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ISOMORPHIC SUBGRAPHS HAYING MINIMAL
INTERSECTIONS

R. . MULLIN, B. K. ROY and P. J. SCHELLENBER

Albwstract

Civen a finite graph & and 7, a subgraph of it, we define o0, 77 to be (he largest intepger such tha
every pair of sphgraphs of /f, both isomorphic to &, has an least &, H) cdpes in commaon;
furthermore, K(d7, ff) is defined 1w be the maximum number of suhgraphs of A, all isomorphic o G
such that any two of them have oftr, f) edpes common between them, We are intercsted m the values
of affe, ffy and R(G, &) for general & and . A owmber of combinatonal problens ca be
considered as special cases of this question: for example. he classical sel-packing problem is
eguivalent to cvaluating ARG, A where @ i a complete suberaph of the complete praph F and
afty, H1 =1, and the decompozition of & into subgraphs somorphic 1o @ is equivalent 1o showing
that afé;, H) =1} and R{{, 1) = & 717600 ) where of ), (G are the number of cdges in H, G
respectively.

A result of 5 M. Johnsen (1962) gives an upper bound lor KOG, ) im0 terms of o(d), 7). As s
corellary of Johnsen's resuft, we obrain the upper bound of MoCarthy and van Bees (1977 [or the
Cardes peoblem. The remainder of the paper is a study of af G, I} and Ry I for special classes of
graphs: in particular, ff is a complete graph and G &5, in most instances, a unicn of disjoint complete
subgraphs.

1. Introduction

Let H be any finite graph and let & be any subgraph of M. We are inlerested in
two integer-valued functions of & and H, o{G, ) and #(G, 4. The function
o{ (s, ) is defined to be the largest integer such that every pair of subgraphs of
H, say G, and G,. both isomerphic to G, has at least of¢7, {1} edges in common.
This means that each pair of such subgraphs has at least o{ ¢, #f } common edges
and some pair of them has precisely o{(, /') common edges. [T the graph Mf
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under consideration is clear from the discussion, we will refer to oG, H) simply
as o{G) or, still more simply, as o, in the event that there is no ambiguity about
the subgraph G either. The function R(G, H) is defined to be the largest integer r
such that there exist r subgraphs of H, say G|, G,,...,G,, each isomorphic 10 G,
with the property that each pair of them has o common edges. When appropriate,
we will refer to R(G, HYyas R(G)Yor R.

It is interesting to note that the classical set-packing problem is a special case of
this problem. The object in the packing problem is to determine the maximum
number of k-subsets of an x-set such that any pair of elements from the n-set is in
at most one of the k-subsets. This 1s equivalent to the determination of R(G, H)
where H is the complete graph K, Gis K, and o = (-

Cordes {1978)* considered the problem of determining R(G, H) and oG, H)
in the special case where H is the grapk K, _ (the complete graph on man vertices)
and (f is the union of n disjoint complete graphs, each on m vertices. Since then,
others have considered this problem, including Mullin and Stanton {1978},
McCarthy and van Rees (1977), and Nemeth (1976). Nemeth was the first 1o
consider the more general problem described above.

For any graph H, let & ) denote the number of edges in H. In Section 2, we
observe that a result of Johnson (1962} gives
E(e — o(G. H))
e*—=E-o(G, H)
where £ = o H) and ¢ = &{G). This bound pives the upper bound for R(G, H)
obtained by McCarthy and van Rees (1977) in the special case where H = K,
and G is the disjoint union of n K, ’s.

In Section 3, we consider lower bounds for R(G, K,,) where (7 is the disjoint
union of 2 K,’s; in Section 4, we study R(G, K ) where  is the disjoint union of
two complete graphs K_ and K,__. and in Section 5, we consider R(G, K,))
where G is a double-cone (see Section 3) on n vertices, For G a double-cone on n
vertices, where n = 8, it is shown that o(G, K_) = 8 and R(G. K,) = 2.

We conclude the introduction by describing some notation to be used in later
sections. For any graph G, F((G) is the set of vertices of G and E{G) is the set of
edges; furthermore, »(G) =| F(G)| and e(G) =| F{G)] .

R{G,H)=

2. The Cordes problem

Though Cordes (1978) originally phrases this problem in the language of
combinatonial designs, we will use the graph theoretical language employed in

* Though the paper by Cordes was published in 1978, he introduced the problem in 1976
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Section 1. As mentioned in the introduction, Cordes investigated oG, ) and
R{;, H}in the special case where H is a complete graph on mn vertices and 15
the union of » disjoint complete subgraphs, each on m vertices. In this special
case, we denote o G, H) by a{m") and R(G, ) by B{m").

Let us consider the more general situation where & is the uniom of disjoint
complete subpraphs of A, but the complete subgraphs need not all have the same
cardinality. We begin by looking at e{F, H}. The following resull (see Hartman,
Mullin and Stimson {19800 plays a sigmificant role in several of the proofs given
[

LEMMA 2.1, For any b nan-negative integers £, ka,... .k, let

s
Yk bt whereO=r<p
=1
Ifg+ 15, then
I

K (q + 1 ) _ q
f§1(r:.'r i _+“’ r}(u]
with equediry if and only Iif rof the K,'5 are equal to g + 1 and the remaining b — r

areequal to g. ff g + 1 < wu, then
b ;
k.
i = U
2 (%)

with equality if and only if each k< u.
We are now in a position Lo prove

TaHEOREM 2.2, For m, n and » positive integers such that m,on =1, 0 =y <2 n_ fet
H = K, wherer = mn + 5, that is, ler H be a complete graph on  vertices. Let G be
the union of w disioint complete subgraphts of H x of which have m + 1 vertices and
r - 5 of witich fave m vertices. Let mt = kn + [ where V= { < n. Then

olG.H)=(in+ s)(k; l) i {nz—e‘n—s}(g];

furthermore, whenever two subgraphs isomorphic to (7, say (7, and 7y, intersect ina
edges, then each connected component of G| imtersecty each connected component of
Gy inkoor k4 1 pertices,

ProoF. Label the connected components of G, ¢ € {1,2}, by C', G, C"
Letx,, = »(C} M Cf). Clearly

Ex_.J,:JIm bs=kal+ in+ s

Fod
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The number of edges commeon to both &, and &, is given by

n

E(IU).

ke

We can apply Lemma 2.1 to the x, s with b =n’, g =k, r=in ~sand u = 1.
Thus

E(x;) ;Un+s](k; l) +{n* = in -s}(‘;)

L

with equality if and only if each x,; is either & + 1 or k. We conclude that
_ T "
o[G,H}:[fn+3}( 5 )+[n2—1’n—.5'}L2J

and (7,. &, have o edges common if and only if euch connected component of
intersects each connected component of G, in & or & + 1 vertices.
If + = 0, we have

u{G,H}=ﬂ[f(k; 13 +‘:”_”[§”

which was [irst established by Cordes {1978).

We now turn our attention to the function R{G, H). The more general
graph-theoretic formulation of Cordes’ problem permits us to employ an elegant
result of 8. M. Johnson (1962) to obtain an upper bound for R(G, H). For the
sake of completeness, we include the proef of Johnson's Theorem.

As uwsual, we let | X'| denote the cardinality of the set X,

TeEOREM 2.3 (1962). Let H be a finite set of cardinality £ and et G|, G, ... G,
be subsers of I such that

(0} |G |=eforl =i=8, and

()G NG|=b8forl=i<j=8
Then, for ¢? = EB,
2 EEe —#) .

e — Ed
Proor. Let A be the multi-set of set intersections

(G, NG |1=i=j=8)

&

Define a bipartite graph, with bipartition (A4, H ), as follows: a vertex h £ i is
joined to a vertex G, N &, £4 if and only il the element A € 4 s in the
intersection G, M G,. In order Lo count the edges of this graph, for each £ € H,
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we define &, to be the number of °s which contain the element k. Clearly, the
number of edges incident with the vertex set f is

k
ZAT)
hCH 2

The number of edges incident with the wvertex set A is at most ($)8 since
|G, M G;|= #. Hence

5 4] <(2)e
nimgt 2
It is immediate from the defimition of the &,'s that
(I1) ¥ k,=de.
heH

Combining (I} and (11}, we have

(111} ¥ k= 8(8— 1)0 + Be.
RCH

By the Cauchy-Schwarz inequality,

(Zab) =(Za?)(Ze7).

applicd witha, = &, and &, = |, we oblain

8% = (B(8 — 1)8 + 8e)E,
which simplifies to give

under the hypothesis that e* = Ef.

Johnson also obscrved that given any upper bound for §, one can readily
obtain a second inequality which must be satisfied, Let g = [8¢/E] and let
r—de— gF. Applying Lemma 2.1 with g=g, r=r, b=E and v =12, we

obtain that
5 (4)=o(93") 5 e-n(2).

hCH

Combining this with meguality (13 of the above theorem, we obtain

(o ofs).
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Thus, we have estabhished

Lemma 2 4. Uinder the hypothesis of Theorem 2.3,

(3)0= - £(3)

where g = [§e/E] and r = e — gF.

This result will occasionally permit us to obtain an improved value for §; for
example, if we have an upper bound for § and if the inequality of Lemma 2.4 is
not satisfied, then & — 1 is a better upper bound.

In the generalized graph-theoretical formulation of the Cordes problem, the
graphs G and H arc completely determined by their edge-sets £(G) and E{ H),
respectively, Thus, if we apply Johnson's Theorem to these two edge-sets, we
immediately obtain

COROTLARY 2.5, Let H be a graph with E edges and let & be a subgraph with e
edges. Then for o — a(G, H),
J'_..' =
R(G, 1) =Zle =0}

el

e — En
Combining Theorem 2.2 in the special case when v = 0 and Corollary 2.5, we
obtain the following result of McCarthy and van Rees.

Lemma 2.6, For the classical Cordes problem,
R(m") = {"'Tf’_:_!_![_“;’-'_(_t’i__ 1) — ke{m + 1= n)]
mlm 1) k{pm— 1Mm+{—n)

wherem — kn +{and O = << n_

ProoF. This follows immediately from Corollary 2.5 when we sct

F= (7). e=(%).

and from Theorem 2.2, with s = 0,
. E+1° 2 k
alm :J—n[.l"( 2 ) +{n !}[2}]

One can also find an upper bound for R{G, H ), with & and H as defined in
Theorem 2.2, since

P (Ingk +2mf+£], Ezs[nk +2;+ 1'] i (n_ﬂ(nk2+.l’:}‘

and a( ., H)is as given in Theorem 2.2,
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We now use Lemma 2.4 to establish the following improved upper bound of
McCarthy and van Rees {1977).

TueoreM 2.7. R((Zm + 1) = 4m + 4, provided m = 2.

Proor. From Lemma 2.6, we get R{{(Zm + 1’y =dm + 5. Now let § = d4m +
5. For this case,

E:(“’”;z] =8mi+6m+1, e=2. (2’”2' 1]=4mz+2m,

=2 {(2)- (73 )]

Theng = 2m + 1.r = 8m” + 2m — |, and hence.

)
2

and

rq+£-[ ) ~ 16m* + 36m> + 2002 +m - 1,

(i]a = 16m® + Wm® + 20m?.
Hence § = dm + 4.

When H = K, and G is the union of two disjoint K,,'s, Cordes {1978)
established

TueEoREM 2.8, R((2m¥) = dm — 1 with equality if and only if there exists a

Hadamard marrix of order 4m.

3. Some lower bounds for R((2m + 1)?)

McCarthy and van Rees (1977} establish a number of results on R{{2m + 1)*).
LEMMA 3.1. R({2m + 1)) = R((2m)?).
LEMMA 3.2, R{(4n = 1)7) = 2min[R{(2n)%), R((2n + 1)*)] + L
LemMa 3.3, B((4n — 13?3 = 2min[R{(2r — 1)%), R{(2n)*)] + L.
Lemma 34. 2" — 1= R{(2" - 1¥)1=2"" forn =3

LEMMA 3.5. If p* = 4n + |, where p is a prime, then 4n + 1 = R((2n + 1)) =
4n + 4.
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McCarthy and van Rees also demonstrate that R(5°) = 12 and determine
upper and lower hounds for R{{(Zm + 1¥) for 2m + 1 £ {7,5. 11, 13}. Cordes
{1978) shows that R(3*} = 10.

In this section, we show that R{{4m D)= 8m + Twheredm + Jisa prime
or a power of a prime. Combining this resolt with Lemma 3.3, we show that
Bm + 7 = R({4m + 3" = Bm + & for many non-prime powers 4m + 3.

We proceed, now, vsing the language of combinatorial designs rather than
graphs. Let V¥ be a set of cardinality mn. An (m"y-round, %, is a partition of ¥
into & sets, called Mocks, each of cardinality m. The pairs of an (m® -round 9. are
precisely those pairs {a, b} CV, o b, such that, for some block B &4,
{a, b} C B. Then a(m”} is the largest integer such that any two (m” }-rounds of B
have at least gl m™) common pairs, Also, R{m™) is the largest integer r such that
there exist 7 {m" }rounds of V, say 4., 9A.,,...,% , with the property that each
pair of these rounds have ofm”} common pairs. Throughout the remainder of this
section, we investigate R({2m + 1)*).

We now consider the problem of constructing two ((2m + 13 )-rounds having
a((2m + 1)*) common pairs.

LEMMA 3.6. Let V be a set of cardinality dm + 2. Constructing rwo ((2m + 1))
rounds af V having of{2m + 137} common pairs is equivalent to constructing iwo
blocks (subsets) of V', say A and B, both of cardinality 2m + 1, such that

|[A M Bl=n ar m 1.

Proor. Clearly, if ., and %, are ((2m + 1)* }rounds containing o((2m + 1)%)
= 2m’ common pairs, then by Theorem 2.2, each block of 9., intersecls each
block of R, in m or m + 1 elements. Hence, we can take either block of &, o be
A and either block of 9., to be B.

Conversely, let A and B be blocks of V, each of cardinality Zm + 1, such that
|4 N B|=morm+ 1. Let A=V\A and B =V B Itisan easy matter to
check that R = {A, 4} and N, = (B, B} are ((Im + 17 )-rounds such that
each block of 4., intersects each block of SR, in m or m + 1 elements. Hence by
Lemma 2.2, 8., and ., have of(2m + 1)*) common pairs.

We are now in a position to prove

TueoreM 3.7, If p* = 4m + 3, where p is q prime and & i3 a positive integer,
then Ri(dm + D) =8m + 7.

Proor. Bose {1947) has established that the set of quadrauc residues. say @ of
the Gralods field of order 4m + 3, & = GF4m < 3), is a difference set (M. Hall,
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Jr. (1967 of index r1, as 15 the set of quadranic nonresrdues, say ¥, That is, the
multi-set

{u -b|ﬂ,fJEQ,n%b]

contains each eletment g & G {0} precisely m times, as does the multi-se
{a—bHla. b EN, a8 Furthermore, ¢ = QU {0} and N =N U [0} are
both difference sets of index m + 1.

For any g =  and for any subset § C (7, deling

S+g={s+gse sl

Now, for a € Q and g £ GA\{DV, g E Q1 {2+ g) if and only if there is an
element & € & such that 2 = f — g or, equivalenily, ¢ — & = g. Since @ Is a
difference set of index m, it follows that, for any g € GA 0L | @ N{@ + gil=m
and hence, for any {g. Al C G.g # A,

He+eln(Q+h)[=m

Simmilarly, for any {g. A C G, g A, {IN+ @) NN L E}=m |{Q 4+ 1)
(@ + R)=m+ Land [(N + g) N (N + B)i=m + L.

We make use of the following notation. For /€ [1,2} and for anv subset
§C G let §,= 8% [f]: furthermore, for any g € ¢, let g, ={g. /) E G = {iL
Forany g, € G, and any h & G, define

g, +h=(g+h),
and, for anysubset § C G, U G, define S + h = {5+ i |5 € 5}
Mow, let E= Q1L O andlet F= N, U Q,. Then, for {g. 41 C G, g # h,

[(E T gy N {E <R =[{Q] + g} N{Qy + ) +]|(@; + 2} N (@, + A}l

=fm+ 1) +m=2m+ 1.
Similarly, | (F + g} 1 (F + k)| = 2m + 1. Also,
NE+g)n{F—n)|=|{0;+g) (N + R}, ) (@, + &)
=@ + g0 + k) +m

=|{g, 12y + W) (0, + g2, + AN om
=[{a Q) + )+ 2m + 1.

MNow g, € €, + 4 if and only if g — & € . Hence,

: . im-+1 fg—he,
E+ =
B BO(FHh] {zm+z ifg—henN.
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Foranyg € G,

(E+g)n(F+g)=|(@ +g)n(N+g)+](@;+2)n(Q; +g)|
={1)+ (2m+1)=2m+ 2.

Finally,
G, N (E+g)|=|G, N(F+g)|=2m+2.
Thus, we have shown that

B=U{E+g Ft+g)u{G)
J=

is a set of 8m + 7 blocks of G| U &, such that any two of these blocks intersect
in 2m + 1 or 2m + 2 elements. By Lemma 3.6, there exist 8m + 7 ((4m + 3%}
rounds of G, U G, having o((4m + 3)’) common pairs and hence A.({(4m + 3)%)
= 8m + 7T, as required.

We conclude this section by observing that Lemma 3.3 and Theorem 3.7 imply
R{(4m + 3)") = 8m + 7

for some integers 4m + 3 which are not primes nor powers of primes, for
example, when 4m + 3 € {15, 39, 55,63

4.a(mn) and R{mn)

In this section, we continue our investigation of o(G, H) and R(G, H} using
the language of combinatorial designs.
Let &, k,.... &, be distinet positive integers and let i), i,,...,1, be positive
integers. Let
Zi=t and 3 ik =v.
i=1 =1
For
r= kil ki,
a k'ki -+ - ki-round, or more briefly, an r-round, say & = {8,, B,...., Bl isa
partition of some v-set, say V, into ¢ blocks such that i, of the blocks have
cardinality k,, i, have cardinality k,, and so on until i, have cardinality &,. As in
Section 3, the pairs of R are all the pairs {a, b} C ¥, a # b, such that, for some
block B £ R, {a, b} C B. We define a{k)k% - ki) = a(r) to be the largest
integer such that any two rrounds of ¥ contain at least o(r) common pairs and
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define R{r) to be the largest integer / such that thers are ! r-rounds, say
HA,.%,,....%, any two of which have o(r) common pairs. If no such largest
integer f exists, then we say R(r) = 2c.

In this section we study R{r) in the special case where r — m'n' or more
simply, 7 = mn. Since we have considered r = m? in Section 3, we further assume
that m = n.

Lemma 4.1, (i) For m = 3n — 1, two ma-rounds have o{ mn) common pairs if and
ordy if the two Bocks of size m intersect in p = m — n elements.

Forn<_m<=3n— 1 let p= (3 —n+ 1)/4], the integer part of (3m —n +
13,/4. Twa mn-rounds have o mn ) convmen pairs if and only if the two blocks of size
m

(i) inrersect in p elements when m + n = Hmod 4) and

(Lii) intersect in p or p + | elements when m + n = 2({mod 4.

ProCF. Let one round consist of blocks 4 and 4 and another of B and B,
where |A|=|B|=m and |4 |=|B|=n; furthermore, let |4 N B|= x. Then
AN Bl=m—xBOd|l=m—xand{ANB|=n—(m—x)=n m+x
Clearly, n = m -+ x=0orx=m — n henee, m - n = x = m.

The number of pairs common between these two rounds is given by

Ve =(3) (") T ) ()
_3m3—2mn+n2—m—n
3 ;

=2x*+(n- 3m)x +

It can readily be shown that N¥{x) has a minimum at x = (3m — a)/4 and that it
is symmetric about the line x = (3m — n})/4.

Hm-n=03m-n-1)/4 or equivalently, if m = 3n — 1, then N{x) is
strictly increasing for integers x in the admissible mlerval m — n = x = m; hence,
afrm) = Nm — n). This establishes {i).

Otherwise, n <" m =< 3n — 1. Since x =| 4 N B| is an integer, it follows tha
almn) = N p)where p = [[3m — n + 1)/4], the integer part of (3m — n + 17/4.
For m + n = 2{mod 4), M p) =Z N{g) for any integer g #= p, and, for m+n =
Amod4), M p) = N p+ 1) and, for any integer g € {p, p + 1}, N p) = N{g).
Hence, we have parts (i) and (iii).

Before stating a uwseful corollary of this lemma we require a definition. An
(r, Ad-design is a pair (X, @) where X is a set and & is a collection of {not
necessarily distinct) subsets of X, called bocks, with the following two properties:
(i) any element of X is contained in precisely r blocks of & and (ii) any pair of
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distinet elements of X is conlained in precisely A blocks of &. Note that blocks of
cardinality one arc permitted.

CorotLary 4.2, If m + n = Ymod 4), then the existence of + mu-rounds, each
pair of them having o(mn) common pairs, iy equivalent to the existence of an
(r, Ay-design, { X, &), with (r, A= (m, p). | X|=rand |E|=m + n.

ProoF. Let there be ¢ mn-rounds of the {(m + n)-set such that any two of these
mn-rounds have o{mn} common pairs, Let B, B,...., 8 be the blocks of cardi-
nality m from these £ mp-rounds and fet ¥V — B, LU B, U - -+ UE,. The dual (sce,
for example, M. Hall, Jr, (1967)) of the design (3, { B, By,....8)) is an (r, A}
design, say (X, &), having (#, A) — (m, p). | X|=tand |E|= m + n.

1t follows readily that the converse atso holds,

Since Fisher's incquality (M. Hall, Jr. (1967)} holds for (r, A)-designs, we
immediately have

Liwmma 4.3, R{mn) = m | n, provided m + n = 2{mod 4).

For certain values of the parameters m and n, we can obtain a sharper upper
bound.

Lemma 44 ffp{m+n— 1) #F= m{m — 1}, and m + = Hmod4) then

R(n’m]-ﬂ:m+n.

Proor. By hypothesis, p{(m + n — 1) = m(m — 1}. To obtain a contradiction,
assume R(ma) = m + n. By Lemma 4.2, there exists an {r, A)-design, with
{r.A) = (m, p), say (X, &), having | X|=m + » —| &|. Ryser (1950) has shown
that such an (r, A}design is, in fact, a symmetric balanced incomplete block
design with parameters (v, b, r. bk, AV ={m+n m+n,m m, p) and hence
Mo—1y=r(k—1}or p{m + r — 1} = m{m — 1). From this contradiction, we
conclude that R(mn) ¥ m + n, which, by Lemma 4.3, implics R(mnr) < m + n,

Obviously, if 4 and B are two m-subsets of an (m + n}-set which intersect in p
elements, then their complements, A and B, are two n-subsets which intersect in
#n — m + p elements. Hence, it 15 casy to determine R{mn) when the m-subsets
intersect in m — # elements: in this casc, R{mn) is the maximum number of
disjoint #-subsets that can be selected from an {m | n)-set. Now by Lemma
4.1{i), the m-subsets of two mnr-rounds having ¢{mn} common pairs intersect in
m — n elements whenever # = 3n — 1. Thus we have



1131 Isomorphic subgraphs having minimal intersection 299

Livma 4.5, [fmr = 30 — |, then

R} =[(m + n)/nl.
the integer part of (m |- 1)/ n.

It now follows from the above lemma that R{ml) — m + 1.

We now consider the case where 1 = m — L For resulis on [Tadamard matrices,
the reader 15 referred o Wallis, Sireet, Wallis (1972). Note that in this case
m + n = Ymod4d).

THeorEM 4.6 If there iy o Hadamard matrix of order 4k, then
R{Q2LY2k— 1)) =4k - L.

Proor. The existence of 4 Hadamard matnix of order 4n implics the cxistence
of a symmetrie balanced incomplete block design with parameters (6, b, r, &, X))
— (4 — 1,4k — 2k 25, k) (M. Tall, Jr. (1967)). Hence, by Corollary 4.2,
Rir)y=4k — | and, consequently, & = 4k — 1, as required.

We next cstablish 4 lower bound for R{{2k + 1)24&)).

LEmMa 4.7 If there o5 an Hadamard matrix of order 4k, then
A28+ 132&)) = 4k — 1.

Proor. The existence of a Hadamard matrix of order 4k is equivalent to the
existence of a symumeiric balanced, incomplete block design with parameters
fo, bor,k, Ay =4k 1,4k — 1,2k — 1,2k — 1Lk — 1) {M. Hall, Jr. {1367)).
Adjoin two addditional blocks, hoth containing all 4% - 1 elements. We obtain
an {r, Aydesign (X, @) having (. M) =2k + Lk + 1), |X|=4k — land |&|
— 4k + 1. Hence, by Corollary 42, R = 4k — 1.

For p — p({(2k + D2k, plm + n — 1) = (k + 104k # {2k + 1)2k
— mim — 1} and, consequently. by Lemma 4.4, R{{(Z4 + 1¥2k)) < 4k + L. Thus

we have

TueoreM 4.8, If there is @ Hadamard matrix of order 4k then,
dic — 1= R((2k + 112k })) = 4k.

The following [our 3'2'-rounds demonstrate that R(3'2') = 4;

123 45
124 35
234 15

134 25
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Also, R(4'2') = 15 by Lemma 4.13 below. These resulis, together with Lemma
4.5, immediately determine R(m'2'). R(3'2') = 4 and R(4'2") = 15: for m = 4,
m=3n = 4 which implies R = [(m + 2}/2]. the integer part of {m + 2}/2.

We conclude this section by considering R{m{m - 2)). We investigate the cases
R((2k + D2k — 1)) and R((2k + 2X2k)) separately.

LEMMA 4.9. R((Zk + 1H2&k — 1)) = R{{2EXN2k - 1.

PrOOE. Let R{{ZkX2k — 1)) = . By Lemma 4.1, p = &, and by Corollary 4.2,
there is a (2&, k)}-design (X, &), having | X |=rand [€|=4k L Let@ =@ U
{X). Then (X,&") 15 a (2k + 1, &k + 1)-design having | X|=1r and |4"| =4k
which, by Corollary 4.2, implies that

R((2k + 1)(2k — 1)} = r = R((2k)(2k — 1)).

TueorReM 4.10. If there iy a Hadamard matrix of order 4k, then

R(2k+1)2k— 1)} =4k — L.

Froor. By Lemma 4.4, R((2k + 1¥2k — 1)) < 4k, and by Lemma 4.6 and 4.9,
R=4k— 1.

We now consider R{(2% + 2)2k}). In this case. m + n = 4k + 2 = H{mod 4)
and Lemma 4.1(iii) implies that two (2 + 2)(2% }-rounds have o common pairs if
and only if blocks of size 2k -+ 2 intersect in k + | or & + 2 elements, or
equivalently, if and only if the blocks of size 2k intersect in & or &k — 1 elements.
Thus we have

Lemmn 411 R((2E + 2W2K)) is egual to the number of 2k-subsets which may be
sefected from a 4k + 2-ser such thar any two of the Lk-subsets infersect in k or
k — 1 elements.

LEamma 4,12, R{(2k + 2)2k)) = 4k + 5 provided k = 4 and
Ri{4'2Yy =15 R{6'4')=15  R(8'6') = I8.
Proor. This follows directly from Theorem 2.3 when we assume

i 4Ic+2] :[2k+2] (Ek]
Z ( 3 J ® 2 Jtla )

SR CUNCD!
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THEORFM 4,13, R(4'2') = 15,

PrOOF. By virtue of Lemma 4.12, it 1s enough 1o construct 15 blocks of size 2
such that any two of them intersect in ¢ or 1 element. This 15 eawly done by
taking all ($) = 15 pairs from the & elements.

Now we look to get some lower bounds for the R((Zk + 225 value, In this
context we use the following result of Bose.

Lemma 4.14 {1947y, Ler p* = 4k + | where p is a prime, Then among the totality
of differences of the guadratic residues of GF{ p*). every quadratic residue occurs
(k - 1) rimes and every quadraric nonresidue occurs & times,

LeMma 415 Jf 4k © 1 is a prime power, then R((2k + 2(2k)) =4k + 1.

Proor. Let the element-set be GF(dk | 13U {=c} and let x be a primitive
element of GF{4k ¢ 1). The set of quadratic residues is

B - {x”, L L 2}.

Consider the set of blocks [ 8+ y: y € GF{4k 4 1}}. It follows from Lemma
4.14 that

k— 1 il p — wis a quadratic residue,

| ] ' =i
(B+y)n(a tw) {k if ¥ — w 15 a non-residue.,

Henge, Lemma 4,11 implies R{(ZL ¢+ 22k N =4k + 1.

Lemsa 4.16. R[4k + )4k + )] = Bk + T provided 4k + 3 s a prime power.

Proor. We apply the same technique that we use in proving Theorem 3.7. Let
& be the Galois field with 4% — 3 elemenis and let

@GR, S

Ouvr element seLis (7, U (ry sothat |G, U G, |— Bk + 6.

2 s the set of quadratic residues in ¢ and N is the set of guadratic
non-residues in &, Let E = Q| U @, and F — &, U {¢,. Then, as in Theorem 3.7,
one can show that

B | Ji{E+g F+glulcpio))

w0
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is a set of 8% + 7 blocks of &, U &, such that any two of these blocks intersect in
2k or 2k + 1 elements. Hence Lemma 4.11 implies

R[(4k + 4)(4k + 2)] =8k + 7.
LemMA 4.17. R((dk + 2)4k)) = 2min{ R((2k + 2)(2k)), R((2K)M)} + 1.

ProoF. Let min{ R((2k + 2)2k)), R((2E¥)} = t. Let X be a set with 4k + 2
clements. Then there are ¢ subsets of X sav, B, B,,....8, such that | B, |= 2k
8. B:I.|—jc or k— 1 forallid f=1,,...r. Also let ¥ be & set with 4k
clements such that ¥ M X = & Then there are ¢ subsets of ¥, say, €, Gi.....C,
such that | G| = 2k and | C, N G |=k forall 7, j=1.2,...,1. Now let

D=8 UC, i=1,....1,

E=BUC, i=Il..,t wheeC - ¥\C.

and

Then
£
U{p.Eluy
i=1

isaset of 2r + | blocks of X LU ¥ such that each has cardinality 4% and any two
of these blocks intersect in 2k or 2k — | elemenis.

Lemma 4.18. R[(4k + 4)(4k + 2)] = 2min{ R((2k + 242k )). R((2k + 2)7)) +
L.

PrROOF. Let min{R({2k + 2}2k)), R((2k + 2)*)} = ¢. Let X be a set having
4k + 2 elements. Then, there are ¢ subsets of X. say, B\, B,,.... B, such that
|B,|=2kand |B, N B|=kork—1foralls j=12... .. Also. let ¥ be a set
having 4% + 4 elements, ¥ N X = @. Then, there are ¢ subsets of ¥, say,
Cp GG osuch that | C|= 26+ 2 and [CNCl=k~+ 1 for all i j=

1.2, ...t Now let

R L L T

E=BW.E, iwmliZian owhere = ¥\C:
Then

4
\J{p.E}uY
i=1
is a2 sel of 2¢ + 1 blocks of X U ¥ such that cach has cardimality 4& + 2 and any
twao of them intersect in 2& or 2k + | elements,
Hence, the result follows by Lemma 4.11.
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5. Dopuble-cones

In this section we consider o (7, H') and R{G, H) where H is a complete graph
and 7 is a graph having »(G) = »(H}) In the preceding sections, we have
considered the case where 7 15 the union of disjoint complete subgraphs of H.
Nemeth (1976) has considered the cases where  is a star, a cycle, a wheel. a
rim-deleted wheel, and a spoke-deleted wheel. We now consider the case where
i% a4 double-cone.

A dowuble-cone om 1 + 2 vertices consists of a circuit of length n, together with
iwo independent vertices, say 5 and ¢, which are adjacent to each vertex of the
circuit. Observe that 5 and ¢ each have valence # and all the other vertices have
valence 4. We call the circuit of length n the rim of the doublecone and, for
n =4, the om is umquely determined by the vertices of wvalence 4. We will
represent # double-cone as shown below.

Tueowem 5.1, Let H be a complete graph and let G be a double-cone { having
WGY=wo(H)) Forv(H)=8,a=0o(G, HYy=8and R = R(G, H)= 2.

Proor. We begin by showing o = 8.
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Let & be a subgraph of H which 15 a double-cone and let G be a subgraph of H
isomorphic to G. Label the vertices of i with the symbols of [1,2,... 0} U {57}
50 Lthat the rim of & has 1,2,.._,n as its vertices.

If the isomorphism #: (7 — ' maps either of s or ¢ into {¥, ¢}, then it can be
shown that e{ G N &'} = n + 3 = 9. Hence, we consider an isomorphismé: & — G
such that

b(s)=k, 8()=1 67'(s)=i, 67'(1) =]
where {f' j! k! ”' e {1,2,...,n},

Case |. Vertices i and § are not adjacent in .

alt)=£

Clearly the 4 edges on 5 and the 4 edges on ¢ in &' are also in E{G);
furthermore, at least one addinional edge on & in " and at least one additional
edge on / in G’ are in E{G ). Therefore o(G M G = 10.

Case 2. Vertices & and [ are not adjacent in . As in Case 1, it can be shown
that (G N Gy = 10,

Case 3. Vertices i and j are adjacent in 7 and vertices & and [ are adjacent in &,
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ain ginl

ity =k

Then three of the cdges incident with 5in G° are in £{(7}, as are three of the edges
mncident with ¢ Precisely one additional cdge incident with & in & 15 in £((F), as
15 one addinional edge om fin . Henee, oG 0 &%) = 8. In addition, if the rims of
& and G* are edge disjoind, then it [ollows that (G N G = 8. 1f #(H) = &, then
it 15 passible o obtain & and G7 such that their tims are edge-disjoint. This can be
shown by Dirae’s Theorern on Hamiltonian circuits (Bondy & Murty (1976)).
Thus o - 8.

Teo obtain a contradiction, suppose G is a third subgraph of H isomorphic to
(s such that any pair of &, &', ¢ have precisely 8 edges in common. By the above
argument, s and { must be adjacent on the rims of &' and &”. Since the rims of '
and G" are not edge-disjoint, e((z" N ') > 8§, a contradiction. Hence, R = 2.

Liemma 5.2, If D represenis a double-cone on n vertices, then
o(D;, K,)=8 and R(D,K,)=10,
olD,, K;) 9 and R(D, K.}~ 5,
ao{D, K} =9 and R(Dy K,)=3.
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