key sharing neighbors are marked by crosses.
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Note that the maximum number of physical neighbors is 2r(r þ 1). For nodes at (or

close to) the boundary, the number of physical neighbors is less.

Definition 2. Key sharing neighbor: For a given node a located at (i, j) and its physical

neighbor � (� a) located at (i0, j0), � is said to be a key sharing neighbor of a, if � has a

key common with a.

2.1. Key Exchange

We now present the key exchange protocol between two sensor nodes. We consider a r� r

grid, where r is a prime power, such that each node contains k keys. The Lee Distance r is

small for practical purposes and can be assumed to be much less than rþ1
2
. We see that node

ni,j shares the common key (0, j) with nodes n0,j, n1,j, . . ., ni–1,j, niþ1,j, . . ., nr–1,j and node ni, j
do not share a common key with any of the nodes ni,0, ni,1, . . ., ni,j–1, ni,jþ1, . . ., ni,r–1. That is,

all the nodes along a given row share a common key, and all nodes along a given column

never share a common key. One may refer Fig. 1a as an example. Two nodes ni,j and ni0, j0

share a common key [4, 16] if for some x, 0 � x < k, xi þ j ; xi0 þ j0 mod r (by Eq. (1)).

It follows that, for 0 � x < k, x(i – i0) ; j0 –j mod r holds. So if x ; (j0– j) (i – i0)–1 mod

r, where 0� x < k, and |i – i0|þ |j – j0|� r, then the nodes ni,j and ni0,j0 will share a common

key. If i¼ i0, then ni,j and ni0,j0 do not share a common key. If i� i0, x¼ (j0 – j) (i – i0)-1mod

r, where 0� x� k is a common key. Note that since p is prime and i� i0, (i – i0)-1 exists. The

common key can thus be efficiently calculated, since the inverse can be calculated

efficiently by Extended Euclidean Algorithm in Oðlog22 rÞ time as shown in [25,

Chapter 5]. If two i and j nodes do not share a common key, then there exists an

intermediary t node such that i and t share some common key kit and j and t share a common

key kit. Node i chooses some random key K encrypts it with kit and sends it to t. t decrypts it

using kit and encrypts it using kjt and sends it to j. j decryptsK using kjt. All communications

between i and j takes place using the key K.

3. Connectivity Analysis

In this section we calculate the number of nodes within Lee distance which share a common

key with a given node.

Fix a node a located at (i, j) and Lee distance r. Consider the set A
ði;jÞ
r of key sharing

neighbors of awithin the Lee Distance r and the set B
ði;jÞ
r of physical neighbors of awithin a

Lee Distance r. We will calculate A
ði;jÞ
r

�

�

�

�

�

� in Theorem 1 later.

We call a node ni,j an interior node (not around the boundary), if i � r, (r– 1 – i) � r,

j � r, (r – 1 – j) � r. For all the interior nodes ni, j,

Bði; jÞ
r

�

�

�

�

�

� ¼ 2rðrþ 1Þ (2)

Definition 3. Connectivity Ratio: The connectivity ratio R
ði; jÞ
r of a node ni,j is defined as the

ratio of the number of key sharing neighbors of ni, j and the number of physical

neighbors of ni,j. Mathematically, R
ði; jÞ
r ¼

jA
ði; jÞ
r j

jB
ði; jÞ
r j

.

We calculate the value of connectivity ratio for an interior node.
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3.1. Calculation of Connectivity Ratio R
ði; jÞ
r of Interior Node

We give the value of A
ði; jÞ
r for an interior node ni,, when r � r�1

2
. Consider an interior

node ni, j that contains the keys indexed by (0, j), (1, (iþ j) mod r), . . ., (k – 1, (i(k – 1)þ j)

mod r). According to our transversal design, any two nodes can share a maximum of one

key. Therefore, to find the key sharing neighbors of the node ni,j, it is sufficient to find the

number of nodes in which each of the (x, (xi þ j) mod r) keys occur, where 0 � x < k.

Suppose the node ni, j contains the key (x, y). We find the number of nodes within the Lee

distance r which also contain the key (x, y). Given a key (x, y), we find the nodes ni, j such

that y ¼ xi þ j mod r. Hence the nodes ni, j must satisfy the equation

j ¼ ðy� xiÞ mod r (3)

Note that the key (x, y) occurs in nodes n0, y, n1, y–x, . . ., nn–1, y–x(n–1) mod r.

The node ni, j contains the keys (x, y ¼ xi þ j mod r) where 0 � x < k. By Eq. (3), if

ni þ t, j0 is a key sharing node of ni,j, then j
0 ¼ (y – x(iþ t)) mod r. So j0 ¼ (j – xt) mod r. The

key sharing neighbors of ni, j which share the key (x, y) are the following: niþ1,j–x,

niþ2,j-2x, . . ., niþt, j-xt and ni-1, jþx, ni-2, jþ2x, . . ., ni-t, jþxt.

To find (ni0,j0 the key sharing neighbors of ni, j, we refer to the Fig. 2. We find the key

sharing neighbors in the four quadrants. The following cases arise.

Case a. When i0 < i, we consider the nodes (i - 1, j þ x), (i - 2, j þ 2x), . . ., (i - t, j þ tx),

where 0 � x � k -1.

If j � j0 (when the neighboring nodes are in quadrant I), then the following conditions

must be satisfied.

0< t � minfi;rg; 0 � x< k and txmod r � minfr� t; r � 1� jg (4a)

(i,j)

I III

IVII

Figure 2. A n � n grid showing the four types of neighboring nodes.
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If j > j0 (when the neighboring nodes are in quadrant II), then the following conditions must

be satisfied.

0< t � minfi; rg; 0 � x< k and r � ðtx mod rÞ � minfr� t; jg (4b)

Case b. When i0 > i, we consider the nodes (i þ 1, j - x), (i þ 2, j - 2x), . . ., (i þ t, j - tx),

where 0 � x � k - 1.

If j� j0 (when the neighboring nodes are in quadrant IV), then the following conditions

must be satisfied.

0< t � minfr � 1� i; rg; 0 � x � k � 1 and txmod r � minfr� t; jg (5a)

If j< j0 (when the neighboring nodes are in quadrant III), then the following conditions must

be satisfied.

0< t � minfr � 1� i; rg; 0 � x � k � 1 and r � ðtx mod rÞ � minfr� t; r � 1� jg

(5b)

Now we consider an interior node ni, j. We find the key-sharing neighbors of ni, j.

We consider the neighbors in the four quadrants. Since r - i - 1 � r, r - i - 1 � r - t, and

min{r - i - 1, r - t} ¼ r - t. Hence Eq. (4a) reduces to (6a). Similarly we obtain the other

equations, Eqs. (6b), (7a), and (7a) from (4a), (4b), (5a), and (5b).

Case a. When i0 < i, we consider the nodes (i - 1, j þ x), (i - 2, j þ 2x), . . ., (i - t, j þ tx),

where 0 � x < k.

If j� j0 (when the neighboring nodes are the quadrant I), then the following conditions

must be satisfied.

0< t � r; 0 � x< k and tx mod r � r� t (6a)

If j > j0 (when the neighboring nodes are in quadrant II), then the following conditions must

be satisfied.

0< t � r; 0 � x< k and r � ð tx mod rÞ � r� t (6b)

Case b. When i0 > i, we consider the nodes (i þ 1, j - x), (i þ 2, j - 2x), . . ., (i þ t, j - tx),

where 0 � x < k.

If j� j0 (when the neighboring nodes are in quadrant IV), then the following conditions

must be satisfied.

0< t � r; 0 � x � k � 1 and tx mod r � r� t; (7a)

If j < j0 (when the neighboring nodes are in quadrant III), then the following conditions

must be satisfied.

0< t � r; 0 � x< k � 1 and r � 1 ðtx mod rÞ � r� t; (7b)
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So, the number of solutions (t, x) satisfying the above Eqs. (6a), (6b), (7a), and

(7b) give the number of the interior node ni, j within the Lee distance r which share

key (x, y).

The following lemma is crucial in finding the exact value of A
ði;jÞ
r

�

�

�

�

�

�. This lemma was

given in [19] but for the sake of completeness we give it again here.

Lemma 1. Let w be a prime such that w � 2T - 1. Then the number of solutions (t, x)

satisfying the equation

0< S0 � txmod w � S � w� 1 (8)

where, 0 < t� T < w and 0� x� X < w, is given by
PT

t¼1

Pt�1
t¼0 S1 where u1 ¼ (wlþ S0)/t,

u2 ¼ (wl þ S)/t and

S1 ¼
0; if X þ 1 � u1d e � u2b c;
X þ 1� u1d e if u1d e<X þ 1 � u2b c;
u2b c � u1d e þ 1 if u2b c<X þ 1:

8

<

:

Proof. When t ¼ 1, three conditions can arise.

Case (i): If X þ 1 � S0, then there are no values of x which satisfy (8).

Case (ii): If S0 < Xþ 1� S, x¼ S0, S0 þ 1, S0 þ 2, . . ., X satisfy (8). So there are Xþ 1 - S0

solutions.

Case (iii): If S� X, x¼ S0, S0 þ 1, S0 þ 2, . . ., S satisfy (8). So there are S - S0 þ 1 solutions.

When t ¼ 2, three conditions can arise.

Case (i): If X þ 1 � S0

2

� �

, then there are no values of x which satisfy (8).

Case (ii):If S0

2

� �

<X þ 1 � S
2

� �

, then x ¼ S0

2

� �

;
S0

2

� �

þ 1; . . . ;X satisfy (8). So, there are

X þ 1� S0

2

� �

solutions.

Case (iii): If S
2

� �

� X, then x ¼ S0

2

� �

;
S0

2

� �

þ 1; . . . ;
S
2

� �

satisfy (8). So there are S
2

� �

� S0

2

� �

þ 1

solutions.

When Case (iii) arises, then again consider the three sub cases.

Case (iii a): If X þ 1 � wþS0

2

� �

, then there are no values of x which satisfy (8).

Case (iii b): If wþS0

2

� �

<X þ 1 � wþS
2

� �

, then x ¼ wþS0

2

� �

;
wþS0

2

� �

þ 1; � � � ;X satisfy (8).

So there are X � wþS0

2

� �

þ 1 such solutions.

Case (iii c): If wþS
2

� �

� X, then x ¼ wþS0

2

� �

;
wþS0

2

� �

þ 1; � � � ; wþS
2

� �

satisfy (8).

So there are wþS
2

� �

� wþS0

2

� �

þ 1 such solutions.

Note that for S
2

� �

< x< wþS0

2

� �

, there is no solution when t¼ 2. The above cases give all

the solutions when t¼ 2, since lwþS0

2

� �

>w, l > 1. So, the number of solutions when t¼ 2, is
P1

l¼0 S1, where S1 is as given.
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Proceeding as above, t ¼ m, three conditions can arise.

Case (i): If X þ 1 � S0

m

� �

, then there are no values of x which satisfy (8).

Case (ii): If S0

m

� �

<X þ 1 � S
m

� �

, then, x ¼ S0

m

� �

;
S0

m

� �

þ 1; � � � ;X satisfy (8). So, there are

X þ 1� S0

m

� �

solutions.

When Case (iii) arises, then again consider the three sub cases.

Case (iii a): If X þ 1 � wþS0

m

� �

, then there are no values of x which satisfy (8).

Case (iii b): If wþS0

m

� �

<Xþ � wþS0

m

� �

, then x ¼ wþS0

m

� �

;
wþS0

m

� �

þ 1; � � � ;X satisfy (8). So there

are X � wþS0

m

� �

þ 1 such solutions.

Case (iii c): If wþS
2

� �

� X, then x ¼ wþS0

m

� �

;
wþS0

m

� �

þ 1; � � � ; wþS
m

� �

satisfy (8). So there are
wþS
m

� �

� wþS0

m

� �

þ 1 such solutions.

Note that for S
m

� �

< x< wþS0

m

� �

, there is no solution when t ¼ m.

Again for Case (iii c), three cases can arise. Continuing similarly, we notice that if

ðm�2ÞwþS

m

j k

� X, then three conditions will arise.

Case (a): If X þ 1 � ðm�1ÞwþS0

m

l m

, then there are no values of x which satisfy (8).

Case (b): If
ðm�1ÞwþS0

m

l m

<X þ 1 � ðm�1ÞwþS

m

j k

, then x ¼ ðm�1ÞwþS0

m

l m

;
ðm�1ÞwþS0

m

l m

þ 1; � � � ;X

satisfy (8). So there are X � ðm�1ÞwþS0

m

l m

þ 1 such solutions.

Case (c): If
ðm�1ÞwþS

m

j k

� X, then x ¼ ðm�1ÞwþS0

m

l m

;
ðm�1ÞwþS0

m

l m

þ 1; � � � ; ðm�1ÞwþS

m

j k

satisfy

(8). So there are
ðm�1ÞwþS

m

j k

� ðm�1ÞwþS0

m

l m

þ 1 such solutions.

Note that for
ðm�2ÞwþS

m

j k

< x<
ðm�1ÞwþS0

m

j k

, there is no solution when t ¼ m.

These are the only solutions when t ¼ m, since m00wþ S0

m

� �

>w, for m00 > m. So, the number

of solutions when t ¼ m, is
Pm�1

l¼ 0 S1, where S1 is as given.

Hence for all values of t, 1 � t � T, there are
PT

t¼1

Pt�1
t¼0 S1 solutions satisfying (8).

We give the example given in [19] to demonstrate the above theorem. We consider the

equation

0< txmod 7 � 5 and 0< t � 3 and 0 � x � 4: (9)

Note that w is a prime and w � 2T - 1. For t ¼ 1, the tuples (1, 1), (1, 2), (1, 3),

(1, 4) satisfy (9). So, there are four solutions when t ¼ 1. Here u1d e ¼ 1, u2b c ¼ 5. Since

1 < X þ 1 � 5, from the formula in Lemma 1 there are X þ 1� u1d e ¼ 4þ 1� 1 ¼ 4

solutions.

For t ¼ 2, the tuples (2, 1), (2, 2), (2, 4) satisfy (9). So, there are three solutions when

t ¼ 2. When l ¼ 0, u1d e ¼ 1, u2b c ¼ 2. Since X > 2, there are

u2b c þ 1� u1d e ¼ 2þ 1� 1 ¼ 2 solutions. When l ¼ 1, u1d e ¼ 4; u2b c ¼ 6. Since

u1d e<X þ 1 � u2b c, there are X þ 1� u1d e ¼ 4þ 1� 4 ¼ 1 solutions.
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For t ¼ 3, the tuples (3, 1), (3, 3), (3, 4) satisfy (9). So, there are three solutions when

t ¼ 2. When l ¼ 0, u1d e ¼ 1; u2b c ¼ 1: Since X > 1, there is

u2b c þ 1� u1d e ¼ 1þ 1� 1 ¼ 1 solutions. When l ¼ 1, u1d e ¼ 3; u2b c ¼ 4. Since

X � u2b c, there are u2b c � u1d e ¼ 4� 3þ 1 ¼ 2 solutions. When l ¼ 2,

u1d e ¼ 5; u2b c ¼ 6. Since X þ 1 � 5, there is no solution. All these three cases provide

the overall count.

Using Lemma 1 and conditions (6a), (6b), (7a), and (7b) we arrive at the following

theorem.

Theorem 1. A
ði; jÞ
p

�

�

�

�

�

� ¼ 2rþ 2
Pr�1

t¼1

Pt�1
t¼0 Aþ

Pt
l¼1 B

� �

where, a1¼ (rlþ 1)/t, a2¼ (rlþ
r - t)/t, b1 ¼ (rl - r þ t)/t, b2 ¼ (rl - 1)/t, and

A ¼
0; if k � a1d e � a2b c;
k � a1d e if a1d e< k � a2b c;
a2b c � a1d e þ 1 if a2b c< k;

8

<

:

and

B ¼
0; if k � b1d e � b2b c;
k � b1d e if b1d e< k � b2b c;
b2b c � b1d e þ 1 if b2b c< k;

8

<

:

Proof. When x ¼ 0, (i - 1, 0), (i - 2, 0), . . ., (i - r, 0) satisfy (6a).

For x � 0, we can map (6a) to Lemma 1. Here, w ¼ r, S0 ¼ 1, S ¼ r - t, T ¼
r - 1, X ¼ k - 1. So the number of solutions satisfying (6a) is given by

rþ
Pr�1

t¼1

Pt�1
l¼0 A. The number of solutions satisfying (6b) is given by

Pr�1
t¼1

Pt
l¼1 B.

Since we are considering the interior node, the number of key sharing neighbors in

quadrant IV is the same as quadrant I and the number of key sharing neighbors in quadrant

III is the same as quadrant II. Hence the total number of key sharing neighbors of ni, jwill be

2rþ 2
Pr�1

t¼1

Pt�1
l¼0 Aþ

Pt
l¼1 B

� �

. Hence the theorem. &

Note that the value of A
ði; jÞ
r

�

�

�

�

�

� from the above theorem and the value of B
ði; jÞ
r

�

�

�

�

�

� from

Eq. (2) directly provides the connectivity ratio R
ði; jÞ
r ¼

A
ði; jÞ
rj j

B
ði; jÞ
rj j

for all interior node (i, j).

Table 1 compares the connectivity ratio with respect to the Lee sphere are square RF

regions for an interior node. Though the connectivity ratio for square RF region is better we

can see from the figures that Lee sphere is a better approximation of RF region. Figure 3

Table 1

Connectivity Ratio Rr for Interior Nodes with a Change in the Lee Distance or RF Radius as

Defined in [19], for a 47 � 47 Grid with 30 keys per Node

r 1 2 3 4 5 6 7 8

Rr (Lee Distance) 0.5 0.5 0.5833 0.55 0.57 0.5952 0.5892 0.5833

Rr (Square RF

region)

0.5 0.5833 0.5833 0.57500 0.60000 0.60714 0.61607 0.61111
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presents the connectivity ratio with varying k (the number of keys in each sensor). We see

that as the number of keys increases, the connectivity ration increases.

4. Resiliency

Sensor nodes are prone to failure and node capture or compromise. In case of node

compromise, all the keys present in the compromised nodes are rendered ineffective.

According to our design any two nodes share at most one common key. So all links

which communicate via an exposed key are compromised (exposed). We give two

parameters of resiliency of a Wireless Sensor Network (WSN), one based on the

proportion of links that are broken and the other based on the proportion of nodes

being disconnected.

1. E(s), which is defined as

EðsÞ ¼
Number of links exposed after s nodes are compromised

Number of links present before compromise

2. V(s) which is the probability of a node (which is not among the compromised

nodes) being disconnected when s nodes are compromised. A node (which is not

among the compromised nodes) is considered disconnected if all the keys in the

disconnected node are present in one or more compromised nodes.
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Figure 3. Comparison of connectivity ratio Rr with changing lee distance r and number of keys

k on 47 � 47 grid.
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We find an upper bound for E(s) and give some experimental results

for V(s).

4.1. Estimation of E(s)

Let us denote the total number of links by T. Hence T ¼ 1
2

Pr�1
i¼0

Pr�1
j¼0 jA

ði; jÞ
r j.

There are a total of rk keys. If the nodes are compromised such that all rk keys are

compromised, then all the links are broken. However, for simplicity we assume that only a

small fraction of the nodes are compromised. Suppose s nodes are compromised. Maximum

number of links are broken when the nodes compromised have disjoint sets of keys and

occur in the interior.

Let the number of links broken when s nodes are compromised be denoted by Cs.

Consider a node ni,jwhich has been compromised. Let it contain key (x, y). We find the

nodes ni0,j0 within Lee distance of ni,j which share the key (x, y). By the analysis of A
ði; jÞ
r , we

see that the nodes ni-1,jþx, ni-2,jþ2x, . . ., ni-t,jþtx and niþ1,j-x, niþ2,j-2x, . . ., niþt, j-tx are the key

sharing neighbors of the node ni,j. So |t|� r and either txmod r � r - t or r - | txmod r |�
r - t. Since x is known, the number of nodes sharing key (x, y) within the Lee distance is the

same as finding the number of values of t which satisfy the equations

jtj � r and jtxmod rj � r� t (10a)

and

jtj � r and r � jtxmod rj � r� t (10b)

We consider a key (x, y). Let us denote the number of links compromised when (x, y)

is compromised is less than cx. Let the following keys be exposed when s nodes

are compromised. ðx1; y11Þ; ðx1; y12Þ; � � � ; ðx1; y1s1Þ; ðx2; y21Þ, ðx2; y22Þ; � � � ; ðx2; y2s2Þ; � � � ;
ðxk�1; yk�11Þ; ðx1; yk�12Þ; � � � ; ðx1; yk�1sk�1

Þ: Each key occurs r times. So the number of

links compromised is less than rð
Pk�1

i¼0 cxi ; siÞ. In reality the position of the compromised

node and the position of the nodes which contain the exposed keys will determine the

number of links compromised. Since the position of the nodes and the keys exposed cannot

be determined, it is difficult to calculate an upper bound for the number of links

Table 2

Experimental Value of E(s) for 100 Runs and Bound for E(s), when Number of Nodes in the

Grid is r2, Keys per Node is k and the Lee Distance (RF radius) is r

r k r s E(s) (Lee Distance) E(s) (RF radius of [19])

23 15 7 5 0.1990 0.2006

23 15 5 5 0.1981 0.2008

31 20 7 5 0.1526 0.1516

31 25 7 5 0.1528 0.1513

37 30 7 5 0.1289 0.1283

53 49 7 5 0.0913 0.0915

53 49 7 10 0.1756 0.1736
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exposed. Cs � rð
Pk�1

i¼0 cxi siÞ:EðsÞ ¼
Cs

T
, where T � 1

2

Pr�1
i¼0

Pr�1
j¼0 A

ði; jÞ
r

�

�

�

�

�

�.

We give the experimental values of E(s) in Table 2.

4.2. Experimental Results for V(s)

V(s) can be defined as the probability that a node is disconnected, given that s nodes are

compromised. Mathematically,

VðsÞ ¼
Number of nodes disconnected

r2 � s
:

As discussed in [19] if s < k, no node is disconnected. For any node to be discon-

nected each of its k keys must be present in some compromised node. However, no two or

more keys that are present in the disconnected node can be present in any compromised

node, since any pair of nodes share at most one key. Hence there is no node which will

have all the k keys in the compromised s sensor nodes.

Since the number of nodes disconnected when s nodes are compromised does not

depend on the RF radius, we get the same results for V(s) as obtained in [19].

The experimental results for the calculation of V(s) is given in Table 3.

5. Related Works

Key predistribution using deployment knowledge has been studied in [1, 6, 7, 12, 15,

21, 28]. In this article, we use the Lee sphere approximation of RF region as discussed

by Blackburn, Etzion, Martin, and Paterson in [1]. In [1] Blackburn, Etzion, Martin, and

Paterson proposed a key predistribution scheme for a grid-based deployment scheme.

They used combinatorial structures like Costas arrays and Distinct - difference config-

uration for key predistribution. However, their design is applicable, provided suitable

Costas arrays and Distinct-difference configurations exist. The construction of Distinct-

difference configuration which matches the desired requirements has not been presented

Table 3

Experimental Value of V(s) for 100 Runs when Number of

Nodes in the Grid is r2, Keys per Node is k and s Nodes are

Compromised

r k s V(s)

11 5 9 0.0180

13 9 9 0.0250

37 5 30 0.0350

47 5 30 0.0150

47 6 30 0.0096

47 7 30 0.0027

47 9 30 0.0004

53 13 30 0.0000
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in the paper. In our scheme all nodes are connected by a maximum of two-hop paths.

However, using Costas arrays this is not guaranteed. (As the example of 3 � 3 Costas

array in [1] shows.) Our design is simple and results in high resiliency in terms of V(s)

and E(s) as already mentioned in the previous section. Though the number of groups

is chosen to be r2, where r is a prime power, the design discussed above works in all

those cases where the dimension n of the grid is not a prime power. This can be done

by simply choosing a prime power r > n and neglect the regions which fall out of the

n � n grid.

6. Conclusion and Future Research

In this article, we revisit the grid-based deployment scheme as proposed by Ruj, Maitra, and

Roy in [19]. Transversal designs are used for key predistribution. RF region is assumed to

be a square of appropriate dimension in [19]. In [1] Blackburn et al. introduced Lee sphere

as an approximation of the RF region. We use Lee distance while calculating the

connectivity ratio and resiliency of the grid based network as proposed in [19]. The main

reason for doing so is that Lee sphere provides a better approximation than the square

RF region. This scheme is much better than the scheme proposed by Blackburn et al. mainly

because it is very simple to construct transversal designs.

However, in the discussed key predistribution scheme a particular nodemay share keys

with nodes which are not within its Lee distance. This is clearly a underutilization of

resources. In future we would like to construct key predistribution schemes such that only

nodes which are within Lee distance share keys with one another.
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