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1. Introduction

In repeated measurements designs (RMD’s) each experimental unit is exposed to
a number of treatments applied sequentially over periods. If there are p periods
0,1,..., p—1, t treatments and # experimental units, then an RMD{4, n, p)isan nxp
array, say D= ((d};)) where dj; denotes the treatment assigned to the i-th unit in the
Jjthperiod, i=12,...,n;j=0,1,..., p— 1. RMD’s have been studied quite extensive-
ly. For a general review of such designs, one may refer to Hedayat and Afsarinejad
{1975) and for an excellent review of the literature on optimal RMD’s reference is
made to Hedayat (1981).

An RMD is cav .d uniform if in each period the same number of units is assigned
to each treatment and on each unit each treatmeni appears in the same number of
periods.

The underiying statistical model is called circular if in each unit the residuals in
the initial period are incurred from the last period. Under the circular model an
RMD is called strongly balanced if the collection of ordered pairs (4, ;, 4 ;410
O<j=p-1, 1=i=n (operation on the second suffix is module p), contains each
ordered pair of treaiments, distinct or not, the same number of times. A strongly
balanced uniform BMD{, n, p) will be abbrevizted by SBURMD{, 7, 2}

Let Q,,,, denote the class of all RMD{, 5, p)'s. Let D be an SBURMD(, n, 7).
We assume the underlying model to be circular. Under an additive set-up Magda
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(1980} proved the universal optimality of D over £, , for both direct and residual
effects. Under a non-additive set-up, Sen and Mukherjee (1984) proved the universal
optimality of D over £2,,, , for the estimation of both direct and residual effects.

Sen and Mukherjee also give a method for constructing SBURMD{Z, , p} if ¢|n
and pt~! is an even integer. This paper deals with the case when ¢ |n and pr~'
is an odd integer. It is shown that whenever f#0, 1 or 3 (mod 4), the required
SBURMD exists.

2. Method of differences

It is easy to see that a necessary condition for an SBURMD(Y, n, p) to exist is ¢ | »,
t|7 and p>t. Let +3 be a group with operation +, B be a subset of G and ge G,
then B+ g is defined as fcliows:

B+g='b+g:becB}.
The proof of the following theorem being trivial, is omitted.

Theorem 2.1. Let G be a group with | elements. Consider the p-tuple B:
(g, ayy oo 0y ) Where 0,€ G ¥Vi=0,1,..., p— 1. each element of G occurs exactly
s (s=p/t} times in B and {a;—a;,,:i=0,1,..., p— 1} (operation on the suffixes is
modulo p) contains each element of G precisely s times. Then {B+g: g G arranged
in t rows, forms SBURMD( 4, p).

Such a B will be called a base-block. B will also be referred to as a difference vec-
tor. It is easy to see that the following notes are true,

Note 1. SBURMD{{, 1, p) may be constructed by repeating n: = SBURMD, £, p)’s
vertically.

Note 2. If SBURMDY{/, £, 2¢) exists, then SBURMDY{4, ¢, p*t) where p* is even, can
be constructed repeating SBURMD(Z, ¢, 2¢)’s horizontally.

Note 3. If SBURMD{, £, 24) and SBURMD(Z, £, 31) can be constructed from dif-
ference vectors, then SBURMD(t, &, p*r) where p* is edd and p*=3, can be con-
structed by taking SBURMD(, ¢, 3¢) followed by SBURMD(, £, 21¥’s.

The key behind Note 3 ic that | if the constructions are from difference vectors,
then we can always assume that the first and the last element in the base-block are
0’s where 0 is the identity element in G.

Sen and Mukherjee (1984) have constructed a difference vector for SBURMINE §, 21).

They have taken G to be the set {0,1,...,#—1} with addition modulo ¢. The dif-
ference vector is

ﬁ,f—v E'l ;13"'2'!-"*['}!]! H"{]p'":!_zi I!E_Lﬂv
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So one now attempis to get difference vectors for SBURMD(t, £, 3¢).
For any ordered tuple {(a,, @3, ...,a;), the collection

(0 =3y Oy = O3y ey B — Gy B — 05

will be called the collection of linked differences in the tuple.

Lemma 2.2. Let (G, +) be a group with identity element 0, |G|=t. Let B'=
(@0, @3 ... a,_) be some ordering of the non-zero elements of G such that

@ —@nay— a3y ly_3—G;_ 1,8, _y—a;} =G — {0},
Let B=(a,, 63, ...,8,_5) and let A be the vector
B,B+ia,_—a)B+2a,_—a)3a,_—2a,2a,_—ay,0,_;)

where kg means g+ g+ -+ + g (k times) and g, — g, means g, +(—3,). Then A along
with some suitable repetitions (to be explained at the end of the proof)} of elements
in it forms a difference vector for SBURMDIL, 1, 3¢).

Proof. (i} 0eA: If the inverse of a,_,—a; belongs to B then 0 belongs to
B+(a,_,—a,); otherwise —(a,_, —a,y=a,_, which implies 2a,_,; —a,=0.

(i) a,_,¢B, 2a,_,—a¢B+(a,_,—a)) and 3a,_;-2a;¢B+2a,.,—x): That
a,_; & B is immediate. Tc show the second pari, assume if possible, that there exists
a, (1 <i<t-2) such that 2a,_,—a,=a;,+a,_,—a;) and hence a;=4,_, which is a
contradiction.

The proof of third part is similar to this.

(ii) 3a,_;—2ay#2a,_;—a; and 2a,_;—a;Fa_;.

It is easy to see the following:

(i} All non-zero elements in & occur 3 times as the linked differences in A.

(i1} No zero-difference occurs in A,

{iii} A contains each element of G at least once,

iv) A contains each element of G at most thrice.

{v) A contains 3#—3 elements.

Now, there will be some elements in A with frequency 1 or 2, and those are
repeated so that ti. . frequency becomes 3 and this will give rise to 3 zero-differences.

Thus A with some suitable repetitions gives the difference vector for
SBURMD{t,1,37). U

Note that this construction does not work for ¢ =2 sifice B becomes the null-set.
To illustrate the lemma, we show the case /=3,

B'=(12, B=() A={120102),

Difference set=(1 1 22001 0 2).
Also observe ihai in the lemma, the condition “B' is some ordering of the non-zero
clements of &' can be relaxed to “the ordering of any ¢ — 1 elements of G, becanse
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if B’ contains 0, then 5’ does not contain some element, say g, then B'+(— g) will
have the required property and will not contain 0.

So, now the problem reduces to finding an ordering of any /— 1 elemenis from
a group of order ¢ such that the linked-differences are all non-zero and distinct. Such
an ordering will be called a starting difference vector for SBURMD(z, £, 3¢}

Lemwa 2.3. If ¢ is odd, then a starting difference vector for SBURMD(,, 1,31} is
given by the foliowing:
@) If t=4k+ 1, consider Z,,Hl and lz¢f the required vector be

(L4k2,4k-1,....53k+ Lk+ 2,3k k+3,3k-1,..., 2k 2k + 2,2k + 1,0).

(1) If t=4k+ 3, coasider 2,4, and let the required vector be
(1,4k+2,2,4k+1,....3k+3,k+ Lk+2,3k+ 2,k+3,3k+1,...,2k+4,
2k+1,25+3,2k+2).

The proof of this lemma and also the next lemma are trivial and hence omitted.

iemma 2.4, If t is prime or a prime power, consider GF(t} and let a be a
primitive clement; then (La,a’ ...,a'"%) is a starting difference vector for an

SBURMD(}, ¢, 31).
In view of the previous lemimas and notes the following theorem is immediate.

‘Theorem 2.5, Let t|n, t|p, p>t and pt™' be odd. If t is an odd integer or some
power of 2, then SBURMD({, n, p) always exists.

3. Non-gxistence of SBURMD(2, 2, 2p*) where p* is odd

Let us denote the treatments by 0 and 1.

If an SBURMD(2, 2, 2p*)} exists then the second row must be the complement of
the first row.

Assume thai ihe freguencies of ihe pairs 00, 01, 10 and 11 i ihe st Tow aie x,
¥, z and w respectively. Then the frequencies of 00, 01, 10 and 11 in the second row
must be w, z, y and x respeciively. Thus in the design, the frequency of both 00 and
11is x+ wand that of 01 and 10 is y + z. So we have x+ w=y + z and these are equal
to p*. So what we have actually is that, if an SBURMD(2, 2, 2p*) exists, then the
first row must be a difference vector, i.e, the collection of linked-differences in the
first block must have p* 0’s and p* 1’s.

We may think of a graph ith 2p* - ces, »* of which are labeled 0 and the
remaining p* vertices are labeled 1. It is easy to see that the first row of an
SBURMIDMZ, 2, 2p5*) is equivalent to a Hamilionian walk in that graph with an odd
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(to be precise p*) number of cross-overs between vertices labeled 0 and vertices
labeled 1. But this is impossible. Hence we can state the following theorem:

Theorem 3.1. If p* is an odd integer, then SBURMD(2,2,2p*) !+ not exist.

4, The case =0 (mod 4)

Let G, =(X,, £)) and G, =(X>, E,) be two simple graphs. (X; denotes the vertex
set and E; denotes the edge set of the graph G;.) The lexicographic product G, ® G,
has the vertex set X, X X, (the Cartesian product) and the vertices (x;, x;) and (3, 1)
are joined iff {x,, y) € E; or (x,=y, and (x3, y») € £,). We denote by S, the graph
consisting of n isolated vertices and by C, the cycle of length # {(n=3).

The fact thai C,® S, is decomposablé into Hamiltonian cycles, has been proved
in different papers; one may refer to Baranyai and Szasz (1981) or Laskar (1978).

Our interest in this section is to get larger SBURMD’s from the smaller ones. Lei
us think: of a graph with p vertices; the vertices divided into different collections,
each collection having pr~' vertices. Lei the vertices in the same collection be la-
beled by a treatment symbol and vertices in different collections be labeled by dif-
ferent treatment symbols. Then a row in an SBURMD is just a Hamiltonian circuit
(i.e. directed cycle) in that graph. Let C(i) denote such a circuit corresponding to
the ith row in D, an SBURMD(t,», p). If C({)® S, can be decomposed into
Hamiltonian circuits and these Hamiltonian circuits can be written as & rows of a
matrix (call it D;) such that each column in the matrix

D*= |-

contains each vertex symbol the same number of times, then D* is an
SBURMD{¢k, nk, pk). To see this first, one can easily observe that each treatment
(now the treatm. ats are Iabeled by (i, /), i=12,....8: j=1,2,..., k) occurs pt !
times in each row of D*. Secondly, we have fo ensure that each treatment pair (there
are now £°%° such pairs) appears A {4 ={p)/e) times in D% Conside: 3 pair
(i), 7\ ) U, £2)). The pair (i}, ;) appears A times in D. Corresponding to each occur-
ence of (i, i) in, say, row [ of D, there is an occurence of the pair ({i;, /;} (2 720}
in D,. This ensures the occurence of {{i;, j:), (fx /o)) A times in D

I the graphs consid: :ed here were undirected and the occurence of each treatment
in each column were not to be considered, then the Hamiltonian decomposition of
C,®8,, mentioned by Baranyai and Szasz {1981) and Laskar £1978), would have
solved the problem of getting larger SBURMD’s from the smaller ones. So, now we
have to look for a further generalization of that decomposition theorem.
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Lemma 4.1. Let C=(0, 1,2, ...,r~ 1) denote a circuit, r is even. Let k be a positive
odd integer. Consider C®5; whose vertices are labeled (L7), i=0,1,...,7r-1;
j=04 ...,k — 1. Consider the following array end call it B:

©,0) LY . (=20 r-1,0)
(0, 1) {,2:1} .. f{r-31) (r-12-1)
€2 {1,2-2} r—2,2) r—1,2-2)
Ok-1) (L2-G=1) .. C=2k=1) (=12 F~1)
Now consider the array
B*=[BiB+ 1843 B+(k—1)]

where B+ { means B wich each element, say (1, v), being replaced by (u, v + i) (eddi-
fion moduio k).

This array B* forms ¢ Hamiltonian decomposition of C® S, with the additional
property thai each column has the elements (u,0), v=0,1,..., k-1, for some u,

Froof. (i) Each row is a Hamiltonian circuit.

{ii) Since & is odd, 2 has multiplicative inverse in Z;, so0 each column has ele-
ments {0}, v=0,1,..., k-1, for some u. In fact, for the e-th column, G<e<rk,
y=e (mod r).

(iity Consider a pair of the form (G, /% {4 1, /')) where i is even, i+1 is odd
modulo r. If it belongs o the x-th row of B+ y then

J=x+y, F=2x+y

which implies x=j’ — 7, y=2/- i’ (mod k) and the solution is unique.

The pair ({5, /), ({ + 1, /) where i is odd and istr- ) may be found easily looking
at {{i—1, /"% {i 7)) (-~ ! i5 even) which may be found uniquely in the array and so
{4 F), {i+ L, j°) appears just next to it.

Now let us consider the pairs of the form

{r—1L.J) ©.J9.

If it appears in such a way that (0, /') appears in the x-th row of 8+ y, then
J=lxt+y-1, [F=x+y,

which implies x=j~ '+ 1, y=2§'—j— 1 (mod &) and the solution is unique. Hence

ihe lemma. [

In view of the above lemma and the discussion in this section, we state the follow-
ing theorem,

Theorem 4.2, If SBURMYIN:, w, p) exists, o is evert and & is a positive odd nteser,
then SBURMDE, nk, o) exisis.
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Now let =0 (mod 4), >0. Then
either ¢ =2° for some s> 1

or =2 for some s>1 and some odd integer u.

The existence of SBURMD(Y, i, p) when #=2° for some s> 1 is setiled in view of
Theorem 2.5, Let #=2% and consider n and p such that

n=012%, p=0L2,
where f; =1, h, is odd and L,=3. Let
d'= I.f, p'= Izzs.

So by Theorem 2.5, SBURMD{2%, ', p’) exists. Note that u is odd and p’ is even,
Hence by Theorem 4.2, SBURMIN2 y, n'y, p'u), i.e. SBURMD(, n, p), exists. So
we can state the following ibeorem.

Theoremi 4.3. If =0 Gmod 4), t|r, t| p, p>¢, and pr~" is odd then SBURMD(Z, n, p)
exisis.

5. Concluding remarks

The existence of SBURMD{t, n, p) when f=2 (mod 4), and pr ' is odd, is stiit an
open problem. It has been shown in Section 3 that SBURMDI2, 2, p), where p is an
odd multiple of 2, does not exist. The author has exhaustively checked that the dif-
ference technique mentioned in Section 2 fails to construct SBURMD(G, 6, 18). Now
can anyone see any similarity (or even relationship) between SBURMD’s and pair-
wise orthogenal latin squares?

6. Appendix

An SBURMD(S, ° 25) constructed using
(i) Lemma 2.2 and 2.3;
{ii} Sen and Mukheijee’s tafference vector for SBURMD(S, 5, 10) (inentioned in
Section 2); and
(iii) Note 3 in Section 2;
is as follows:

44213531002041023324000604273
003244211310234430628082034
i 143003224213400403223140
2206411463303240110243242014
3310220441 430122030440312
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