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Abstract. A summary of the previous papers about undominated Bayesian experiments
and some further results are presented in this article.

The main result concerns the case of a pair of statistical observations independent con-
ditionally on the parameter studied in [10]. It allows to individuate (almost surely) the
observations (¢,,%;) which give rise to posterior distributions concentrated on the intersec-
tion of the supports of the singular parts of the posteriors related to the single observations
t, and t, separately.

Finally we shall present two counterexamples and an example about the continuous time
and homogeneous Markov chains.

1 Introduction.

The structure of Bayesian erperiment is defined in (4] (page 27, Definition 1.2.1). Let
us consider two measurable spaces (A,.A) (parameter space) and (S,S) (sample space), a
probability measure g on A (prior distribution) and a family (P* : ¢ € A) of probability
measures on S (sampling distributions) such that (a — P(X) : X € §) are measurable
mappings w.r.t. .A; then a Bayesian experiment is the (unique) probability space

£=(AxS5A®S,H)
such that

II(E x X) = fE P°(X)dp(a), VE € A and VX € S. (1)

Furthermore the probability measure P on S

XeS— P(X)=II(A x X) (2)
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is called predictive distribution and £ is said to be regular (see {4}, page 27, Definition 1.2.2)
if there exists a family (g : 8 € S) of probability measures on A such that

(E x X) = [ w*(E)P(s), YE€ A and VX € S. (3)

Throughout this paper we shall think that (A, A) and (S,S) are Polish Spaces so that £ j
regular (see [4], page 31, Remark (i)) and the family (u° : s € S) satisfying (3) is P a.s.
unique. It will be useful to denote the {wo different desintegrations (1) and (3) of M in 4
shorter way, 1.e.

Ti(da, ds) = P*(ds)u(a) = u*(da)P(ds). (4

Finally the statistical experiment (P° : a € A) is said to be dominated (by a o-finite measure
A) (see e.g. [1]} if all the sampling distributions are absolutely continuous w.r.t. a o-finite

measure ), while the Bayesian experiment £ is said to be dominated (see [4], page 30,
Definition 1.2.4) if

N« p® P (5)

Several questions concerning Bayesian experiments in terms of domination and uwndomi-
nation were studied by the author. The main result shows how the Lebesgue decompositions
of the conditional distributions w.r.t. the corresponding marginal distributions are deeply
connected to the Lebesgue decomposition of the joint distribution II w.r.i. the product of
its marginal distributions x and P. Then, before recalling this result, let us introduce the
Lebesgue decomposition of Il w.r.t. g ® P:

C'E.A@SHH(C)=Lgd[p®P]+H(CﬂD)

where D € A® S and [g ® P](D) = 0; moreover we set
D(a,.)={s€S:(a,8)e D}, Vac A

and
D(.,s)={ac A:(a,s) e D}, VseS.
Then we have the following (see 7], Proposition 1):

Proposition 1. u a.s. the Lebesgue decomposition of P* w.r.t. P is
X €S8 P(X)= L g(a,s)dP(s) + P*(X N D(a,.)); (6)

P a.s. the Lebesgue decomposition of p* w.r.t. p is

E€ A p'(E) = fE g(e, s)dp(a) + p*(E N D(.,5)). (7)

From now on we shall set:
A¢={a€ A: PP« P}; A, ={ac A: P°LP}; A. = (A U AL)5;
Se={se€S:p <pliSi={s€S:p'Lp}; S. = (S¢ U SL).
All the sets are measurable as an immediate consequence of a Remark in {3} (page 53)
However we can say that S¢, i and S. depend on the choice of the family of posteriof
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distribution but they are almost surely unique (w.r.t. P); thus, in particular, the probabilities
P(S¢), P(S1) and P(S.) do not depend on the choice of the family (u® : s € S) satisfying
(3).

In Section 2 we shall present some relationship between these sets.

We stress that, if we have a statistical experiment (P : @ € 4) which is dominated by a
o-finite measure A, for any prior distribution u there exists a jointly measurable function f,
such that

p{a€ A: X € S — P(X) = A fr(a,8)dA(s)}) = 1
and we have

dp(a)
P({SES:EEAH’E’E =.~_“Ef-3a(a'13) =1

)= L R )du(a)”

(this follows from Lemma 7.4 in (6], page 287). In conclusion, given a dominated statistical
experiment (P° : a € A), (5) holds whatever the prior distribution u is; indeed, as a

consequence of Proposition 1 (see Corollary in [7]), (5) and P(S¢) = 1 are equivalent
conditions.

The case of statistical observations i.1.d. conditionally on the parameter plays an impor-

tant role in the literature. For some arbitrary integer n € IN, this case can be described by
considering the ensuing Bayesian experiment

Em) = (A% §", A® 8®", I(y),

where condition (4) is

[ (ny(da, ds™) = (P*)®"(ds™)u(a) = u*" (da)Pia)(ds™).

The undominated case for this frame was studied in [8]. In particular, for a fixed integer
n € IN, the condition P,)({S™).) = 0 was characterized by a condition of absolute continuity

concerning FP(,,). Moreover it was presented an undominated Bayesian experiment £,y such
that

Pry{(S™)L) =0, Vre IN; (8)
we stress that (8) holds when &) is dominated because we have (see Proposition 3 in [8])
P(n)(('S"){) =1, Vn € IN.

In such undominated Bayesian experiment £;) we had A = C[0, 1] equipped with the smallest
o-algebra such that (a — a(t) : t € {0,1]) are Borel mappings and, as shown in [12] (see
Theorem 2.1, page 212), this is the Borel o-algebra on C[0,1] relative to the supremum
norm. Hence there exist examples of undominated Bayesian experiment £,y satisfying (8)
with a finite dimensional parameter space A; indeed any two Borel sets (contained in Polish
Spaces) of the same cardinality are Borel-isomorphic (see Remark in [5], page 442) and, as a
consequence of the Theorem of Alexandrov-Hausdorff (see |5}, page 427), all the uncountable
Borel subsets of Polish Spaces have the same cardinality (for instance the cardinality of [0, 1]).

A different approach consists to consider recurrently the case of a pair of observaiions
independent conditionally on the parameter. More precisely one can refer to the ensuing
triplet of Bayesian experiments &,, &; and &;:

£ =(Ax T, A® T,,11,) where II,(da,dt,) = P(dt)pda) = p"*(da) Pr(dl,);
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&, = (A x Tz, A® T, ) where [I;(da, dt;) = P(dtz)p(da) = p*'2(da)Py(dt,);
&3 = (A X (Tj X Tz),A@ (Ti ® E):HS) where £ = (tht?) and

[(da,dt) = P} @ P(dt)uda) = pH{da)Ps(dt);

then, for s{7) = (815..+58n), Wwe can set

£y = 5(,,..1) where ¢, = .s(""];

82 = 8(1) where o = Sn;

£y = E(n) where ¢ = (tl,tg) = (5[“_1): Sn)-

Some results concerning the triplet &, £ and &3 have been proved in [10); in particular
Section 4 in [10] was devoted to illustrate how the results could be adapted to the frame
studied in [8].

A completion of the results proved in [10] will presented in Section 3. In particular the
main result (Proposition 5) allows to individuate (almost surely) the pairs ¢t = (#;,%5) which
give rise to posterior distributions concentrated on the intersection between the supports of
the singular parts of the posteriors related to the single observations ¢; and i, separately.

Finally Section 4 is devoted to give two counterexamples while in Section 5 we shall
present an example about the continuous time and homogeneous Markov chains.

Before concluding the Introduction, there are two other papers ([9] and [11]) in which the
statistical experiment is fixed while one can consider different choices for prior distributions.
The subjects in these two papers are presented below. To this aim the sets of all the prob-
ability measures on A and on S will be denoted by IP{A) and IP(S) respectively; moreover
we shall use the symbol II, in place of II, the symbol P, in place of P and it will be useful
to rewrite condition (4) as follows:

O,.(da,ds) = P*(ds)pu(a) = p’(da)P.(ds).

In [9] the author studied some properiies of the dominating prior distributions w.r.t. a
fixed statistical experiment (P®:a € A4), i.e.

D={pclP(A):II, < p® P}

In [11) the definition of mazimal dominated subset has been presented: a dominated subset
B is said to be maximal if

Ec A = #(EnN(B)) < #IN
where A" is the family the dominated subset, i.e.
A'={E € A:3Qz €EP(S),ea€ E = P° L Gz}

Some results relating the maximal dominated subsets and the dominating prior distributions
are also presented in [11].

2 Some results about the ”general structure”.

As shown in [9] (see Proposition 18) we can say that

P(51) <1 - p(Ag),

where, w.r.t. a fixed statistical experiment (P :a € A), the right hand side is the distance

of 4 from the set of dominating prior distributions (w.r.t. the total variation metric); this
was proved in {9] (see Section 2).

By reversing the role of A and S (and consequently the role of # and P), we obtain an
analogous result as an immediate consequence.
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Proposition 2. We have
P(S¢) £1—p(AL).
Furthermore we can prove the next

Proposition 3. We have

P({s € 5, :p°(4¢)>0}) =0 (9)

and

P({s € S¢:p'(AL) >0})=0. (10)
Proof. By (3) and (1) we can say that

p*(A<)dP(s) = I(A¢ x 51) = [ P*(S.)du(a)

5, Ag

and, by the definition of A¢ and by the first part of Proposition 1, we obtain

/sl p’(Ag)dP(s) = f {[ /S ) g(a,s)dP(s)]du(a).

A

Then (9) follows from Fubini Theorem, the definition of §, and the second part of Proposition
1; indeed we have

’/SJ. p’(Ag)dP(s) < /A[ o g(a,s)dP(s)|du(a) = ‘/‘;‘L [L g(a, 8)du(a)]dP(s) = 0.

Similarly we can prove (10). Indeed, by (3) and (1), we can say that

[, #(A)dP(s) = T(AL x S&) = [ P(S<)dp(a)

L

and, by the definition of A; and by the first part of Proposition 1, we obtain

[3 _W(A)dP(s) = [ PS¢ D(a,.))dp(a).

Then (10) follows; indeed by construction we have

[, #(40)dP(s) < [ Po(S< 0 Dla, Nduta) = [ w*(D(.,))dP(s) = 0.0
Now let us consider the set

EZ{EES:P’E#}

where = denotes the condition of mutual absolute continuity. The set S= is measurable; this
follows from a slight modification of the arguments used to explain the measurability of S¢.
Then we have an immediate consequence of (10).
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Proposition 4. Assume that p(A,) > 0. Then we have
P(S=) = 0. (11)
Proof. If u(A1) > 0 holds, (11) immediately follows from (10) because
{seS:p’=p} C{s€S¢:4°(AL) >0}

Before concluding this Section, we want to remark that the derivation of the predictive
distribution by (2) can be easier than the derivation of a family of posterior distributions
by (3). However we can compute P(S¢), P(5.) and P(S.) even if we know the predictive
distribution only; indeed we have

P(S¢)=P({s€ S: [ gla,s)du(e) =1}),

P(S1)=P({s€S: [ gla,s)du(a) = 0})

and

P(S.) = P({s € S: [ g(a,s)du(e) €)0,11}),

where, as a consequence of the first part of Proposition 1, g(a,s) can be seen as a jointly
measurable version of &= (s).

Now let us consider the two positive measures ) and R defined as follows:

X €5 QX)= [ [ g(a,s)du(a))dP(s);

X €S RX) = A - L,g(a,s)dp(u)]dP(s).

Then each possible case concerning the mutual Lebesgue decomposition between @ and R
corresponds to a situation (in terms of zeros and non-zeros) for the triplet

(P(S{)i P(S.L)*.'P(S'));

thus the ensuing seven cases provide a qualitative classification for the Bayesian experiments.
Case A. QLR & (> 0,> 0,0);

Case B. A< Q & (> 0,0,> 0);

Case C. g < R & (0,>0,>0);

thus we immediately have

Case D. QLR,Q <« R,R<K Q are false <> (> 0,>0,> 0)

and, by combining Case B and Case C,

Case E. @ = R & (0,0,1), where Q = R obviously means that Q < R and R < Q.

In conclusion we stress that P = @ + R by construction; moreover only the null measure 1s
absolutely continuous and singular w.r.t. a positive measure. Then the last two cases ate
Ca:lse F.R=P & (0,1,0) (by combining Case A and Case C)

an

Case G. Q@ = P < (1,0,0) (by combining Case A and Case B).



C. Macci 147

3 Completion of the results in [10].

First of all we recall some notation and results in [10].
For k = 1,2 let us consider the Lebesgue decomposition of Il w.r.t. z ® P

C € AT~ I(C) = [ gula,tu)dln ® Pul(a,t4) + Tu(C N D)
where {¢ @ Pi](Dx) = 0 and, moreover, set
K = {(a,t1,t2) € Ax T, x T>:(a,t,) € Dy,(a,tz) € D2};
it is easy to check (see [10], Proposition 2.1) that
K(.,t) = Dy(.,t;) N Dy(.,¢2)

where ¢t = (¢;,2;) and Di(.,t:) = {a € A: (a,tx) € D }.
The main result proved in [10] is the following {see Proposition 2.4}:

P({t=(ts,t2) €Ty x Ty : E € A pHE) = ‘éﬁﬁg [1— p(K (., 2))] + L EN K(,£))}) = 1

where

G(E, L) = fE 91(a, tl).‘}'?(“: t2)dp(a)+ EnDy(uth) g2(a, tﬁ)dﬁh *(a)+ EnDa(.t2) a1(a,t, )d#-.!z(a);

for proving this, the ensuing formula is employed (see [10], Corollary 2.3):
X €T ®T— P(X) = [ G(AIP @ P(t) + [ B )Ps(). (12)

Moreover (see [10], Proposition 3.1) we have

Py((Ty x T3)1) 2 max{P((T1).), P2((T2)1)}- (13)
Finally, for concluding the presentation of the results in {10], set
Bl - {é = (tl,tz) & T; X Tz : ph‘.(K(.,;_)) > 0},

B, = {t =(t1,t2) €T\ x T : (K (.,t)) > O},
Bﬂ -~ Bl U Bz

and

By = {t = (tt2) € Ty x Ty : (K (1)) = 1}.
Then the following results hold (see {10], Lemma 3.3 and Proposition 3.4):

P ® P‘Z(B{]) = 0; (14)

P:](Bo) > 0= P';(B:;an) = 1.
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Now one can expect that an inequality similar to {13) holds for absolutely continygys
posterior distributions, i.e.

P((Ty x Tz)¢) < min{ P, {(T1)<), P2{(T2)«)}- (15)

It will be shown that (15) fails for Example 1 in the next Section even if
P((Ti)<) = PA(T2)<) = 0.

The main result in this paper consists to individuate (P3 a.s.) the set Bj, i.e. the se
of observations £ = (&;,¢2) which give rise to posterior distributions u® concentrated on the

intersection K{.,t) of the supports of the singular parts of p"* and 12 (wr.t. p).
For doing this, we need to consider the Lebesgue decomposition of P; w.r.t. P, ® P,:

X €T, ®T — Py(X) = [ H(O)[P ® Pi](t) + Py(X N B) (16)

where [P, @ P;}(B) = 0; moreover set
F = {_t_ = (tl,tz) c T'[ X Tg : G(A,_t_) = 0}.

Then we can prove the next

Proposition 5. We have
Pa(B;;A(FU B)) — 0. (17)

Proof. We shall consider the case P3(B) €]0, 1] only; the cases P3(B3) = 0 and P3(B,) =

1 can be seen as two simplifications.
By taking into account (16), (12) can be rewritten as follows

X €8T P(X) = [ G(A,t)d[P ® Rij(t)+

T XnBe FE(K("Q)JP 3(t) + XnB p(K(.,t))dPs(t) =

= [ 1G(A,8) + B{(K () HDIIP: @ Pal(t) + ./_;:ns (K (., £))aPs(t);

then, by comparing the latter with (16) (in other words by the uniqueness of the Lebesgue
decomposition), we obtain:

P5(Bs|B) =1 (18)
and
Ps({t = (t1,t2) € Ty x T2 : G(A,t) + u K (., t))H(t) = H(t)}|B°) = 1. (19)
It is useful to remark that
Py({t = (t1,t2) € Ty x T : H(t) > 0}|B°) = 1;
then (19) can be rewritten as follows

Py({t = (t1,t2) € Ty x T : g K(.,¢)) = i) I-;.((E)(A,Q‘HBE) =1
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and we have
Py(B3;AF|B°) = 0. (20)
Now we can obtain (17) by proving that
Py(B3A(F U B)|B®) = P3(B;A(F U B)|B) = 0.
Indeed by (20) we have
Py(ByA(F U B)|B°) = P3(Bs N F° N B°|B°) + P((F U B)N BS|B°) =
= Py(B3 N F|B°) + P((F N BS) U (B N BS)|B°) = Py(B; N F[B°)+
+P3(F 0 BS|B°) = Py(B;AF|B%) = 0

and

Py(B:sA(F U B)|B) = P3s(ByN F N B°|B) + P3((F U B)N BS|B) =
= Py((FUB)N BS|B) = 0;
the last equality follows from (18) that is equivalent to P3(B5|B) = 0. {

By taking into account condition (14), one could wonder if the singular part of P; w.r.t.
P, ® P, is concentrated on B,. As we shall see in the next Section, this is not true for
Example 2.

4 Two counterexamples.

In this Section we show two examples; for the first one (15) is false, the second one shows
that, in general, we cannot say that the singular part of P; w.a.t. P, ® P, is concentrated

on B”.
For our aim in general we shall denote by the probability measure concentrated on the
singleton 2 by §, and the usual Lebesgue measure on the real line by A.

Example 1. Let us consider the following positions:
A=T\=T,=[-L,Y, P’ <= P’ =X and P! = P§ =§,fora # 0, p = 3[6o + A).

21212

Then, for k = 1,2, we have (VE € A and VX, € T;)
1
(E x Xx) = [ PE(Xe)du(e) = 5IMX)1e(0) + A(E N Xe)
whence it follows P = \; thus Pi((T%).) = 1 (and in particular Pr((7%k)g) = 0) because

1
P({th €Ty :p"* = §|‘50 + 6,1} =1

and

1
P({t, € Ty : p*? = 5[60 +6,]}) = 1.
Hence, if (15) holds, we should have P3((T) x T2)«) = 0. On the contrary we have

P ((Ty x To)e) = 5
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and

1
P3((T1 X Tz)l) — "2".
We obtain this by noting that (VE € 4, VX, € 7} and VX, € T5)

O3(E x X; x X;) = /E P?(X,)P2(X»)dp(a) = -;—[A(Xl)z\(XQ)IE(U) + ME N X, n X))

and
1
PS(-XI X Xz) — E[A(Xl)l(-xé) + A(Xl M X2)]1 VX!1X2 € Ti — 7;;

Then, if we set
U={t=(tt2) €Ti x Tz : t = 15}

and
V={t=(,8)eTixTr:t #t},
we have
P({t=(, ) €Ty xTh: gt =}HV) =1
and
P({t=(t1 ) e x Ty pt =8, = §,}|U) = 1
with

PyU) = Py(V) = 5.

Now let us consider the second example.

Example 2. Set I =[0,1}, A=Ti=To=IxIxIand p=A®)® A Moreover denot
the Borel o'-al§ebra. on I by B. Finally set
a3

P]u = ‘F’!I.(“'lh':l2 = %[6(511"[:“1) + 6(“11“2!“'2)]’ Va' E A
and

Pza = Pz(ﬂhﬂ!#a) o %[&n;,a;,a;) + E(Emuz.na)]: Va € A.
Then we have (VE, E? E3, X1, X2, X3 € B)

IL(E'x E*x EB*x X} x X2 x X3) =

1
= 5IME' N X) N XT N XDMEME®) + A(E' 0 XME® 0 X7 N XPME)]

whence we obtain
1
P(X] x X7 > X3) = SIMX] 0 X200 X3) + AXDMXE 0 XD
hence, for t; = (t},3,13), if we set

Uy={t €T : t] =2 = t3}
and
Vi={theT ¢ #1 =1t}
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we have
P({tieTh:p"* =81 @ 2@ AHU) =1
and
P({ti€Th: p"* = 2 @62 ®AHW) =1
with .
PI(UI) = P[(I/‘i) = -2-.

Similarly we have (VE', E*, E® X1, X2, X3 € B)
H(E' x E* x E® x X} x X? x X3) =

1
E[A(E‘)A(EZ)A(ES NX; NX;NX3)+ AEHYME?n X! n XIOME® n X))

and

1
Po(X} x X3 x X3) = LIACK] 0 X2 0 X3) + ACKE 0 XDAX))
hence, for t, = (t1,2,¢3), if we set

U2={t2ETg:tl=t§=tg}

and
Va={t € T :t; =13 # 13},
we have
Po({t2€To:p"2 =A@ ® b2 }|U>) =1
and
P({t2€ T : p*? =A@ 83 ® §3}|V2) =11
with

PiU:) = Pu(V) = 5.

For the Bayesian experiment £; we have
I3(E' x E? x B° x X} x X x X} x X x X2 x X3) =

1
= Z[A(El NX] NXZN XHAMEHME} N X} 0 X2 N X3)+

+ME' N X N XN XHME*N X3 N XHAE2 0 X3)+

+ME' N XDAME* N X N XHIME* N X3 N X2EN X))+

+AE' N XDHME N XN XIn X n XHME® N X))
(VE', E?, B3, X}, X2, X3, X}, X2, X3 € B) whence we obtain

Pi(X|! x X? x X? x X) x X2 x X3) =
1
= 20MX] 0 XE 0 XHAX] 0 X3 0 X3) + MX] 0 XN XPMX] N X2AXD)+
FAMXDIMXIN XM N XIN XD + M(XDIMXEINXInXin X)AMX)
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while we have |
PL@P(X! x X2x X} xX; x X2x X3)=

- %p( X! 0 X2 0 XHAX] 0 X7 N XT) + MX] 0 XT N XPIMX; 0 XDMXD)+

FAXDAXE N XHAX; 0 X5 N X3) + AMXDAMXT N XDMXZ 0 XHMX)];

thus the singular part of P; w.r.t. P; @ P; is concentrated on
B={(tit) €Ty xTy: 82 =¢] =t; =13}
with :
P3(B) = 1
Now let us consider the following sets:
W = (U x Ty)n (T x Uz);

W, = (Uy x T)) N {Ty x Va);
Wi = (V, x T3) N (1) x Uyp);
Wi = (Vi x )N (Ty x Vo) N B;
thus we have P3(W;) = ¢ (for k = 1,2,3,4). Then, by recalling the notation

i = (tl,tz) = ((t{,tf,t‘;’),(t;,tg,tg)),

we have four cases:

Case 1. P_—;({L = T] X Tg : f.ﬁi = 5;_} X A @ 6‘§}|W1) = 1;
K(.t)=({;} x IxI)N(I x I x{t3}) = {11} x I x {£3}
and in particular ui( K(.,¢)) = 1;
pt(K(W8) =6 ®A®A{t1} x I x {t3}) = 0;
w0 (K(,8) = A ® A ® 8s({t]} x I x {£}) = 0.

Case 2. .P3({§_ = T] X Tz : p!' = t} D 6,_% X StgHWz) = 1;
K(.,t) = ({t;} x I x )N (I x {t3} x {13}) = {t]} x {83} x {t3}
and in particular pY( K(.,t)) = 1;

p(K(,t) = 6 @ A @ A({t]} x {t7} x {13}) = 0;
p (K (1) = A ® 8z @ 53({t1} x {3} x {t3}) = 0.

Case 3. Pg({ﬂ c T] ) 4 T2 : ﬂ!- = tli & 5:% ® E,_g}IW:,) = 1;
K(.,8) = ({t;} x {1} x )0 (I x I x {t3}) = {t}} x {¢7} x {3}
and in particular p4( K(.,t)) = 1;
pt(K (L)) = 6y ® 8z @ A({t}} x {t]} x {t3}) = 0;
p5(K(8)) = A ® A ® ({2} x {2} x {£2}) = 0.

Case 4. ({teTi xTh: pt =6, ® b ® 5 HW,) = 15

K(o0) = ({1 x 180 x D)0 (1 x {6} x {65) = {81} x {8} x {8}
and in particular p(K(.,t)) = 1;
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pro(K(.,8) =8 ® 62 @ A({t1} x {81} x {83}) = 6;
p2(K(.,2)) =28 63 ®6s({t1} x {87} x {£3}) = 0.

In conclusion we can say that P3(B,) = 0. We can also say that P3(B;) = 1 because we
have pt(K(.,£)) = 1 in each one of these four cases.

5 An example about the continuous time and homo-
geneous Markov chains.

Let us start by recalling the terminology for a continuous time and homogeneous Markov
chain (Z;) with state space E. Under the continuity condition

Lim P(Z, = j|Zo = i) = &; (i,j € E),

we have (see [2]|, page 292)

. P2, =3|Zo=1 Ty

lim Lo il—t' ‘)—Qij<+m (i#j€E)
and 1—P(Z, =1Z¢ =1

%i_lg—_-—-( ':tl-g:t)—qa£+m (2 € E).

Here we assume that (Z,) is stable and conservative; then, for each i € E, we have ¢; < 40

and
¢ = Z Gi; .
I
Moreover, for each : € E, we shall use the convention

gii — —4;

and the matrix Q@ = (q9i;)ijeg is called Q-matriz of (Z;).
After these preliminaries, we shall present the example we want to study. Let us suppose
that:

Z = (Z,) defined above is irriducible;
P(Z, = z;) = 1 for some 2y € F;

Zl = (Xh 1,!)

where X = (X;) and Y = (Y;) are also Markov chains with the same hypothesis. More
precisely we have

E=ExXEy

where Ey is the state space of X and Ey is the state space of Y.
Furthermore the Q-matrix of X will be denoted by

Qx — (Qi:’jrl )Iu.I:EEx
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and the Q-matrix of Y will be denoted by

Y
QY a (qmyl )Wilﬂ EEY;

thus we shall use the notation

Q = (9(zo.m0)z1 11 ))(ru o h(x1.n )EE-

Thus, by referring to the previous terminology, we shall consider X as the paramete;
(signal) and Y as the sample (observation); thus the law of Z is II, the law of X is 4 apg
the law of Y is P. Moreover we remark that Z is also a Markov chain under the law 4 g p
and we shall denote by

Q- - (ql(;mm)(ﬂ'l .y;) ){I{hm )1(31 it )EE

the correspondent intensity matrix; in this case the condition of Bayesian domination (5) is
equivalent to

qamm}(#lm) =0 = gsoao)mm) =0 ((To,%0) # (z1,1) € E). (21)

Let us start by considering the following result which illustrates the link between Q*, QY
and Q*.

Proposition 6. We have:

To # Z1,Y0 F V1 = Qrpno)(man) = U5 (22)
To =21 = T, ¥Yo '-)é h = q;:,m)(:,yl) = q:um; (23)
Zo # LYY= =YY= qzl:n,y)(:r; v - qf’u-ﬂ ‘ (24)

Proof. Let us consider (zo,%0) # (21,%1). Then we have

= Jim £8P = (21,10)1Z0 = (20,30))

q&u.m)(ﬁ W

{—0 t
= lim ﬂ'(Xt = $1|Xu = mU)P(}’t = yllx?l = yﬂ) = 5:.1;.110)(::1.111) —
t—0 ¢ -
= i P = 21 Xo = 20)P(Y = 1Yo = y0) — buoz, P(Y = 31[Yo = 30)
t—0 ¢
+6-1‘ﬂ=1 P(l,t - yl‘llﬂl: yo) e 61?021 6“”“
— ; —————
. -X —_— X — o ] a— —
= im[P(Y; = Y5 = yo)uw Ozqzy P(Y, yllet Yo) ~ dwum)
= 6?0#! ]‘j-% E&_L:j.ﬂ_x_{lt__:: EE_):' 6"011 + E:Iro.tl ]t-in% P(]-,I = yl'},ﬂt= ?10) - Jyum ‘

This completes the proof, as one can directly check by considering all the possible cases: Y

As an immediate consequence we have the following
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Proposition 7. (21) holds if and only if we have

To # T1,Yo 71'- Y1 = Q(zouw)(xin) = 0. (25)

Proof. If (21) holds, (25) follows from (22).
Then now assume that (25) holds. First of all by (22) we can say that

Wzowo)zrmn) = 0 = Azoo)(zim) =0

when z¢ # z; and yp # 1. Then we obtain (21) by proving that

Uen)zan) = 0 = daw)ize) =0, (2 € Ex,y0 # 31 € Ey). (26)

and

Yzon)imrw) = 0 = Qzom)mw) =0, (20 # 21 € Ex,y € Ey). (27)
Let us start with (26). For yp # ¥ € Ey we have
(Z, = (2,41)|Z0 = (=, ))

Q(z.)(zan) = Lim

t—0 4
N _[_!(XI — 3:11 =y, Xo=2x,Yp = yl))_ —
t—9 tH(XU — z,‘Yb = yo)
e T H(Xr. =3:Yt"‘—' Y1, Xo = 3,1’o=yu) H(Y{J =‘y0) <
t—0 tH(Y{} = y[]) H(XO =z,Yy = yﬂ) B
< H(Yﬁ — yﬂ) Lim (Y, =4,Y = yo) _ H(IEJ = yn) qr
B H(Xu = :c,YU — 'yu) L= () t]_I(YD — yu) H(XU — 3}};} — y{}) Yoth

and (26) follows from (23). In a similar way (27) follows from (24). {

In conclusion the condition "the probability to have common jumps for (Z,)¢cio 1) is null
(for any arbitrary 7' > 0)” is equivalent to the Bayesian domination; this follows from the
equivalence between (5) and (21) and by taking into account the interpretation of the entries
of Q) (see [2], page 293, equation (8.15)).
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