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1. Introduction

Let A ={po, p1, ..., pn}denote a one-dimensional
array of processing elements (PEs). There exists a di-
rect link (regular link) between p; and p;y1, 0 <i <
N. Any link connecting p; and p; where j > i +1
is said to be a bypass link of length j — i. The by-
pass links are used strictly for reconfiguration pur-
poses when a fault is detected. The links can be either
unidirectional or bidirectional.

Given an integer g € [1, N], A is said to have link
redundancy g, if for every p; € A with i < N — g,
there exists a link between p; and p; .. Let G =
{g1.82,..., 8k}, where g; < g;11 and g; € [1, N].
The array A is said to have link redundancy G if A
has link redundancy g1, g2, . - ., 8k-

A fault pattern for A is a set of integers F =
{fo, f1,..., fn} where m < N, f; < fj41 and f; €
[0, N1. An assignment of a fault pattern F to A means
that for every f € F, py is faulty. The width Wp
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of a fault pattern F = {fy, fi1,..., fe—1} is defined
to be the number of PEs between and including
the first and the last fault in F, that is, Wrp =
fe—1 — fo + 1. At the two ends of the array two
special PEs called I (for input) and O (for output)
are responsible for I/O functions of the system. It
is assumed that I is connected to po, p1,..., Pg—1
while O is connected to py_g., PN—gi—1,---> PN—1
so that all PEs in the system have the same degree and
reliability bottlenecks at the borders of the array are
avoided.

A fault pattern F is catastrophic for A with link
redundancy g if the array cannot be reconfigured in
the presence of such an assignment of faults. In other
words, F is a cut-set of the graph corresponding to A.

Characterization of catastrophic fault patterns
(CFPs) and its enumeration have been studied by sev-
eral authors, e.g., in [3-6]. Enumeration of CFPs for
G = {1, g} has been done in [2] for bidirectional case
and in [9] for unidirectional case. A method of enu-
meration of CFPs in the more general context is given
in [8], but no closed form solution has been obtained.
In this paper, we consider only bidirectional case and
use random walk as a tool for such enumeration. We
provide a simple proof for the case G = {1, g} and then
enumerate for G ={1,2,...,k, g}, 2<k <g.
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2. Preliminaries

For G = {g1, g2,..., gr} with g1 = 1, CFPs with
exactly g faults are considered because of its min-
imality [6]. A fault pattern F = {fo, fi...., fg—1}
is represented by a Boolean matrix [4] W of size
(W3 x gr) where Wi = [Wr/g]

1 if( NeF
W[i,j]:{ i (lgk‘.f‘J)e ,

0 otherwise.
Notice that W[0, 0] = 1 which indicates the location
of the first fault. Let W[h;_1,i — 1] and W[h;, i] both

be 1 and define m; = h;_1 — h;.

Proposition 1 (Pagli and Pucci [7]). Let {m1,ma, . ..,
mg_1} be a sequence of moves such that

(1) mi=—-1,00r1, for1 <i<g—1,

2 Sk:Zlemi <0 foranyl <k<g-—2,

(3) Sem1= X5 mi=0.

Then, any such sequence corresponds to a minimal
CFP and vice versa when G = {1, g}.

Definition 1 (Feller [1]). A random walk is a se-
quence {e1, €2, €3, ...} where each &; =+1 or —1.

The sequence is normally represented by a poly-
nomial line on a X-Y plane and whose kth side has
slope ¢ and whose kth vertex has ordinate S =
> i_q &i; such lines are called paths. For example, the
row {1,—1,—1,1, —1, —1} is represented by a path
from (0, 0) to (6, —2), with intermediate points (1, 1),
(2,0), 3, =1), (4,0), (5, —1) in the given order.

Definition 2. A subsequence {&511, &542, ..., Es4r}
of {e1,e2,....8,}, r 21, is called a run of length r
if &5 # €541 = &s42 ="+ = &s4r F Esr+1-

R isreferred to as the number of runs in {1, &2, ...,
&n}, p1 and p_1 as the number of runs whose elements
are 1 and —1, respectively (R = p1 + p-1).
Notations.

Enm: A pathfrom (0,0)to (n, m).
Eﬁm . An E, ,, path with R runs.
E,If;; : An E,fm path starting with a positive step.

ER~ An ER_ path starting with a negative step.

E,I:;;’t : An E,If;q‘; path crossing the line y =1,
t > 0 at least once.

E,I:,;’t : An E,f;i path crossing the line y =1,
t > 0 at least once.

N(A): The number of all A paths, e.g.,

N(Enm) = (m-ﬁwz)'

Theorem 1 (Feller [1]). Among the (Zn”) paths joining

the origin to the point (2n, 0) there are exactly # (2:)

paths such that S1 <0, S2 €0, ..., 82,1 <0, 8, =
0.

Theorem 2 (Vellore [10]). Form <t < (n+m)/2,

nomo g N /0 ]
v = (2,070

r—1

n—m n+m
-y _ (T T (o=
N(Enfmf)_< o )( “h

3. Main results

Theorem 3 (Nayak [2]). for G = {1, g}, the number
of CF'Ps for bidirectional links is given by

= n+l\n 2n )’

n

Proof. Number of catastrophic fault patterns is equal
to the number of catastrophic sequences {m1, mz, ...,
mg_1} satisfying conditions of Proposition 1. We
take random walks from (0, 0) to (2r, 0) such that
S1<€0,8<0,...,8,-1<0,8,=0 and “plug”
(g — 1 — 2n) zeroes in the 2n + 1 “distinguishable
places” (intermediate 2n — 1 places and two more
places before and after the sequence) of each such
path. Clearly for a given path there are (gz_nl) (negative
binomial coefficient) ways of plugging zeroes. 0O

Proposition 2. Necessary and sufficient conditions
to have that {m1,mg, ..., mg_1} is the catastrophic
sequence of a minimal CFP for a bidirectional linear
array with link G = {1, 2, g} are:

1) Mg—1= 0,

(2) mj=-1,0,+1forj=1,2,...,g—2,
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@) Y ym;<0fork=1,2,....g-3,

(4) Y5Tim; =0,

(B) mi+mip1=-1,0,+1 fori=1,2,...,g - 3.
That is, two or more consecutive +1 s or —1 s are not
allowed.

In general, we have the following characterization.

Proposition 3. Necessary and sufficient conditions
to have that {m1,my, ..., mg_1} is the catastrophic
sequence of a minimal CFP for a bidirectional linear
array with link G ={1, 2,3, ..., k, g} are:

(1) mg_1=mg_p="---=mg_j41=0,

@ mj=—1,0,+1forj=1,2,....g—k,
@) Y ymy<0fork=1.2,....g—k—1,
—k
(4) Zizl m; =0,
B) mi +mip1 + - +miyps = —1,0,+1 for s =

1,2,...,k—1,fori=1,2,...,g—k—s.

The characterizations described in Propositions 2
and 3 are easy to visualize and hence their proofs are
omitted.

Lemma 1. The number of paths from origin to the
point (2n,0) such that S1 < 0,52 <0,...,8,-1 <
0, S, =0 and have 2r runs is

n—1\? n—1\/n-1

r—1 r—2 r )
Proof. Clearly there exist exactly as many admissible
paths as there are paths from O1 = (1, —1) to N1 =
(2n,0) which do not cross the X-axis and have 2r

runs.
The number of such paths is equal to

N(ESS) - N(EsZq0). (1)

where E;ﬁro_’o isan E%;B path crossing the line y =0
at least once (please note that E%;B’t do not assume
t = 0). It is known that

2
N@%&=C:D @

(see Wald and Wolfowitz [11]). Now our aim is to
enumerate N(E;fro_’o). Translating the origin to O1,
we now consider the paths from the new origin to

the point Ny (which has the new co-ordinates 2n — 1

and 1) which cross the line y = 1 (with respect to new
X -axis) at least once and have 2r runs if the path starts
with a negative step and have (2r — 1) runs if the path
starts with a positive step. Number of such paths equal

2r—,1 (2r—1)+,1
N(Eg, 1) +N(Eg 1)
It can be shown that there exists a 1 : 1 correspondence
between such paths and an E;‘iro_’o path.

Take an Eg;:’lll (or an Egir__lli"_l) path and add
a negative step before it. The resulting path is an
E;‘iro_’o. Hence
2r—,0
N(E3,0 )
2r—1 2r—1+,1
=N(EpTi1) +N(Ey 510)
_(n—1\(n-2 n n—1\/n—-2
T\r-2 r r—2)\r—1
n—1\/n—-1
— . 3
G20 8
The lemma follows from (1), (2) and (3). O

Theorem 4. Let G = {1, 2, g}. Then the number of
catastrophic fault pattern y (1, 2, g) for bidirectional
link is given by

r(1,2,¢)
L(g=2)/2] n 2
n—1 n—1\/n-1
- 200) 0o
g—2n—r)y—2
X< ” )

Proof. Number of catastrophic fault patterns is equal
to the number of catastrophic sequences {m1, mz, ...,
mg_2} satisfying conditions of Proposition 2. Let the
number of —1’s (and so the number of +1’s) in the
sequence be n. Clearly then the number of zeroes is
g — 2 — 2n. We start with a path of length Zr such that
S1 <0, §<0,...,85,1 <0, (52, =0) and have
2r runs. R(run) = 1 + number of change either of the
type (=1, +1) or (+1, —1).

So, the number of paths having (2r — 1) changes
either of the type (—1,+1) or (+1, —1) and satisfies
S1 <0, $9<0,...,8,.1<0, (52,=0)is

(o) -0
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All the above paths have 2n — 1 —2r + 1 =2(n —r)
identical pairs of the type (+1, 4+1) or (—1, —1). So,
to satisfy condition (5) of Proposition 2, we have to
plug in a zero between every two consecutive +1’s and
every two consecutive —1’s. So the number of zeroes
plugged in are 2(n — r). The remaining positions
g—2—-2n—2n—r)y=g—4n+2r — 2 arealso to be
filled up with 0’s. There are (2r + 1) distinguishable
positions in which (g — 4n 4+ 2r — 2) 0’s can be
distributed in (g—Z(g;r)—Z) ways. Since n can vary
from 1 to [ (g — 2)/2], the total number of such paths
is

b () I C)
« <g—2(n—r)—2).
2n

Note that these paths do not include the trivial path
corresponding to the sequence (0, 0, ..., 0). Hence the
theorem. O

Theorem S, Let G = {1,2,3,...,k, g}. Then, the
number of catastrophic fault patterns y(1,2,3, ...,
k, g) for bidirectional link is given by

y(1,2,3...,k, g)
Lg=k)/2] n 2
n—1 n—1N\/n-1
e 3 (0) =020

n=1 r
(g —k—2(n—r)k— l))
X .
2n

Proof. The number of catastrophic fault patterns is
equal to the number of catastrophic sequences {m,
ma, ..., mg_g} satisfying conditions (2)—(5) of Propo-
sition 3. Proof is similar to the proof of Theorem 4.
Here to satisfy condition (5) of Proposition 3, we have
to plug in (k — 1) 0’s between every two consecutive
+1's and between every two consecutive —1’s. O

4. Conclusion

A method of enumeration of CFPs for an arbi-
trary link configuration G was discussed in [8], but
no closed form solution was obtained. In this paper,
we used the random walk as a tool for such enu-
meration. We provided a simple proof for the case
G = {1, ¢} and a closed form expression for G =
{1,2,...,k, g}, 2<k < g in the case of bidirectional
links.
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