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SEQUENCE-COMPOUND ESTIMATION WITH RATES IN
NON-CONTINUOUS LEBESGUE-EXPONENTIAL
FAMILIES
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SUMMARY. This papor oxtends soq; pound (SC) estimstiona in the normal
family troated in Gilliland (1868) and Susarla (1874a), and in a rostricted gamma family troatod
in Susarla (1974b) to tho SC-catimati in Lobesg p ial familios on the real lino R.

Lot X bo a rea! valued random variablo whose Lobesguo density conditional on we ) is of
tho Lypo (i) pa(z) = Clw)u(x) oxp (wx) or {ii) pu(z) = Clw)u(z) oxp(—z/w), and f] is & bounded
subsot of (w e R| fu(z) oxp {wx)dz < o0) in case (i), and of {w > 0} fu(z) oxp (—x/w)dz < @)} in
caso (ii). The component problom is aquared error loss estimation of w basod on an obssrvation

on X. Ineach of the two cnscs a sog: d estimator (SCE) ia oxhibited which is shown
to ba asymptotically optimal {s.0.)in tho sonso (hn!. the differonco D, botwoon the averago of mlu
up Lo atage n snd tho Bayoa risk w.r.t. tho empiric distribution of tho p w involved up

to stago n convorgos to z0ro aa n—so. It is furthor shown that tho SCE's in cases (i) and (ii) aro
a.0. with ratos 1/5 and 1/3 rospoctivoly (i.e., Ds in (i) is O(n=), end in (ii) is O(n=*7)). Theso
uympl.ohc optimalitios and thoir ratos aro uniform ovor tho spaco of all paramoter soquoncos.

ples of exp ial familios, including thoso whoso Lobosguo-donsitics havo infinitely many

discontinuity points, aro givon whoro tho Afomnmd resulta hold good.

1. IxTrODUCTION

Suppose tho problem is squared-crror Joss estimation (SELE) of a real
valued function O(w) based on an obscrvation of a random variable X ~
PueP = {Py| weQ}, where Pis o family of probability measures over a o-fiokl
A& of a samplo spaco Q. Further, supposo this problem, to be called hercinafter
the component problem, occurs repeatedly and independently, and wo are to
ostimato tho valuo of the 0 function at each stage. Thus, at n-th stago wo have
an (unknown) vector 10, = (w,...,%,) Q" and corresponding vectors

=(X,,... X,) P, = X1PjePr and 6,=(0,, ...0,), where Py and 0
abbreviate P, and Ofwy). Weo consider horo the sequence-compound
vorsion of the above problem, that is, at any particular stage ¢, an estimator
#; of 0y is allowed to depend on X and the loss is taken to be the averaga
of tho losses in the first ¢ componont probloms. Tho vector ¢ = (¢, 9, ...) Is
called sequence-compound estimator (SCE) of 8 = (0,, 0,, ...).

Lot @, bo the empiric distribution function of w,, ..., w,. (Noto that no
assumption whatever on relationships among w,, ..., w,, and on the distribu-
. w,ismade.) Let R(G,) bo tho Bayes risk w.r.t, G, in

1 Now at the Univorsity of Guolph.

tions govorning w,,




64 R. S. SINOH

the componont problem. Lot Py(Y) denoto tho expoctation of ¥ wrt. Py,
Tho oxcess,

D8, @) = n' T} Py(0;—p)*—R(G,), e (LY)

of tho compound risk up to stago n over the Bayes risk, i3 called tho modified
regret of ¢ up tostage n.  Such regrot functions aro often taken as standards
for ovaluating compound proecdures, (e.g., Gilliland, 1966 and 1968; Iannan,
1956 and 1957; Hannan and Huang, 1972; Johns, 1967; Samuel, 1965; Singh,
19074; Susarla, 19743 and 1974b, of course with varying component probloms).
For a 8 > 0, and a subsot B C Q, we will say « is asymplotically optimal (u.0.)
with a rate & uniformly on B if sup | D (6, ¢)| = O(n~%) as n—on.
toeld

When # is the family of normal distributions on the real line R with
varisnce unity and means w, and € is & bounded interval of R and 0 is tho
identity map, Gilliland (1966, chapter TIT) exhibits a SCE a.0. with a rate 1/5
uniformly on Q<. Susarla (1974a, Scction 3), oxtends Gilliland’s work to
the m-variato case. When tho conditional density of X givon w is (I'(r))-1
z-lw-texp(—2ajw), 2> 0,0 < ¢ < w < 2¢, where ¢ and 7 are known constants
and 7 > 3 satisfios certain conditions, Susarla (1974b, Scction 2.1), oxhibits
SCE’s of 20 which are a.0. with rates uniformly on (c, 2¢)=.

This papor oxtends the above work to Legesguo exponential familics
on R. (Scquence-compound estimations in cortain discrete exponentinl fami-
lies on R are already treated in Gilliland, (1968). No assumptions whatsoever
on tho smoothness of tho Lebosgue donsities involved aro mado and yet SCE's
8.0. with rates uniformly on Q= aro oxhibited.

An explicit bound for D,(8, ¢) without any assumption on thoe parametric
form of Py, is obtaincd in Section 2, This bound is an extonsion of Gilliland’s
bound (Lemma 2.1 of Gilliland, 1968) whore parametors aro assumod to bo
uniformly bounded. In Section 3, somo notations aro introduced and the
mothod of our analysis is explained.

In Soction 4, SC-SELE of the natural paramotors in Lebosgue exponontial
familios ia considored. Based on X,, ¥, nro constructed such that
@ = (1,7},, 1,7;,. ...}is n.0. for 10 = (wy, w,, ...). Sufficient conditions are givon undor
which sup |D, (20, tfa)[ = O(n~%). Examples of oxponential families such

we N®
as normal, gamma and ono with Lobosguo donsitics having infinitoly many

discontinuity points are givon whero conditions leading to the abovo rato
uniform on * aro satisfied.
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In Soction 5 SC-SELE of thn scale parameters in Lobesguo exponential

familios is treated, snd an a.0. SCE J; (of 20) is oxhibited. Sufficient condi-

tions leding to aur‘)) |D,,(w,q‘;)| = O(n~'?) are givon. Examploes of seale
we N>

exponential fumilics where such assumptions hold good are nlso given. The
paper concludes with a fow romarks in Section 6.

2. A BOUND FOR THE MODIFIED REGRET

In this section we will prove two simplo but usoful lemmaes. Special
forms of both have been studied in Gilliland (1968) and Susarla (1974a) whore
parameters w,, w,, ... are uniformly boundod.

With z o o-finito moasure dominating Py+tj = 1,2, ..., let fy be & dotor-

mination of dPy/dp. Lot my > max fyend N¢> max |6 bosuch that
1€5€¢ 1<)t
mg and Ny aro non-decroasing. Recall that 0y abbroviates 0(wy).  As tho Bayos

rosponse against Gy in tho component problom, we teke the version of conditional
expectntion

) .
Vi = z—g;’—f‘ IZify>0), i=1,2, ... . (20
187
Thus |¢4,,| < Ny For the purpose of this section only, take yr, arbitrary
real valuod function on R, and for j > 1, define A; = /g, — V5.
Lemma 2.1: IVith y, taking calues in [—N ., N.],
¢ Py| A(X| < 2V, (14 log n) f m, .

Proof :  Abbroviate, throughout this proof, N, by N and m, by m. From
(2.1) it follows that, for 1 £ i < »,

(0c—¥r0) fi
Ay = —<22 no. Py
" <t/ o, Py
Consequontly, sinco |6;— | < 2N for ¢ 1< i n,
" i y o (film)? o o
L3P Ad X | < 2N j'{m 7 W} dp. (22
Since by Lomma 2.2 of Gilliland (1068), I} a¥(Zf a;)~! £ Zf 4~ for all

0y, 1<ig<nand > 1, the rha of (2.2) is bounded ahove by
2NV [ dpe & 2N(14logn) f mdp. Q.ED.

Al-9



66 R. 8. SINGH
Lemma 2.2 : For a SCE ¢ = (4. 9. ...) with gy laking values in[—N¢, Ny,
| DB, )| < 4"t ZIN(Py| o) X)) — (X)) | + 80 1XNE(1 tog n) Jm, dpt
provided the arbitrary vy, is taken as v,.

Proof : Unlesa statod otherwise, sums in this proof are taken from |
to n. Lot the argument X, in varivus summands below in this proof be
abbroviated by omission. Tnoqualitics (8.8) nnd (R.11) of Tannan (1957) which,
in our enso with our notations, can be stated ax

I Py|Yya—0s|* € nR(G.) < T Py|yyy—04|%,
and (1.1) horo followed Ly the idontity b2—c* = (b—c)(b+c) give

E Pylloy—y)es+¥s—20) < nD,(6, o)
< S PA(9s—V3)814 Y100~ 20))
= Z Pyllps— V) — A)(es+¥1n—20). e (23)
Since for j > 2, ¢4, Yryar, ¥y 2nd 0y ave in [— Ny, Ny), and max [9y41g,,—20)]
< 4N, from (2.3). resen
—4 D3NPy |93—Vy) < nD,(0, @) < 4T} NyPy|s—yy] +N.ZPy) 4g)).
The last inequalities and Lomma 2.1 now complete the proof. QED.

In the romninder of this paper we will exhibit an estimator § of 1, in
exponential families in R, and prove with the holp of Lomma 2.2 theasymptotic

optimality (with rates) of .

4. NOTATIONS AND THE METHOD OF ANALYSIS

Heroinafter, lot 0 introduced above be the identity map. To trent the
cases of our interest, let # above ho a o-finite monsure dominated by the
Lebesgue measure on R.. With # a fixed dotermination of dpfdr, lot there
exist an @ > —oo ruch that

u(z) >0 iff > a. .. {31

‘In tho componont problem, let Py, < ¢ for w in Q, and f,, bo a dotermination
of dPy/du. Thus in the component problem f,, (and p,, = uf,) are conditional
# (and Lobesgue)-densities of X given w.

To make the analysis simpler and holp roadors undorstand the material,
wo troat only the casos where Q C{e, ], —o < & < # < o and f, on (a, )
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is positive for w in [a, ). (Readers interosted in the cases where Q are not
necessarily bounded may look et Singh (1974, Ch. 2) apparently the only
literaturo to date dealing requonco-compound problom involving unbounded
parnmetoers).

Let 0 < B, € 1 he asequence of non-incrensing numbers such that i,—0

»s no>co. By Lemmn 2.2 en idoa of exhibiting an a.0. estimator $ = (;5,,
;7/,, ...) of weQ= is to exhibit ;’;,(.\’.) for i = 2,3, ... such that it approxi-
mates (ot least in first mean) to ¥ (X(). This is oxnctly what wo have in
mind.  For each i = 2,3,... we will oxhibit &,(X.) by using ky_, and Xj.
Then wo obtain a suitable bound for Pdf/.(.\',)—;’u(,\';)]\\'hich will lead, with
the help of Lemma 2.2, to & bound for | D,(10, \I:u)|uniform in 1we)®. To
this ond, we hereafrer fix i with 1 = 1, 2, ... and drop the subseripts in by and
X

For aje R, lot @ = i~'S{a;. Lot u(z) and 2*(z) be, respectively, ess-inf
and css-sup (w.r.t, tho Lobosgue measuro), of the restriction to [x, 2-4-2k) of u.
Abbreviato p“‘} and fw} to py ond fy respectively. Unless stated otherwise,

arzuments of fy, %, #* end %, are in (a, o).

4. SEQUENCE-COMPOUND ESTIMATION OF NATURAL PARAMETERS
IN LEBESGUE EXPONENTIAL FAMILIES

In this scction we treat tho cases whore
Jol2) = C(w)erwz with Cw) = ( [ ewsdp(x))- o (41)

Thus in the eomponent problem tha conditional Lebesgue density is of the
form
Po(x) = w(z)C(w)ew=, e (42)

and Q C(a, ) is o subsot of the natural parameter spaco {w ¢ R | C(w) > 0}.
In this section we will consider SC-SELE of w = (i, u,, ...) € Q®.

Sinee fy(z) = Cluy) exp (wyx), bY (2.1Wqyy = (log /). Motivated by this
expression, {7, to bo introduced hero will bo based on n divided differenco
estimator of (log f)'". Define o roal valued functional @ on the space of all
renl valued non-nogative functions £ on R by

Hz+k)
t(z)

QU)(=) = K (log ) Mzt +@ > 0. . (43)
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For j=1,...,i,lot 8(y) = v+ fyand &) = Iy € Xy < y+m))(X,). Note
that & is woll dofined with pnyobnbility one. The proposed compound estimator

ofwisd = (;7},, Vs, ...) whare v}, takes an arbitrary valuo in [a, £, and
FenlX) = (QUE(X))eep e (49)
whoro (b),, , i8 @, b or # according ns b <a,a b forb> B

The main objective of this section is to provo the following theorem

which gives sufficient conditions under which our SCE § is 8.0, with rates
uniformly in 20 € Q°. In the remainder of this section ¢, ¢;, ... denote absolute
positivo constants, g = »¥¢ where ¢ =|a| V | #]|and my and N¢introduced in
Section 2 ara taken as

m=m= sup f,and Ny=c=|a|V|f]|. ... {4.8)
ecugs

Theorom 4.1: Let h = hy =c, i~V where ¢, is sufficiently small such
that fora 0 < ¢y <l and forall i =1, ..., 7,

hpu® m € 1—¢,. o (4.8)

If for a y¢ (0, 1) and for ¢ =1

j’(%)’“,;(2’)[52“-"‘"))1(: < 0)+ezlﬁ—(n/z))1(z > 0)),,: <o .. (47)
then R
sup | D.(10, $)] = O(n—7/8). .. (4.8)
we n®

To rimplify tho proof of tho theorem wo will first provo three useful lemmos.

Tho first and third lommas approximato respectively @ (5) to Q and :,";,_H to Y

in y-th mean, whereas the second one gives uniform bound forlQ—(logj)“’I-

Abbreviate Q(3)(z) and Q(d)(x) to Q(z) and Q(z). Tn Lemma 4.1 and in its
proof Q, 9, u,, * and fall aro evaluated at a fixed point z > a.

Lemma 4.1: Foreveryy > 0.
P|Q—Q| A2 & ko(y)ihfutus)-rr e (4.9)
where ky(y) = yT(y/2)(1093(1 +72)/3k+)72 with k = 1~hyu*m,
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Proof : The Lhx. of (4.9) ir

f”a[l@-ol > "]d(v’)=f (&y(v)+E5(0)A(07), e (4.0)

wharo £,(v) = P,[(é—Q) > o] and Ey(v) = P;[(Q—O) > v). Our method of
the proof hero involves obtaining an appropriate upper bound for E,(v)4-E,(v)
with 0 < v < 2.

Fix v in (0, 2¢) until atated otherwise. Forj=1,...,4, lot ¥; = 3‘,(.t+h)
—Rebody(z), where R = 8(z4+h)8(z). Let vy= P,¥; and ot = ivar(¥).
Notico thet vy = &j(x k)~ Rebody(z). Hence 5 = (1—edo)d(r+1), and wo get

—98(r-FR) & ¥ & —hod(xth). e (411)

By indepondence of ¥y, ..., ¥; and by c,-inequality (see Loove, 1063, p. 165)
we have

iot € TPy YE < o8P Az +h)+ REPPSA ). ... (4.12)
Since v <2, R= 3(z+h)/§(a:) and, for y = z, z+h, P,gﬂy) < §(y)/u,, bY
(4.12) we got

ot < {2004+ R)lz 4R} = 2A(Sz+R) () N8+ R,

Naw, since, for 1 € j 1, wye[—¢,¢),

yeh
S VP em gy hy for y =z, b, .. (413)
fil=) v
Therefore, weakening the final npper bound obtained above for o by the
firat inoquality in (4.13) we get u, fo? & 2(14+70)pk-182 (z+h). This lest
inequality and (4.11) pive

(=) RS v2 Ju,

T 2y 9

Noxt wo will obtain (4.17) bolow by obtaining appropriate lower bounds
for 02,5, »; and —¥;. By independenco of Yy, ..., Y¢ and by the facts that

v>0, P,(él(-)) > 0, and 3‘,(:c+h) 3‘,{.1—) = 0 with probability one we pet

ot > i1 If (var (§(x+A))+ R? var (§(z)). e (418)
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Now tho definition of u* and the rocond inequality in (4.13) yiold for
y =z, z-+h,

ver (3(u) = ;fMU;Iu)—ﬁ,’(y) > ()1 —u ) ut)

2 (SN0 =R fY*+[u®) D k850 ]us,

where k is as given in the lemma, and the last inequality followa from the
definition of m given in (4.5). Conscquently, from (4.15) we get

0 3 (S(z+h)+ R S(xNk* = (1 RYS(r+-h)k+. . (4.16)

Next obsorve that — Rebe tf,(:r) €Y< 3,(::4-1:). Therefore, since for y < r,
z+h, &(y) < 1/e® with probability one, Y; < 1u' and  —vy < Ryfu,
Thesa uppor bounds for Yy and —y; together with (4.11) and (4.16) yield
(Fy—v)(—5]o?) & {(L+aRn [ 4+ Rk} € 7 (k)0

Hence

. Ut ot
Y= < T, (_T)' e (407)
We will use (4.14) and (4.17) to obtain a suitablo upper bound for £ ().
Noto that the event in §,(v) is [¥ > 0]. Therefore, (4.17) and the Bernstein
incquality stated in (2.13) of Hoeffding (1963) pive
i(—»)?

E\(v) = P(P—5 > —3] € exp {— SR I e (48)

3ik+hov? Ju?
< exp {— g |

where the last inequality follows by (4.14) and by the fact that {14 (y2u®/(3k*1,)}
 4(3k+0,) 192, sinco 9 > 1, k+ < 1 and 2° > u,.

By interchanging x, 24k in the definition of Yy and by applying the tech-
niques usod for bounding E,(v), wo see that E,(v) is also bounded above by the
extreme r.h.s. in (4.18).

Now bounding above the integrand on the r.hs. of (4.10) by the upper
bound just obtained for §,(v)4-£,(v) and thon performing the integration there
after oxtonding the range of integration from (0, 2¢) to (0, o) we got the desired
conclusion. QED.
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Lemma 4.2 Let f{") denote the v-th derivative of f;. Then

o
8u. — ==t
l>}: |(Q 7 )()

Proof : Since, for 1 < j <3, wye[—c,c). for each integor v 2> 0 and
A+t e[+« +2h] we have

< 4(en)? k. e (4.19)

'ﬁ;’_‘;’l ={uwy| et g o, e (4.20)
d
" -z%))- = W= S g, . (421)

For the purpose of this proof only, lot g, = wj f;. Since 8(!)—g(l+h) —a(1,
by Cauchy-mean value theorem (sce Hoeffding, 1963, p.81) for some
¢ in (0, 1)

S(t+h) _ FU(+hteh) _ Jit+hteh)

SO ge+eR) T flteh)

(4.22)

Thorefore, by (4.22) and by mean value theorem Q) = k=3 log (f{t-+h+eh)/

fle+eh)) = og F(E') 4 for some ye(0, 2). Making another use of mean
valuo theoram at the third step below, wo thus have, for some ¥, y"¢ (0, yh)

'Q(t) f"u)‘_i )a+ h— ( )u)
!(l + ) (l!‘"(t+~/h)—f“’(t)l+| ——)(1)| | fe+yR—fi)))
= T ‘”‘""+‘f“+|( =) @)1 70t < dhen . (420

where the last inequnlity follows by applying (4.20) for v = 2,1, (4.13) and the
fact that |f‘“/f|< ¢ and y < 2. Since the r.h.s. of (4.23) is independent of
t, the proof of the lomma is complete. QE.D.
Note that log C(w) = —log few-du(-) is concave on [e, A1, and hence, so
i8 log fu(r) = wa4log C(w) for each z. Thus inf f,, =f, Afy and for all
eGu&d

r>0

= (m/(fs A3 3 fendl ). . (428
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This observation is used in proving

Lemnn 4.3: For each y > 0,

P |l )= (D)| & k()R [ ((u* [u3)72,)pe+ (e
(4.25)

where ko(y) = 20-WH{(4y2)r\/ ko(y) with k in ko(y) replaced by inf (1—hyus(z)
m(z))). (The inequality (4.25) i uniform in tog,y € Q1) e

Proof :  Notico that e  (8(z+h)/8y(z)) < e for each 1 &jgi.
Theorefore, a g QB Since Yy, =ffand ¢ = |a| V|#| by (4.4) and
Lomma (4.2) wo got

[Yi—Yin] < 1@=Vinl+1@—Vin] < (19— A20)+4hicn)t.

(4.26)
Now (4.20) followed by c,-inequality (seo Loave, 1963, p. 155), Lemma 4.]
and (4.24) lend to (4.25). QED.

Proof of Theorem 4.1 : Fix ye(0, 1] satisfying (4.7); Since (a, f) is a
subset of tho natural paramoter space {-|C(-) > 0}, C(w) is bounded uway
from 0 and oo on [a, #]. Consequently Jc, and c, such that

[ mdp < ¢y [ {oxploex)I(x < O)-Loxp (Bx)](z > O))dp(z) <o ... (4.27)
and

7/2) = ( sup ful@) (L) ASplz)*
aEvgh

< eaf oxp {x(a—(yB2)}(x < 0)+ oxp {x(B—(ya[2)}](z > 0)].
Noto that u* and u, depend on k = c4i-1/5 and aro respeotively, decrensing and
incronsing in 4, Thus if (4.7) holds for { = I, then
sup ( f ((u*fud)ri?g)dp) < 0. e (4.28)
Next observo that by (4.6) ¥, in Lemma 4.3 is bounded in i.  Also the
trivial bound |y —Via| < 2 gives Pr | Vil X) =Pl X)| € 26-7Py, |
l,’f“,(X)—-;Z;,H(X)P. Thus, since % = ¢,i-1/8, Lemmn 4.3 gives finite &, =
&y(y) and k, = k,(y) indopendent of £ ruch that forall § =1, ..., n—1-
Pia | ¥ia(X) = F1aa(X)] < kyi=¥8(1hs of (4.28)+c*)
& ki3, by (4.28). e (429
Sinco X abbroviatos Xy,, and (4.29) holds for ench s = 1, 2,..., (k, and £,
boing indepondont of i), n-‘Z;‘_,P,[y’/;(X,)-—l,’;,(X,H & k1S5, Thus the



SEQUENCE-COMPOUND ESTIMATION 18

first term on the r.h.s. of the inoquality in Lemma 2.2 with ¢ thore repleced by
¢ is boundod by 4¢ kn-1E7i=7/5 = Q(n-1/5) uiformly in 20 € Q=, and so is tho
second term there Ly (4.27). Q.E.D.

Wo will now give examplos of exponential families of distributions (in-
cluding one whoss Lebosgue densities have infinitely many discontinuity
points) whero conditions of tho theorem aro sntisfied.

Example 1 (Normal N(w, 1)—family) : Supposo in the component pro-
lem the conditional Lebesgue density of X givon wis py(x) = (2m)~} exp (—
(r—w)I(—0o <z < ). Wo can take u(x)=(2m)~t oxp (—a%?2)
I{—w < z < ). Then a=—w ond C(w)=exp(—uw?f2). Teke
—a=f=c>0.

Considoring the upper and lower bounds for the ratio u(t)/u(x) for z & ¢
< 242k, we get u{x)  u(x)e? 1% and u,(r) > u{z)e~?Az4M,  Thorofore
u(z)fl7) < ePiziufx)fu(2) = (2m)~dexp (= (| 2| —wsgn 2)*—4h|x|)/2}

< (2m)74 oxp {2h(h+4wsgn z)).

Thus, since m =supa K w < B fi, u*m < oxp(2h2+he). Therefore by a
suitable choico of ¢q in b = ¢gi~V%, (4.6) holds.

Morcover, bounds obtained above for »* and u, load to
(w*(z)[u2(x))t < (2m)V4 exp ((x*/4)+ 3k |z | +2R?)
& (2m)Y4 exp ((x?/4)+3] 2| +2) sinco kb £ 1.
Consequently
(u* (=) ud()u(x) < (2m)4exp ((—2/4)+3|z] +2)
and (4.7) holds for y =1 and —a = > 0. Wo thus conclude the following
corollary.

Corollury 4.1: If in the component problem the conditional Lebesgue
densily of X given w is py(r) = (2m)~ eap (—(a2110)?[2), —on < x < 0 and
QC[~¢,cl. 0 < ¢ < o, then § given by (4.4) with —a = f = ¢ salisfics

sup |D,(w, J))| = O(n-1/8),
went®

This special result is obtained in Chapter III of Gilliland (1966) and iun
Seetion 3 of Susarla (1974a) whore SC-SELE of uniformly bounded means
of normal populntions with unity variances is considerod

Al-10
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Example 2: (Gamma g(w, 7)-family). Suppose in the component
problem the conditional density of X given w is py(x) = ([(7))~N{—w)'z'-1
ewz](z > 0) whero 7 > 1 i3 known. Thus we can take u(x) = z*-VI(z > 0).
Thoe natural parameter space is (—co, 0) and C(w) = (I'{r))-}(—w). Take
£ <0, ie, QG[a,flvwith —v<a < f<O.

Clearly u*(z)  (z+1)-1(x > 0), u () =u(x). Incquality (4.6) is
satisfied, since by ¢p-inequality (Loeve, 1063, p. 156), u°(z) € 2-%(u(x)41)
and hence u*(x)fplr) = 27~} (u(x)4-1)([(7))~(—w)'ewz is uniformly bounded
in wela,f] and in z> 0. Morcover, notice that (u*(z)/u? (x))7/? g 2t
((u(z))~"2 4 (u(x))"7), again by ¢p-incquelity. Thus the Lha. of (4.7) is no
more than a constant times

I‘{:n-ymu-n+_»,,-u—nu-n)ezu-(um) dx <
o

for all 0 <y < 1 such that y < 28/a, sinco @ < £ < 0. Honco for such
v (4.7) holds, and wo get the following corollary.

Corollary 4.2: If in the componenl problem the conditional Lebesgue
density of X given w is pu(r) = ([(7))"}(—w)z*-texz, 2> 0, 7> 1 and
QGla,fl-—o<a<B <O, then $ given by (4.4) satisfies

sup | D0, )| = O "x0 <y < 1, ¥ < Hhla.
wen”®

Ezample 4.3: Tho Lebesguo density in tho following corollory is an
artificial ono which has infinitely many discontinuity points. Tho proof of
the corollary is similar to that of Corollary 4.2.

Corollary 4.3 :  Let in the component problem the Lebesque density of X
conditional on w be pu{z) = w(l—ew)err(s G+ D [F<z<F41)), and QC [e. )
o

—w<a<fp <0 Then \f; given by (4.4) satizfies

aup | Dyt $) =0 o<y <1,y < 28a
we ©

We have given sufficient conditions under which our SCE JJ is a.0. for
0 uniformly in 10¢ Q® with a rate 1/5. Tho existonco of familios of distributions
where this rate can bo achieved is also verified. This rato of asymptotic opti-
mality is, howevor, not the bost possiblo that can bo achieved by our SCE .
In fact it is shown in Section 2.5 of Singh (1074) that for any 10 in Q= with
idontical compononts § is n.0. with retos arbitrarily closo to 2/5 in & number
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of exponentir] femilics. Novertheless & reto better than 2/5 with § doos not
secm possiblo even when 0 has idonticel components (sco Section 5 of Singh
(1976) or Scetion 2.5 of Singh (1074).

5. SEQUENCE-COMPOUND ESTIMATION OF SCALE PARAMETER IN
LEBESQUE EXPONENTIAL FAMILIES

In this section wo treet tho cesos whero in tho component problem the
conditionel Lebesguo density p,, is of the form

Pulr) = u(x)Clw)e~*w, with C(w) =(f e~xw dp(2)) o (5)
and Q C [a, BYis & subset of {w > 0]¢(w) > 0}

Thus Julz) = c(w)e~*/v, e (5.2)

Wo will consider sequence-compound estimetion of 10 = (w,, 1,, ...) € Q°,
end exhibit & SCE which is a.0. with rates uniformly on Q=,

A scquence-compound estimetion, whero the component problem is
SELE of tho scale parameter A in T(A, 7)-femily : (T(7))-x*- A-Te-24[(z > 0);
7,A > 0, is an importent examplo of our considerstion in this seetion. This
exaemplo of courso includes the esse of requence-compound estimetion where
tho component problem is SELE of o2 in  N(0,0%)-femily @ (270%)~} exp
(—2%(20%)), —0 < ® < 0, ¢ > 0; ninco X? is sufficient for 0%, where X ~
N(D, o%).

Sinee f3(r) =fu,(“) = C(wj)e~=/vy and wy are positive, wyfy () cen bo

written a8 ff; ()dt. Thus by (2.1)

Vin() = T T0A]) . (53)
. {
whero J=i 1’£f,.

yh -
As in Scction 4, forj=1,....14, lot &)= [ f; end &) =1y <
Xy<y+h)[u(Xy). Then 3, is well defined with 1:;‘obebility ono, end is an
unbiased cstimator of &. Lot

he=hy=1i-Y end H=1IIj = f|logh|. e (5.4)
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The proposed SCE of 10 ia = (37,, 5. ...) where 37, tekes en erbitrary value
infa, fl.end fori=1,2,...

1 S
el
Yyal)= (r__) a, B e (55)
5x)

whero (b),. is @, b or g rccording s b <, a Kb forb> B

Tho following theorem gives sufficient conditions under which l$ if 2.0,
with retes uniformly on Q. The symbols ¢, ¢,, ... below denote absolute
positive constents. Donote u, (), the ess-inf (w.r.t. the Lebesgue mersure)
of the restriction to [z, x4 2k) of 4, by uy (7).

Theorem 5.1 : If for a ye(0, WX a E > y/2and a k, independent of §
such that

§ {or (&) 1 s (o {ym ) e <o)

u(z) e iyn
W”-“< ko(ly log i)f-tn, .. (5.6)
then
sup D,(w, :Lv)| = O(n~3(log n)*. . (39
wen®

Lemme 5.2 below mekes the proof of the theorem much simpler. This
lemme is proved with tho help of Lemma 5.1, which is of Singh (1974) and iz
found quito useful in obteining retes of asymptotie optimality of some com-
pound es well es empirical Beyes estimators.  (For further applications of
tho lomma, sco Singh (1977)).

Lomma 6.1: Let y,zand Bbein R withz#0and B> 0. If Y and
7 are real valued r.v.'s, then 3¢y > 0

E([(Y]2)—(y[2)| A By < 2r+a=-n¥ |z}~
{(Ely=Y "+ (|ylz)+2-0-0" BYE|2—Z|7). . (58)
Proof : Since I(2|z2—Z| < |z]|) € I(2]| Z]| > |z]|) the Lh.s. of (5.8)is
oxceeded by
E(WYIZ) =12 2] 2 |z| D+ BET2 2= Z| > |2|} ... (5.9

By Markov-inoquality, the second term in (5.9) is no more than (2B5)7[z]~7
X E|z—Z|7. By triengle inoquelity with intormediete term y/Z end by
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cr-inequelity( Love, 1063,. p. 165), the first term in (5.0) is bounced Ly

o 2|V (B|y— Y |74 | yfz|'E |2— Z ). QED.

Lemma 5.2: For every 0 v < 1 there is a finite ky, = ky(y) such that
Pias [V1a(X) =000 < M {H([Tog B34 1)f(g,fune ) ... (5.10)
where q, = (.‘3:1; Bfw)/(.“::’.ﬁ s So)'*

Proof :  TFirst of 2]l we prove thet & a ¥, independent of i such that
Py A98—F | < Bh f(L+(fun) ). e (50
Noto that P,(S‘,) =8 = wy(l—eMj)f;. Thus, since 0<ay<p,
|h“P‘(3)—f | € (hfa). fexp (hja). Also, sinee X|...., X are independent vn.r(})
=variance (§)< i'gxﬁPl(df). But sinco uy(x) < n{t) for 2t < z+hae.
(Lebesgue-meesure)  and 8y = wy(1—eVj)fy  hfyebie, I’,(é}) < (84fup) €
(hfy M=) fuy. Consequently, \'Er(g) 'Y (i-’hj_e"/‘)u,,. By the Schwerz inequality

P‘|§—P‘(3‘)[ <& (var(:i‘))i. Thus, since |3—f-| </ P.(E)-—_ﬂ + |§— P.((?)|. end
h = =13, we concludo (5.11).

Now for j=1,...,1, f [y = wye=tiwj [} fhfy(x), since H = —flog
£33 4
hend 0 < wy € B Therefore,
T F< B, e (52)
b

Now Tonelli-Theorom followed by (5.11), the incquality wua,gy(z) < up(t)
2z & t < 2411 and Schwartz inoquality gives

H z oo N
Py ,.f lf—h_'5|<kzh(£f S+ ‘J: Dhupyn(2)}h

& B ATR{1 4 [tog BT (ka2 Y e (513)
sinco f]< Af(a) and H = —Blogh. Thus Linpunov’s inequelity, (5.12),
(5.13) ::nd ¢r-inequelity (Loevo, 1963, p. 156) give

LS SR IR G 08 (P ST

SBAI(1+RY+ | log M2 (F(@unyu(2)™8). o (504)
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Since @ < Vi 95“, LA hh”—y;;‘ﬂ] < . Thereforo, (5.3) «nd (5.5)
followed by & proper use of Lomme 5.1 give

Py | () =) |7 < 27f(x){ths Of(5-‘4)+‘-’/7'1"I](T)—h"s(l)l’}.
(5.15)

For 0 <y < 1 Holder’s inequality implies Py(1-17) < Py(]-]).

Therefore, sinco up,z < up, (5.11) followed Ly ¢p-inequelity end (5.15) gives
~ k= ky(y) indopendent of i such that

rhus. of (5.15) < kAU (F(@)up, p(2))"2([log K| )241). ... (5.16)

Sinco X ~ Py, hes p-density fi,, end fi, (])77?) € g, in the lemme, (5.15),
followed Ly (5.16) loads to (5.10). Q.E.D.

Proof of Theorem 5.1: Since C(w) = ( [ e~#/"du(x))~}, end a, £ aro in

{w > 0 | C(w) < 0}, C(w) ere bounded ewey from 0 and co on[a, #]. Conse-

quently, p(m) = [{ sup ﬂ(C(w)e'z/w)d/L(:c)} < c0. And elso, sinco (q,(z)u(z)/
ek wg

#p,5(%)) by the definition of ¢, in Lomme, 5.2 is no moro then the integrend in

(5.6); by a < Y. 7 < B and by (5.6) for each § = 1,2, ...

P [ Yl X)) —Fa(X)] < APy [ (XD —Yin(X) |7
& ATk (L([log B V241V log i)}
& kyt="3(1y (log i)) since b = iR, e (507)

Sinco X ebbrevintes Xgyy and (5.17) holds for cech § > 1 (ky, &y, ... being
independent of 1) n“E?_gP‘I;';‘(X,)—x,’n(,\")l & ky (log n)*EY-1i-v/3,  Thus,
aince Ny introducod in Section 2 2ro  f, the first term on tho r.h.s. of (2.5)
with ¢ thero replaced by q‘.« i O(n~"3(log n)%), and so is the second term
thero as zu(m) < co. Q.E.D.

Now wa will give examples whero (5.6) of tho theorem is aatisfied for every
<yl and 0QES Y2

Example 5.1: (D(w, 7)-family). Lot in the componont problem the
conditionel Lobesguo density of X given w bo pyfz) = (I(r))lxt-lw-te /¥
Iz>0), 7>0, w>0. Thus a=0, Cw)=(I(r))"w" and u(r) = 2*"
I(x > 0).
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By ¢rinequality (Loeve, 1083, p. 185), up.g(z) > {z*I(r > 1)+

(b+HN-I(0 < T<1)}" 14tz > 0. Thus (5.6) holds 4 2§(1+(1—7) I(0< 7<1))?
=y €(0,1] with y < 2¢/8; and we have tho following corollary.

Corollary 5.1 : Let in the component problem the family of distributions
be as given in Example 5.1. Let Q C [a, 8], where 0<a < f< 0, and tﬁ be as
given in (5.5). Lety (0, 1] be such thal y < 2a/f. Then

sup |D,w, )| =O0n"%)  if 131,

we®
= O(n~"/3(log n)?@-"/3) fo<rT<).

Let us consider an artificial example just to emphasize the point that
our SCE could be a.o. with rates even when the Lebesgue-densities involved
contain infinitely many discontinuity points.

Example 5.2 : Let in the component problem the conditional Lebesgue
density of X given w be py(x) = w—‘(l—e'l/"’)( %}B U+DI(iz< j+l)) e~z/w
I(x>0). (Thus u(x) = § G+HNDIG Lz <j+1) and a=0). Clearly (5.6)

[

is satisfied ¢ 28 = y ¢ (0, 1] such that y < 2u/# since u(z) > 1 uniformly in
x; and we get

Corollary 5.2 : Let in the component problem the family of distributions

be as given in Example 6.2. Let QCla, 8], 0<a<pf <. If ;Z‘ be given
by (5.5), then 3¢ 0 < y < 1 such that y < 2a/8,

sup | D, (w, )| = O(n-13).

wes N°

Notice that through Example 5.1 we have covered the case of sequence-
compound estimation where the component problem is SELE of o2 in the
normal N(0, o®)-family, for X2 is sufficient for o2, where X ~ N(0, o?).

Susarla (1974b) deals with sequence-compound estimation only in [(w, 7)-
family (described in our Example 5.1). Further, it is not known whether
his SCE’s are even a.0. if 0 < @ < f < 2 does not hold or if 7 < 2; and thus
limiting the areas of applications of his estimators. Contrary to his conclusion
in his final remark, his estimation, in view of his restriction on 7, does not
cover the case of sequence-compound SELE of variance o in normal
N(0, g%)-family, unless he makes at least four observations at eanch stage.
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6. REMARKS

vz

In Section 4, g,(x) = u(z)fy(x) = w(x)C(uy)e ", therofore on (0, c0)

¢
I wyfy
Yinr = - (log /i = (log 7 )0~ (log )
 h
1
[
whore =it f;. If it is known that u is continuously twice differentiuble
1

on (a, o), then taking, ns an ostimate of Yy,
Virn = (QE%)—(log u)V), 5

in (4.4) (instead of Yy,y(X) thero), where &j(X) = I(X € X; < X+h), it
it expected that the analysis would becomoe simplor, and perhaps (4.6) could bo
climinated (provided a suitablo lower bound for *‘o?”’ in (4.16) is used), and
(4.7) could bo weankenod to

I ()t=rr2{ezta=0mn(z < 0)4extb-a I(z > 0))dx < co.

Novertheless, no rato of asymptotic optimality with §* is ensured if the sccond
derivative of % is not continuous on (a, o).

In Section 5, gy(z) = u(z)fylx) = u(z) C(uy)e-zm’, and

L ufe) T 700
Vi) = —4—’ =%

L @
1

‘
where J = i-1Z ;. Therefore, no matter how somooth is it does not scom
1

possible to expross ¥ in torms of g unless wo work with some special form of
w and take the help of eome auxilinry r.v.'s (sco Susarla, 1074b).

The scope of applications of sequonce-compound procedures is wide.
Situations involving requences of similar but independont decision probloms
ariso in many wreas of applications. Routine bioassay (Chase, 1966) sud
lot by lot accoptanco sampling are typical oxamploes of such situations. In
the highly illustretive papor by Noyman (1962) various oxamples, whero
compound decision theory or empirical decision thoory ere applicablo, havo
Leon noted.
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