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1 Introduction
Cryptography is the science or art of secret writing. The fundamental objective 
o f cryptography is to enable two people to communicate over an insecure chan­
nel (a telephone line or a computer network for example) in such a way that an 
opponent can not understand what is being communicated. The “plaintext” is 
transformed to “ciphertext” by means of an “encryption” function and a “secret 
key” . The ciphertext is communicated and the receiver recovers the plaintext by 
using a “decryption” function. Study of cryptography concentrates on designing 
“secured” encryption and decryption function. The basic mathematical tools 
used are Algebra, Number Theory, Combinatories etc. Cryptanalysis (popularly 
known as code breaking) is the other side of the coin. It is assumed that cipher­
texts and the model for the encryption is known to the attackers. In addition 
some plaintexts may also be available. There are four kinds of attacks.
1. Ciphertext only attack: This is the most weakest cryptanalytic attack, 
since it requires only passive eavesdropping from the attacker in order to obtain 
the ciphertext. The knowledge of the plaintext is minimal and consists of some 
information about the distribution of the plaintexts. For example, an attacker 
may know that the encrypted plaintext is in English. Ciphers that succumb to 
this attack are useful examples of how not to build ciphers and as puzzles for 
cryptography students.
2. Known plaintext attack: This scenario assumes that the attacker knows 
a portion of the encrypted text. The aim is either to derive from this known 
portion the secret key or at least to be able to obtain some unknown portion 
o f the message text. This scenario is still highly realistic, since it is hard to 
prevent the attacker from guessing part of the plaintext (something that in the 
good old days was called a “probable word method” ).
3. Chosen plaintext attack: In this case one assumes that the attacker has 
the ability to encrypt a text of his choice. In practice this can be achieved in
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the case when an encryption box with the unknown secret key falls in the hands 
o f the attacker or when it is possible to send chosen plaintext to the owner of 
the secret key and then tap the transmission of this text in encrypted form to a 
third party. This scenario is less common since it requires active action of the 
attacker.
4 . C h osen  c ip h ertex t attack: This is similar to the previous case, but 
requires an ability to choose ciphertexts for a decryption device.
In the cryptanalysis attempts are made to ‘“estimate” the secret key. The 
methodologies generally used are probabilistic/statistical in nature. For more 
on cryptanalysis of stream cipher one may refer to Roy and Palit (2004). An 
attempt is made in this servey to highlight several attacks on block cipher.

2 Block cipher
There are two kinds o f secret key ciphers; stream ciphers and block ciphers. 
In stream ciphers a long sequence of key bits are generated and exclusive or ’ed 
(addition modulo 2) with the plaintext. In block ciphers the plaintext is divided 
in to blocks of a fixed length and encrypted into blocks of ciphertext using the 
same key. The mathematical definition o f a block cipher is:
D efin ition : An n-bit block cipher is a function E  : Vn x K  —> V'n such that for 
each key k G K , E(p, k) is an invertible mapping (encryption function for k ) 
from Vn to V'„ , written E k(P ). The inverse mapping is the decryption function, 
denoted Dk[C). C =  E k{P ) denotes the ciphertext C  that results from plaintext 
P  under k. The variable Vn is the space containing all the possible bit strings 
o f length n.
An n-bit block cipher with a fixed key is a permutation p : G F (2)" —► G F (2 )n. 
It would require log2 (2nl) bits to represent the key such that all permutations 
p  were possible, or roughly 2n times the number of bits in a cipher block. With 
an ordinary block size, e.g. 64 bits, this is a much too big number for practical 
use, therefore the key size in a practical block cipher is much smaller, typically 
128 bits or 256 bits. A good encryption function must contain some non-linear 
component, and this is often a substitution box or s-box. An s-box is defined 
as a mapping G F (2)n —> G F (2 )m, usually defined by a n x m  lookup table. 
Almost all block ciphers used today are iterated block ciphers. These ciphers 
are based on iterating a function several times, each iteration is called a round.
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Figure 1: A typical r-round block cipher

In Figure 1, we show the process of encrypting the plaintext X Q under a 
typical r-round block cipher to obtain the cipher text X r. Here X ; denotes the 
intermediate value o f the block after i rounds of the encryption, so that X i —



F,(A'i_i , fcj), where (fci,fc2, __,Arr)is t he list of round keys which is derived from
'he secret key K  using a policy known as key scheduling algorithm.

The round key is derived from the cipher key by a key schedule, which is 
an algorithm that expands the master key or the cipher key. Key-scheduling 
"unction should be a good pseudo-random generator, however the complexity 
of its design is less restricted than that of the main body of the block-cipher 
itself. This is so since in most cases a single key is used to encrypt many blocks 
before it is changed and thus key-scheduling algorithm can spend more time 
on randomizing things than the encryption function. Due to this reasoning in 
many cases the analysis of key-scheduling function is hard. It is also hardly 
worth the effort since in most cases the flawed key-schedule can be replaced 
without altering the main encryption function. An attacker may assume that 
subkeys are independent random variables. If the cipher is broken under this 
assumption, no patch of key-schedule will save it. Interestingly it is possible to 
avoid the need for a complex key-schedule by using a fixed mixing permutation 
on a large set of inputs and two keys XORed at the input and at the output of 
the encryption function [Shannon 1949; Even and Mansour 1997], These keys are 
now called whitening keys. Many modern ciphers combine both the whitening 
and the key-scheduling approaches.

The cipher key is usually between 40 and 256 bits for a block cipher, and 
for an r-round iterated cipher this is expanded into r-round keys. The round 
function is usually a combination of substitution and transposition. Substitution 
is when a block in the plaintext is substituted with another block by some 
substitution rule. Transposition is to permute the blocks or characters in the 
plaintext. In earlier ciphers substitution and transposition were used on their 
own as a cipher, where each plain text symbol was a block, but this proved to be 
insecure because of the small block size. Most modern ciphers are a combination 
of substitution and transposition, and are often called product ciphers (Stinson, 
2001).

Among the main building blocks of modern block-ciphers are substitutions 
and permutations, which are primitive ciphers on their own. Substitution ci­
phers are known from ancient times and can be viewed simply as a change of 
names of the letters. For example in a cipher attributed to Julius Caesar each 
letter of the alphabet is exchanged by a letter standing three positions from it 
(A is encrypted as D, B as E, C as F, etc.). Of course in general the substitution 
need not have a simple “shift” structure as in Caesar’s cipher. However, in-spite 
of an astronomical number of possible substitution ciphers over the English al­
phabet (26!), they are easily solvable, using the letter frequency analysis. As 
a bright illustration of this one can read Edgar Poe’s fascinating story “The 
Golden Bug” , or Conan Doyle’s “The Dancing Men” . A popular element of 
modern ciphers- a substitution box (S-box) takes a block of m bits as its input 
and outputs a block of n bits (m not necessarily equals n ). S-box can perform 
any function on a set o f its inputs; if m =  n it can be a permutation on a set of 
2m inputs, if m > n it can be a collection of several permutations on a set of 2n 
inputs. It can be a randomly chosen function, or a carefully designed function 
with special properties. It is desirable for an S-box to perform non-linear and



non-affine function in order for the whole cipher to be a non-linear function. 
Linearity in cipher’s behavior is the end of a cipher, since it essentially means 
that information is leaked from the plaintext to the ciphertext. Both expanding 
(m < n) and contracting (m >  n) S-boxes can be met in modern block-ciphers. 
Unless being calculated by a compact' formula the memory required to store 
an S-box grows exponentially with the linear increase in the size o f its input 
m. Thus the most typical sizes for 5 -box input are m  =  4, 6 , 8 , 12 bits. The 
second basic element - permutation (or transposition ) cipher keeps plaintext 
characters as they are but arranges them in a different order. One o f the oldest 
transposition methods was used by ancient Greeks: A leather belt is tightly 
wound around a cylinder and a message is written on the belt across the length 
o f the cylinder. The belt is then worn by a messenger. The message can be 
decrypted by a party who has a cylinder o f the same diameter as was used 
during the “encryption” . Breaking a basic permutation cipher is an easy task, 
especially if one knows a part o f the encrypted plain text. In modern ciphers 
permutations o f bits are frequently used. Although weak on their own, a line 
o f substitutions followed by a permutation has good “mixing” properties: sub­
stitutions add to local confusion and permutation “glues” them together and 
spreads the local confusion to the more distant sub-blocks. Shannon (1949) 
in a pioneering work “Communication Theory of Secrecy Systems” suggested 
to use several mixing layers interleaving substitutions and permutations. Such 
design is called substitution-permutation or an SP network (SPN). Figure 2 is 
an example of SPN.

Figure 2: An example o f substitution permutation network (SPN)

The Data Encryption Standard (DES) (National Bureau o f Standards, 1977) 
has been the most widely used iterated block cipher since it was published in



1977 by National Bureau o f  Standards(1977) (now the National Institute of 
Standards and Technology, o r  NIST), but it is now replaced by the Advanced 
E n cryp tio n  Standard (AES) because of too small key and block size. The DES 
can be seen as a special implementation of a Feistel cipher, named after Horst 
Feistel, where the input to each round is divided into two halves, as in the 
follow ing description.

Figure 3: Two round DES

2.1 Description of DES
DES cipher is so important to the development of modern cryptanalysis that 
it might be worth while to describe this construction in some greater detail. It 
usually looks “monstrous” to the first time reader. Surprisingly almost every bit 
of design in DES seems to have a security reason, and most of the changes seem 
to weaken the cipher considerably. Biham and Shamir (1993) gave a thorough 
study of DES and its modifications. DES was designed by IBM crypto group 
from its predecessor Lucifer in early seventies and was published in the Federal 
Register of 17 March, 1975. DES was adopted as a standard for “unclassified” 
information on January 1977. Since then it became the most widely used and 
the most analyzed cipher. DES is an iterative block cipher. It encrypts blocks 
°f 64 bits into ciphertext blocks of 64 bits under control of the 56-bit secret key. 
DES performs 16 iterations o f the round function, which is called the F-function. 
Figure 3 shows the basic structure of DES reduced to two rounds, one can see 
that it is a Feistel cipher. The F-function has a relatively simple structure and 
is based on the substitution-permutation sandwich idea of Shannon (described 
above).

Each round takes the 64-bit output of the previous round, divides it into two 
32-bit halves- the left half L and the right half R. The F-function (described in 
Figure 4) takes R  as its input, expands it (by E (R ))  from 32 bits in to 48 bits 
and XORs the result with the 48-bit subkey derived from the 56-bit secret key 
K by the key scheduling algorithm. Then the result enters eight substitution



boxes (S-boxes). Each S-box takes as input six bits and outputs four bits. The 

32-bit result from the row of S-boxes is permuted by the permutation P. The 

permuted value is the output of the F-function. In the round function, the 

output o f the F-function - F(R,Ki )  is XORed with L, and the right and the 

left halves are swapped. Thus, the output o f the z-th round is (R , L © F(i?; A', )). 
Note that the tables F , Si, i=  1.... 8 , E  are defined and fixed in the standard, 
so the only variable part of DES is the secret key K.

48 bits
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Figure 4: The F  function of DES

The key scheduling algorithm of DES is as follows: The 64-bit key is per­
muted by the permutation PC  — 1 (Stinson, 1995, p. 75). This permutation 
performs two functions: strips eight parity bits and then distributes the remain­
ing 56 bits into two 28-bit registers C  and D . On each round 28-bit registers 
C and D  are left shifted by one or two places (according to a fixed schedule). 
After the shift the permutation P C  -  2 (Stinson, 1995, p. 76) is performed over 
C and D  , selecting 24 bits out of each 28-bit register. These 48 bits form the 

subkey o f the corresponding round.
AES is the successor of DES. NIST replaced DES by the new standard w hich  

is called Advanced Encryption Standard or AES in 1997. At the “First AES 
candidate conference7’ on 1998, 15 AES candidate wore selected by NIST. On 
1999, five of them (MARS, RC6, Rijndael, Serpent, and Twofish) were selected 
at the “Second AES candidate conference'’ . Finally, Rijndael (Daemen and 
Rijmen, 1998) was ultimately selected as the AES by NIST (National Institute 
o f Standards and Technology, 2001).

2.2 Description of AES
We now give a short description o f AES (for details see Daemen and Rijmen, 
2001). Rijndeal is a 128-bit block cipher with one of the three different key 
sizes, 128 or 192 or 256 bits. 128-bit, block is viewed as (bo, &i, — b i,..... bi5), 
where bi is the i ’th byte of the block. The bytes are organized in a matrix form:

(  bo bi b$ b\2 ^

b-\ bt) b i ■;
b2 6fi &io 6 m

\ b'3 b7 bl{ bu, )

32 bus

48 bits



The number of round is 10 (for key size 128) or 12 (for key size 192) or 1-1 (for 
key size 256).
The round function is composed by the following consecutive operations: 
SU B B Y T E S: An S box is applied to each byte of the data (16 times in parallel). 
S H IF T R O W S : Perform a permutation to change the order of bytes in the 
data.
M IX C O L U M N S : E very 4 consecute bytes (column) are mixed by a linear 
operation.
A D D R O U N D K E Y : The data is XORed with a 128-bit subkey.
For the details of the above operation see Stinson (2001, pp. 103-107),
S-box of Rijndael can be defined algebraically (Algebraic formulation involves 
operation in a finite field (Lidl and Niederreiter. 1994), S-box is taking the 
multiplicative inverse of the input in G F (28) (modulo the irreducible polynomial 
of Rijndael i 8 + r l +  i 3 + i  +  l).

3 Statistical Attack on Block cipher

3.1 Linear cryptanalysis

Linear Cryptanalysis is a known plaintext attack that is based on effective lin­
ear approximate relations between the plaintext, the cipher text, and the key. 
Another powerful method of cryptanalysis is linear cryptanalysis introduced by 
Matsui (1993,1994). It is a known plain text attack in which the attacker studies 
linear approximations of parity bits of the plain text, ciphertext and the secret 
key. Given an approximation with high probability and counting on the parity 
bits of the known plain texts and ciphertexts one obtains estimate of the parity 
bit of the key. Using auxiliary techniques one can usually extend the attack to 
find more bits of the secret key. In slightly more detail: In the basic form of 
linear cryptanalysis of an r round iterated block cipher, the analyst tries to find 
a linear approximation over r -  2 rounds from the second round to the second 
last round, that is, an approximation of the form a.X  +  b.Y +  c.k — 0 where 
X  =  Fx(x, ki). y =  Fr(Y, kr) is the ciphertext, x  is plaintext and k =  (k->, fc2, 

i) is a vector of all the unknown round keys used in rounds 2 to r — 1. Given 
N known plaintext, the parts o f the round keys ki and kT relevant to the approx­
imation can be found by trying all possible round subkeys at rounds 1 and r, and 
counting the number N0 o f plaintext for which a .F i(x ,k i)  +  6.Fr_ 1(y,fcr) =  0 
holds. The round subkeys that maximizes |JV0/iV — 1/2| are chosen as the most 
likely candidates.

3.2 Differential cryptanalysis:

Differential cryptanalysis is a chosen plaintext attack that studies the propaga­
tion of input differences to output differences in iterated transformations. These 
difference propagations are formalized in the following definition.



Definition: Let /  : GfF{2)" -> G F (2)m, and let a, a* G G F (2)n. The difference 
a =  a©a* is said to propagate to the difference b =  /(a ) © /(a*) though / .  This
is denoted by a -U b'. An expression of the form a —>■ /? is called a differential.
If the input difference of a pair is a , the differential a -> ft can be used to predict 
the corresponding output difference. It is thus natural to measure the efficiency 
of a differential as the fraction o f all inputs with difference a that results in 
the output difference /3. Following Daemen(1995), we call this fraction the 
propagation ratio o f the differential.
Definition: The propagation ratio Rp o f the differential a  -4 /? is defined by

Rp(a  -4 p ) =  2~n\{x e G F (2 )n\f(x) © f ( x  ® a) =  0}\.

Discovery of differential cryptanalysis (1990) was a major breakthrough in the 
field of cryptanalysis in the last decade. It is a very powerful method of crypt­
analysis. The main idea is to study the propagation of the differences from 
round to round in a pair of encryptions instead of studying a single encryption. 
This study is usually performed with a specially written program capable of 
searching for differential patterns in a cipher. This allows to make statistical 
predictions of the output difference of the pair. The attacker then encrypts a 
pool of pairs with the chosen difference and filters those pairs that support the 
prediction (in a simplistic case those that have expected ciphertext difference). 
These pairs reveal internal behavior of the cipher which is otherwise hidden 
from the attacker and thus help to find bits o f the secret key. For example, 
the knowledge of the difference between two encryptions before the last round 
(due to the prediction) combined with the knowledge of the difference from the 
ciphertext and the knowledge of the ciphertexts themselves provides a simple 
equation for one round of a cipher. This equation contains the subkey o f the 
last round as an unknown. Round function o f an iterative cipher is usually not 
designed to be cryptographically strong (strength of a cipher relies on many 
iterations o f a relatively weak round function). Thus given one or few such 
equations (all involving the same unknown secret key) it is possible to derive 
the subkey of the last round. Having achieved this result the attacker is left 
with a cipher which is shorter by one round. He proceeds with further anal­
ysis which becomes much easier and usually does not require additional data. 
Differential attack is a chosen plain text attack, which can be converted to  a 
known plaintext attack scenario.
A generic differential attack against an r round iterated block cipher is the 
following.
Step 1. Find an r — 1 round differential a  —> ft with high enough propagation 
ratio.
Step 2. Keep a counter for each possible round subkey kr at round r. Initialize 
the counters to zero.
S tep  3. Pick a plaintext x  uniformly at random and set x* =  x  ©  a . E ncrypt 
the plaintexts under the unknown key k obtaining the ciphertexts y  and y * . For 
each possible round subkey kr compatible with the assumed input difference



3 and the observed outputs y. //' at round r. add one to the corresponding 
counter.
Step 4. Repeat Step 3 until some round subkeys are counted significantly more 
often than the others. Output these keys as the most likely subkey at. the last, 
round.
Biham and Shamir (1993) proposed Differential cryptanalysis of DES.

3.3.1 D ifferential a ttack  on  D E S

Differential cryptanalysis of DES was the first method capable of breaking DES 
faster than exhaustive search. It is a statistical attack which requires 2 1' chosen 
plaintexts to break the DES cipher. It is based on the linearity of most, o f the 
operations used in DES: E { X )  - A ")  ^  E(.Y - A '')  , P { X )  3  P ( X ’ ) =  
P( X  0  A'*). Where E is the expansion operation. P  is the permutation, and 
K is any subkey. The only nonlinear operations are the S-boxes. for which 
the equation S( X)  S ( X " ) =  S { X  I? A ") , does not hold. However, it. was 
observed that for any particular input X OR not all the output X  OR values 
are possible, and the possible ones do not appear uniformly, some of them appear 
more frequently then others. Using this observai oii the difference distribution 
table of an S-box can be defined as follows:
Definition: A table that, shows the distribution of the input XORs and output 
XORs o f all the possible pairs of an S-box is called the difference distribution 
table o f the S-box. In this table each row corresponds to a particular input 
XOR and each column corresponds to a particular output XOR. The entries 
themselves count, the number of pairs out, of 64 possible pairs with the particular 
input XOR that yield the particular output XOR.
Each line in a difference distribution table contains 64 pairs distributed over 16 
entries. Thus an average of the entries in each line of the table is exactly four. 
The first line of the difference distribution table of Si (Stinson, 2001) of DES 
shows that for the zero input XO R the output XO R must be zero. Also different 
lines in the table have different distributions and tables for different S-boxes are 
of course different. For example, for X  3  X* =  34*, S i(X )  © Si (A'*) =  2X for 
16 pairs out of 64. Or in other w>-rds the input XO R difference 34* causes the 
output XOR difference to be 2 with probability p =  16/64 =  1/4. By using the 
linearity of the rest of the operations in the cipher we receive probabilistic ap­
proximation of the difference of output of the F-function and thus of one-round 
of DES, These approximations are called one round characteristics. It is possible 
to concatenate one-round characteristics in order to get longer characteristics. 
Here is a more strict definition of an n-round characteristic:
D efin ition : Associated with any pair of encryptions are the XO R value o f its 
two plaintexts (denoted by P  ), the XOR of its ciphertexts (denoted by C ‘ ) and 
the XORs of the inputs and o f the outputs o f each round in the two executions. 
These values form an n-round characteristic (denoted by Y '). For a given input 
XO R P  , the probability that a randomly chosen input pair with P  difference 
leads to Y  is called the probability of Y '. It can be expressed as P (Y  \P ).



We assume that in the process of concatenation of characteristics the proba­
bilities of the characteristics are multiplied. This assumption can be justified 
empirically. It is important to note that there exist characteristics that can be 
concatenated with themselves. These characteristics are called iterative char­
acteristics. We search for characteristics which have the highest probabilities. 
The higher is the probability o f the characteristic that covers the whole cipher 
the less is the number of chosen plaintexts required for the attack. A useful 
notion of an active S-box may be introduced here.
D efin ition : An S-box Si is said to be active in round k with respect to 
differential characteristic Y  if it has non-zero input difference in round k of Y '. 
The less is the number o f active S-boxes in the differential characteristic - the 
higher is its probability. It can be shown that for DES the best characteristic 
can be built by iterating eight times a particular two-round characteristic. See 
Figure 5 for one such characteristic. The first round of this characteristic has 
a —> 0 - XOR difference on the input of the F-function causes the output XOR 
difference of the F-function to be zero (with some probability). The second 
round of this characteristic has the form 0 —> 0 , which holds with probability 
one. In DES such a characteristic takes place for the difference a  =  19600000. It 
involves three adjacent active S-boxes S\, S-2, S3 with input differences o f 3X =  
000011, 32* =  110010 , 2C x=  101100 respectively (after a  has been expanded). 
The probability of this characteristic is (14.8.10)/64,i =  1/234 which is rather 
low. This is due to the precautions taken by the designers of DES. They claim 
that they were aware o f the high potential of differential cryptanalytic attacks.

0 a

0 a

Figure 5: Characteristic of 2-DES

T h e  A tta ck : Given the ideas described above, how the actual attack may 
work? In the simplest form, given a characteristic of probability p »  2^64 of



the full cipher, it is possible to distinguish a cipher from a random permutation. 
This can be done by querying the pairs of plaintexts with the difference P  
as in the characteristic and counting the number of pairs that, arrived at the 
ciphertext difference C  predicted by the characleristic. Such a distinguishes 
will use 0 (p ~ L) pairs. Indeed, given M —C’/p  pairs (for some constant C >  1) 
chosen independently with the difference / ’ , the probability that no one of 
them will follow the characteristic is (1 =  (1 — p )C p̂ <  e~c  which can
be made arbitrarily small by choosing sufficiently large C . On the other hand 
the probability that C will not occur for similarly chosen pairs passed through 
a random permutation is (1 — 2~64)M. This probability is very close to one if 
p »  C  x 2 '  64.
Cryptanalysis on A E S: The S-box of Rijndael is taking the multiplicative 
inverse of the input in G F (28). This finite field diversion operation yields linear 
approximation and difference distribution table with the entries close to uniform 
distribution. This gives the security against, linear and differential cryptanaly­
sis. AES is secured against all known cryptanalysis. Cryptanalysis on AES is 
currently a very important research area. Using self-dual property Barkan and 
Biham (2002) gave an attack on AES which is slightly better than exhaustive 
search. They also proved that the choice of irreducible polynomial of Rijndael 
is arbitrary, hence it is irrelevant if the irreducible polynomial is primitive or 
not.

4 Statistical Attack on RC6

4.1 Description of RC6
RC6 is a block cipher submitted to NIST for consideration as the new AES. 
RC6 is designed by Rivest et al(2000). RC6-w;/r/6 means that four w-bit, word 
plaintext are encrypted with r round by 6-byte keys. The (w , r, b) are called pa­
rameters. The nominal parameters for AES are (32,20,16), (32,20,24), (32,20,32) 
respectively for a 128, 196 and 256-bit user key.

Notation:
+  : integer addition modulo 2U’ ,
— : integer subtraction modulo 2W,
© : bitwise exclusive-or, 
x : integer multification modulo 2 '", 
a < « b  :cyclic rotation of a to left by b-bit, 
a > > >  b :cyclic rotation of a to right by b-bit,
There is a key scheduling algorithm which extends the original 6-byte key into
an 2r +  4-word array 510 ,1 ,............, 2r +  3]. The encryption is performed by
using four register A, B. C, D .The algorithms is described as below:
Input:
Plaintext stored in four io-bit input register A, B. C, D.



Figure 6: Encryption with RC6-w/r/b. Here f ( x )  =  x(2x  +  1).

w-bit round keys S [0 ,1 , ............, 2r +  3]
Output:
Cipher stored in A, B , C, D.
Procedure:
B  =  B  +  S[0], D =  D  +  S[l] 
for i = l  to r  do 
{
t — (B  x (2B  +  1)) < < <  Igw 
u =  (D  x (2D  +  1)) < < <  Igw 
A  =  ((A  © t) « <  u) +  S[2i]
C =  ( (C ffiu ) < « t )  +  S[2i +  l]
( A ,B ,C ,D M B ,C ,D ,A )

}
A  =  A  +  S[2r +  2 ] , C =  C  +  S[2r +  3].

Table 1

Attack Rounds Number o f plaintexts
Linear attack (Borst et al, 1999) 16 2 H 9

Differential attack (Contini et al, 1998) 12 2 n 7

Multiple Linear attack (Borst et al, 1999) 14 2119 .68

Multiple Linear attack (Borst et al, 1999) 18 2126 .94

X2 attack (Handschuh and Gilbert, 1997) 15 2 119

X 2 attack (Handschuh and Gilbert, 1997) 17 2 H 8

Table 1 summarizes some of the cryptanalysis on RC6 . Up to the present, linear 
attacks, Differential attacks, and x 2-attacks against RC6 and some simplified 
variants of RC6 have been analyzed intensively. The secuirty of RC6 against



the linear and Differential cryptanalysis is discussed in Contini et al (1998) pa­
per. They estimated that 12 round RC6 is not secure against the Differential 
cryptanalysis and RC6 with 16 or more round is secure against linear crypt­
analysis. Currently, RC6 with paprameter (31,20,..) is recommended to give 
suffcient resistance against the Borst et al (1999), Contini et al (1998), Contini 
et al (1999), Gilbert et al (2000), Knudsen and Meier (2001), Shimoyama et al 
(2002), Shimoyama et al (2000) attack. x 2_attack *s one ° f  the most effective 
attacks on R C6 . The x 2-attack was first proposed by Vaudenay (1996) as an 
attack on DES. Gilbert et al (2000), Knudsen and Meier (2001), Borst et al 
(1999) applied x 2-attacks to RC6 or a simplied variant of RC6.
The x2-attack can be used for both distinguishing attacks and key recovery 
attacks. Distinguishing attacks handle plaintexts in such a way that the x 2_ 
value of a part o f ciphertext becomes significantly a higher value. Key recovery 
attack have to rule out all wrong keys, single out exactly a correct key by 
using the x 2-value> and thus they often require more work and memory than 
distinguishing attacks.

4.2 x 2 cryptanalysis
4.2.1 te st

The block cipher is a random permutation (here the randomness comes from 
the random choice o f the secret key). The goal of the block cipher designer is to 
make it “look like” a truely random permutation i.e like a random permutation 
with a uniform distribution among the set of permutation. To distinguish a 
random source with some unknown distribution from a random source with 
uniform distribution, a common tool for this is x 2 test.
Suppose X i, i =  l , 2, ...,,n  be iid (independent and identically distributed ran­
dom variable) observation from a population X ,  which takes values in the set 
{ii,X2, ••••, i m} '  The x 2 test is used to decide if an observation X\, X 2 ,- - ,X n 
is consistent with the hypothesis P { X  =  x j }  =  p (j) , j  =  l,2 ....m , where 
YljPii) =  1. Let Nj denote the number of times the observation X  takes on 
the value x j.  The x 2 statistic is the random variable defined by:
\2 = Y .j(N j -  np( j ) ) 2/np(j), where =  n. In a x 2 test, the observed
X2 statistic is compared to x 2a,m-i> the threshold for the x 2 test with m — 1 
degrees of freedom and with significance level a.

4-2.2 x 2 statistics of RC6

To investigate the nonrandomness of r-round of RC6 , the analysis is based on 
systematic experiments on increasing numbers of rounds of RC6 with varying 
word lenth w. The method is used to demonstate that detecting and quantifying 
n°nrandomness is experimentally feasible up to 6 rounds of RC6 . For this 
Purpose, the least significant log^w bits of words A  and C  of the input are fixed 

zero. Depending on the experiment and the number of round, the remaining 
lriPut bits are either chosen randomly or more o f the remaining input bits are



suitably fixed so that one(or both) of the data dependent rotations are zero. 
Knudsen and Meier (2000) persued the \ 2 statistic of the integer of size twice 
loc)2W bits as obtained by concatenating the least significant log>w bits in the 
words .4 and B  every two rounds later. In the experiments, they consider w = 8.
16 and 32 bits, respectively. It is instructive to see that the general behaviour of 
the \ 2 test for increasing number o f rounds in all three cases is very similar. To 
judge the outcome o f these \2 tests note that for the word sizes w as considered.
6-bit, Sbit and 10-bit integers are tested at the output. Hence the degrees of 
freedom are 63, 255 and 1023 respectively, and these number coincide with 
the expected value of the \ 2 statistic, provided the distribution to be tested is 
uniform.

5 Attack on other block ciphers
There are several improvements to the basic differential attack that reduce the 
number of plaintexts needed. There are also attacks using r — 2 round differen­
tials that counts on the round subkeys of the last two rounds. Using straight­
forward statistical analysis, it can be shown that the correct round key can be 
distinguished from a randomly selected key with sufficient confidence, provided 
that the number of plaintexts available is inversely proportional to the propa­
gation ratio of the differential used. Thus, a necessary condition for resistance 
against conventional differential attacks is that there does not exist any differen­
tial ranging over all but a few (say, 3) rounds with propagation ratio significantly 
larger than 2- n , where n is the block size. If we consider COCOXUT98 cipher. 
Vaudenay (1998) proved by decorrelation technique that the full C O C O XU T98 
cipher admits no good differential characteristics using decorrelation technique. 
So COCOXUT98 is resistant against differential cryptanalysis. But we observe 
that there are differential characteristics o f very high probability for the half 
of the cipher. Wagner(1999) made extensive use of these characteristics in his 
boomerang attack. Note that resistance against conventional differential attacks 
does not imply anything about resistance against natural extensions to differ­
ential cryptanalysis, such as impossible [Biham et al, 1999a, b], higher order 
[Knudsen, 1995; Lai, 1994] and truncated (Knudsen, 1995) differentials, and the 
boomerang attack.

5.1 The Boomerang Attack
The main idea behind the boomerang attack is to use two short differentials w ith  
high probabilities instead of one differential of more rounds with low probability. 
The motivation for such an attack is quite apparent, as it is easier to find sh ort 
differentials with a high probability than finding a long one with a high en ou gh  
probability. We assume that a block cipher E  : { 0 , l } n x {0,1 }* —> { 0 , 1 } ' ’ 
can be described as a cascade E =  E\ ° E0, such that for Eq there exists a 
differential a  - »  3 with probability p, and for E\ there exists a differential 
7 —> S with probability q. The boomerang attack uses the first characteristic



a -> /3 for Eq with respect to the pairs (P^ P2 ) and (P3; P4 ), and uses the 
second characteristic 7  —> <5 for Ei with respect to the pairs (C\\ C3 ) and (C->;
Ct ). ■
The attack is based on the following boomerang process:
Step l: Ask for the encryptions" pair of plaintexts (P i; P2 ) such that Pi © 
P2 =  a and denote the corresponding ciphertexts by (C i; C2 )•
Step2 : Calculate C3 — C\ ©5 and C4 =  C2 ©<5, and ask for the decryption of 
the pair (C3; C4 ). Denote the corresponding plaintexts by (P3; P4 ).
Step3: Check whether P3 © P4 =  a.
It is easy to see that for a random permutation the' probability that the last 
condition is satisfied is 2~n. For E, however, the probability that the pair 
(Pi; P> ) is a right pair with respect to the first differential a  —► /? is p. The 
probability that both pairs (C i; C3 ) and (C2\ C4 ) are right pairs with respect 
to the second differential is q2. If all these are right pairs, then they satisfy 

3)©  Ei 1 (C4)=  ,5 =  P0(P3) e  E o(P i), and thus, with probability p  also 
P3 9  P4 =  Q- Therefore, the total probability of this quartet of plaintexts and 
ciphertexts to satisfy the boomerang conditions is (pq)2. Therefore, pq >  2~ n/2 
must hold for the boomerang attack to work.

5.2 Slide attacks
Slide attack was proposed by Biryukov and Wagner (1999). In the simplest 
case, we have an r-round block cipher E whose round functions are same and
use the same subkey, so that E =  F o p  o ......o F  =  F T. Let (P, C) be a known
Plaintext-ciphertext pair for E. The crucial observation is, if P  =  F(P) then 
C' =  E (P ')= F r (F (P ))= F (F r (P ))= F (C ). In a slide attack, we try to find pairs 
(P,C), (P  , C  ) with P  =  F(P), we call such a pair a slide pair, and then we 
will get the extra relation C  = F (C ).

Figure 7: A typical slide attack

A slide attack provides a very general attack on block cipher with repeating 
round subkeys. The only requirement on F  is that it is week against known- 
plaintext attack with two pairs. More precisely, we call Fk{.r) a weak function 
if given the two equations Fk{x i )= y x and Fk(x 2)= y 2 it is easy to extract the 
key k (for example 3-round DES is a weak function). Such a cipher (with a 
n-bit block) can be broken with only 2n'/2known texts, since then we obtain 2n 
possible pairs (P, C), (P ',C ' ). As each pair has a 2~n chance of forming a slide 
pair, we expect to see one slide pair which discloses the key.



5.3 New types of cryptanalysis attacks using Related 
Keys
Biham (1994) proposed a new type of attack using related keys. These attacks 
are based on the observation that in many blockciphers we can view the key 
scheduling algorithms as a set of algorithms, each of which extracts one partic­
ular subkey from the subkeys of the previous few rounds. If all the algorithms 
of extracting the subkeys are the various rounds are same, then given a key 
we can shift all the subkeys one round backwards and get a new set of valid 
subkeys which can be derived from some other key, these keys are called re­
lated keys. Biham (1994) also combined this attack with the attacks based on 
complementation properties.

6 Conclusion
Cryptanalysis of block cipher models, that are in practice, are mostly intuitive 
and straight forward. Elegant statistical approaches are looked for from statis­
tician. In addition, different statistical methods may be adopted to reduce the 
computational complexity of the cryptanalysis. For further references to recent 
work in this area the reader may refer to IACR website (http://w ww.iacr.org). 
This area demands attention from the statistics community.
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