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A SUBSIDY-SURPLUS MODEL AND THE SKOROKHOD PROBLEM
IN AN ORTHANT

S. RAMASUBRAMANIAN
We consider the deterministic Skorokhod problem in an orthant of the form

f 4
Zw(t) = w(t) + / b(u, Yw(u), Zw(u)) du + / R(u, Yw(u—), Zw(u—)) dYw(u)
0 0

with (Yw);(-) nondecreasing, and (¥w);(-) not increasing while (Zw)i(-) > 0. This can be viewed
as a subsidy-surplus model in an interdependent economy. Existence of a unique solution is
established under fairly general conditions (viz. with R(-,,-) satisfying a uniform spectral radius
condition). Comparison result for (SP) vis-a-vis the usual partial order on the orthant is studied;
we show that the more “inward looking” the reflection vectors and the drift, the larger the values
of Yw will be but the values of Zw will be smaller. In addition to showing that the Leontief-type
output is a feasible subsidy, connection between (SP) and “minimality” of feasible subsidies is

discussed (consequently it is suggested that (SP) may be taken as a continuous time feedback-form
analogue of open Leontief model).

In the stochastic case, (Y(¢),Z(¢)) turns out to be a strong Markov process if w(-) arises

from alevy process. Relevance of the comparison result to recurrence/positive recurrence of Z(-)
process 15 pointed out,

1. Introduction. The Skorokhod problem in nonsmooth domains has been an object of
intensive study ever since reflected Brownian motion in an orthant with oblique refiection
was suggested as a heavy traffic limit for tandem queues; see, for example, Harrisonand
Reiman (1981), Dupuis and Ishii (1991a, 1993); Shashiashvili (1994), Mandelbaum and
Pats (1998). Prior to these Tanaka (1979) has investigated the Skorokhod problem with
normal reflection in convex (not necessarily smooth) domains. The deterministic Sko-
rokhod problem itself attracted attention because, in the case of Brownian motion, one
can get the reflected process in a path-by-path fashion once the deterministic problem
is solved; in addition to the references given above see Reiman (1984), Bernhard and
El Kharroubi (1991), Mandelbaum (1989).

Recently in an interesting paper, Chen and Mandelbaum (1991) have proposed the
deterministic Skorokhod problem in an orthant as a continuous time Leontief type mput-
output model (this paper is the direct motivation for the present investigation). They
assume that the reflection matrix (or input-output/consumption matrix in the language of
economics) is constant and that the off diagonal elements are negative. They show in
particular that the y-part of the solution of (SP) (that is, the function whose coordinates
are nondecreasing) is minimal (or efficient) among all feasible production plans. (They
interpret y;(¢) as a feasible cumulative production of commeodity i over [0,¢].) This min-
imality result is inspired by a similar result of Reiman (1984) in the context of queueing
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networks. (In queueing theory y;(¢) is interpreted as a measure of cumulative potential

output/demand lost over [0,¢] due to buffer i being empty.)
In the present work we consider the Skorokhod problem in an orthant G given by

(1.1) Zw(t) = w(t) + /; ‘ b(u, Yw(u), Zw(u)) du
+ / | R(u, Yw(u—), Zw(u—))d(¥Yw)(u),
0

'
(12) Y w)(t) = /ﬁ Loy ((@w)i(s)) d(Y w)i(s),

where w is a given r.c.l.l. R? valued function, b, R, respectively, are given R? valued,
matrix valued functions on [0,00) X G x G; see §2.

We argue that (SP) in an orthant can be considered also as a subsidy-surplus model
in an interdependent economy; the y-part is taken as cumulative subsidy and the z-part
as the current surplus; so y(:) can be considered as a measure of the subsidy needed to
have a surplus (>0) in each sector of the economy. In such a set up, R(: - -} = ((zii(- - )))
can be taken as a policy of allocation of funds/subsidies among various sectors of the
economy. It is natural to assume that the policy of allocation depends not only on time
and current surplus but also on the cumulative subsidy. For example the policy can be
that a sector which has received a greater subsidy up to the present is to be allotted
less, or should play a greater role in mobilising subsidy for other sectors. So the #;;’s are
functions of y n addition to ¢, z. We also introduce a drift b(- - -), called innovations; this
again can depend on ¢, y, z. (It may be mentioned that, in all the papers cited above, the
drift and the reflection matrix are either constant or state dependent; to our knowledge,
the coefficients depending on y have not been considered before.)

Also r;(---) being positive or negative, for i # j, has a natural interpretation in our

setup. f; r;}(---)dyj(-) can be taken as the part of the subsidy mobilised for Sector j
but spent actually on Sector i over [0,7]; such a situation is not meaningless. Next,
f{; r;; (-++)dy;(-) can be taken as the part of the subsidy for Sector j raised from Sector i.
Many obvious examples can be given to illustrate this situation.

These considerations make it necessary to distinguish between “the subsidy mobilised
for Sector j” and “the subsidy given to Sector j.” Also the difference between “the
subsidy mobilised for Sector j” and “subsidy mobilised for Sector j from other sectors”
can be taken as “the subsidy mobilised from external sources.” Our uniform spectral
radius condition (A3) would mean that the subsidy mobilised from external sources is
nonzero; so this would be an “open system” in the jargon of input-output analysis. The
normalisation r; =1 just means that a nonzero subsidy is actually given to Sector i from
the subsidy mobilised for Sector i.

Similar interpretations apply to 6%(---), b=(---); see §2.

We now briefly outline the contents of the paper. In §2 we describe the subsidy-surplus
model in terms of the deterministic Skorokhod problem. In §3 we prove the existence of
a unique solution. For this we use a generalization of the contraction mapping argument
of Harnson and Reiman (1981); however in our approach we simultaneously approximate
y,2z-parts, using the variation norm for the y-part and the sup norm for the z-part. Besides
an estimate on the variational distance of maximal functions due to Shashiashvili (1994),
the key to our approach is an a priori estimate for the standard subsidy (that is, the y-part
of the solution of (SP)) in terms of a Leontief-type output function, and the fact that the
set of subsidies bounded by the Leontief type output is invariant under the map 7. The
maps I and § are defined by (3.15)—(3.17).
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In §4 we establish some comparison results, a key assumption being ry(--+), i#j are
ponpositive. This involves a detailed bare-hands analysis of the map (7,S). The results
are intuitive in the sense that the more “inward looking” the reflection vectors (that is,
the greater the internal mobilization of subsidies) the larger the values of y will be but
smaller the values of z will be. As far as we know there has been no previous work
on the comparison result for Skorokhod problem even when the coefficients have no
y-dependence.

The next section deals with feasibility and minimality: As can be expected, a subsidy
y is called feasible if the solution of the corresponding vector integral equation (see
(5.1)) is nonnegative. It is shown that the Leontief-type output function is a feasible
subsidy. Various natural notions of minimality are defined. Among other things, we prove
a generalization of the minimality result of Reiman (1984) and Chen and Mandelbaum
(1991) alluded to above.

Section 6 deals briefly with the stochastic case when the exogeneous flow w(-) is driven
by a Levy process. It is shown that under our assumptions the solution {(¥Y(¢),Z(¢)): t>0}
of the stochastic (SP) is a strong Markov process. Z(-) itself will be Markov if b(---),
R(---) are independent of y. When the exogeneous flow is Brownian, results of §4 enable
us to say something about recurrence, positive recurrence of the Z(:)-processes correspond-
ing to different reflection fields — viz. a more inward looking process is recurrent/positive
recurrent if a less inward looking one is. In the last section we mention a few open prob-
lems.

To sum up, the subsidy-surplus model outlined in §2 can be taken as the continuous-
time, feedback form analogue of the open Leontief model. In the continuous time case,
when R(---) is not constant, it is not clear in general if optimal solutions (or efficient
plans) exist under the usual type of minimality criteria (of the sort considered in §5).
In this context note that the condition (2.1) of the Skorokhod problem, viz. standard
subsidy for Sector i can be mobilised only when Sector i has no surplus, i1s ¢ssentially a
minimality condition. This minimality condition (which is also quite natural, but perhaps
less obvious than other minimality conditions) proves to be mathematically more tractable.
See Paragraph 3 in §7.

We now fix some notations.

G={xeR%x >0, i=12,...,d};

D([0,00): R?) denotes the space of all R¥-valued right continuous functions on [0, c0)
having left limits at every ¢ > 0; for a function w on [0,00), w(¢—):= lim,;, w(s) denotes
the left limit at «.

D([0,00): G) = {w € D([0,00): R*): w(t) € G Vt};
D1([0,00): G) = {y € D([0,00): G): y:(-) is nondecreasing function for each i};
D1o([0, 00): G) = {y € D+([0, 00): G): ¥(0) =0}.

Similarly D([0, £]; R?), D([0,¢]: G), D+([0,7): G), D1o([0, t]:_é), can be defined. Whenever
the context is clear we shall write Dy x D for D1([0,00): G) x D([0, 00): G).

2. The model. Consider a class of d interdependent sectors in an economic system.
The system is known to evolve in a certain fashion if no action is imposed on it; (some-
times called “exogeneous” evolution). We propose introducing a set of “innovations” and
a “policy of allocation of funds/subsidies” on the system. The situation may be described
by the model below.

Let G={xeR¥:x;>0,1<i<d} denote the nonnegative d dimensional orthant. We
have w € D([0, 00): R?), b:[0,00)x GXx G — R4, R:[0,00)xG xG — My(R); here Ma(R)
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denotes the space of dxd matrices with real entries (we often denote w(t)=(w,(2),...,
wa(t)), by, y,2)=(br1(u, y,2),...,ba(u, y,2)), R(u, y,z)=((rij(u, .22 <i, j <a)- We seek
Yw,Zw such that the following hold:
(i) Zw € D([0,0): G);
(ii) Ywe D¢([0,0): G);
(i) for 1<i<d, t>0,

F o
2.1) ]ﬂ To.00)((ZW)(5)) d(¥ W)i(s) =0;

(iv) for 1<i<d, t>0,

(2.2) (Zw)i(t) = wi(2) + /0 bi(u, Yw(u-), Zw(u-))du

4

+ (Yw);(t) + Z f rij(u, Yw(u—), Zw(u—))d(Yw);(u).
j#i VO

We have taken Yw(0—)=0=Zw(0-), and suitably normalised so that ri(:)=1 for all i.

Observe that there are two unknowns; (2.2) is called the Skorokhod equation. Any

(Yw,Zw) satisfying the above is said to solve SP(w,b,R) or the Skorokhod problem

((SP) for short) corresponding to (w, b, R).

The following interpretation can be given. We assume that the (effects of) innovations,
subsidies, surplus etc. have been quantified in terms of some currency in the discussion.

wi(¢)=net of cumulative exogeneous amount of income less expenditure in Sector 7
over the peniod [0,]; so w(-) represents the “net evolution” of the system when no action
1S imposed.

In expressions of the form b;(u, y(u—),z(u~)), rii(u, y(u—~),z(u—)) we take u as the
time parameter, y(u)=(y\(u),...,ys(u)) as the cumulative subsidy given to the vari-
ous sectors over the period [0,u], and z(u) as the current surplus at time u; b(-,-,-)
is considered the innovations introduced, and R(.,-,-) is interpreted as the policy of

allocation/mobilization of subsidies. If y(.), z(-) are respectively the cumulative subsidy
and current surplus functions, then

| Byt du= [ G W, atu) e

= amount of Sector i produced over [s,t] due to innovations (but excluding the subsidy
for Sector i);

| b sy stu-ndu= [ b v 2wy

= amount of Sector i consumed over [s,t] due to innovations (but excluding that for the
purpose of subsidies);

/ ri (uy y(u=),z(u—)) dy;(u)

=amount of subsidy mobilised for Sector j which is actually used in Sector i/ (but not
as a subsidy in Sector i) over [s,1?];

[ 778 =2

=amount of subsidy for Sector j mobilised from Sector i over [s, £].
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It is possible that part of the subsidy for other sectors mobilised from Sector i could be
from the subsidy of Sector i. For example such a situation can arise if z;(-) =0, z;(-)=0,
ry(-)<0, i#j over a certain period; see Example 3.8.

If (Yw,Zw) solve SP(w,b,R), then we call Yw the standard subsidy and Zw the
standard surplus corresponding to the exogeneous evolution w, innovations b, and subsidy
allocation policy R. The condition (2.1) means that the standard subsidy for Sector j can
be mobilised only when Sector j is “empty” (that is only when Sector j has no surplus;
mathematically (¥w),(-) can increase only when (Zw);(-)=0). Consequently observe that

@) X [ Ywu-) Zuu-dcrwy)
!

=YWy + f P, Y w(u=), Zw(u—)) d(Y w) ()

= cumulative standard subsidy mobilised
for Sector j over [0,¢].

And, of the above, (Yw);(¢) is actually given to Sector j (so our normalisation rj;(-) =1
basically means that the fraction of the subsidy given to Sector j from that mobilised for
Sector j is bounded away from zero under the continuity assumption (A2) of the next
section; this is quite a natural assumption). Also observe that

(24) Z /0 vy (u, Y w(u~), Zw(u—))d(¥Yw);(u)
f

= Z / ry (4 Y w(u—),Zw(u—))d(Y w);(u)
i#j ¥

== cumulative standard subsidy mobilised for Sector j

from other sectors of the system over [0,1].

Therefore (2.3) minus (2.4) gives the cumulative (standard) subsidy mobilised for Sector j
from external sources over [0,1].

REMARKS.

(1) The coefficients b;, r;; being functions of y is perhaps new, but quite reasonable.
For example, increased food subsidy in times of drought (when food surplus is
zero) can have positive effects on other sectors. As extreme examples one can
consider public health, education, research and development, government, etc.;
such welfare sectors can in principle be “no surplus” sectors.

(2) The reason for taking R(u, Y w(u—),Zw(u-)) as the infinitesimal element, rather
than the more natural R(w, Yw(u),Zw(u)) is technical; in the latter case there is
no uniqueness even in certain simple situations; see Shashiashvili (1994). In the
context of the stochastic problem in §6, this would ensure predictability of the
processes.

(3) While considering queueing networks and reflected diffusions, it is customary to
take w(0) € G and hence Y w(0)=0. However, in our discussion such a restriction
may not be warranted. For example a particular sector may be in the red to start
with and would need a subsidy right away. Also Yw(0-)=0=Zw(0-) 1s a very
natural convention to make. |

REmArk 2.1. Suppose b=0, r;; are nonpositive constants for i # j, ry =1, and wi(:)=

hegative constant for all i. This situation is formally the classical Leontief input-output
System, One can write R=/ — ¥ with / denoting the identity matrix and V' being a non-
negative matrix with zero diagonal entries; R is sometimes called a Minkowski-Leontief
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matnix; see Karlin (1959). If the spectral radius of V is less than unity, the system is
generally known as the open Leontief model. In such a case (—w) is interpreted as “final
demand,” the nonnegative solution y=(1 — ¥)~!(—~w) is taken as “the output needed to
meet the demand without any surplus/profit,” and r;;’s are input coefficients (|rij| being
proportional to the amount of ith good needed to produce one unit of the jth good). For
more information concerning the Leontief model see Karlin (1959), Nikaido (1968). The
matrix (I — V)~! is called the Leontief inverse in economics literature.

REMARK 2.2, The case b=0, r;; =nonpositive constant, i 3 j, and r; =1 has been con-
sidered by Harnison and Reiman (1981), Reiman (1984), Chen and Mandelbaum (1991),
just to mention a few. Harrison and Reiman investigate a heavy traffic model for queueing
networks in terms of reflected/regulated Brownian motion; R is then called the reflec-
tion matrix. Chen and Mandelbaum (1991) consider a continuous time analogue of the
Leontief model. In the context of RBM and SDE’s with boundary conditions, when i
are not necessarily negative, and the coefficients depend on z, there have been many stud-

ies; see Bernard and El Kbarroubi (1991), Dupuis and Ishii (1991a, 1993 ), Shashiashvili
(1994), Mandelbaum and Pats (1998).

3. Existence and uniqueness. To establish the existence of a unique solution to
the deterministic Skorokhod problem formulated in the preceding section, we make the

following hypotheses on b, R. The continuity assumptions below are with respect to the
Euclidean norm.

AssUMPTION (Al). For 1 <i<d, b; are bounded continuous; also (y,z)w b;(1, y,2) are
Lipschitz continuous, uniformly in t.

AssuMPTION (A2). For 1<i, j<d, ry are bounded continuous; (y,z)w ry(t, y,z) are
Lipschitz continuous, uniformly in t. Moreover ry =1 for all i.

ASSUMPTION (A3). For i#j there exist constants vy such that |ry(t,y,z)| <vyj. Set

V =_(vy)) with vy =0; we assume that o(V') < | where (V) denotes the spectral radius
of V.

Remark 3.1. As o(V)=a(V?'), where V1 is the transpose of ¥, by (A3) note that there
exist constants q; > 0, 1 <i<d, and 0 < ¢ < 1 such that

(3.1) > ailrt,»2) < ) _ajvi<aa
J#i J#i

for all 1<i<d, t>0, y,z€ G, see p. 160 of Dupuis and Ishii (1991b) for a proof. [
For our purpose it will be convenient to have the following metric on D1([0,M7] : G) X
D([0,M] : G) where M > 0.
Let a;’s be as in Remark 3.1. Let ¢; > 0, c; > 0 be arbitrary but fixed numbers (these
will be chosen suitably later). For (y(-),z(-)), (¥(-),2(-)) €Dy x D set

d d
(3:2) de((,2), (7. 8))=¢1 > aiou(yi — F) +c2 ) _ aidm(z — £,
i=1 i=l|

where oy (- - -) denotes the total variation over {0,M] and Y (- - -) denotes the supremum
norm over [0,M]. Note that (D; x D,dy) is a complete metric space.
For w e D([0,00): R?) and b(-) satisfying (A1), set

(3.3) hi(t) = ) ;21; jl‘ma:iL{O,. —wi(s)} = : ;l:pg w; (s),



(3.4) B(t)= /; sup{b; (s, ,2): (1,2) € G x G} ds,
for t 20, 1 <i<d. Define (h+ B)-) €Dy by setting
(3.5) (h+B))=h(t)+ (), 20, 1<i<d.

Also to simplify notation, given w, b, R, for (»(:).2(+)) € D1([0, 0): G) x D([0, 00): G),
write
(3.6) (X(»2z;w,b,R)) (1) = (X(y,z;w))(¢)

!
=wi(t) + ]0 bi(u, Y(u=),2(u~)) du

+ Z ryu, y(u—),z(u~—))dy(u)
7

fori=1,2,...,d, t20.
We now give an a priori bound for the standard subsidy.

ProposITION 3.2. Assume (Al)-(A3). Suppose (y,z) solves the Skorokhod problem
corresponding 10 w, b, R. Then

(3.7) ySU=V)'(h+8)
in the sense that
(3.8) Yi(t) (U = V)" (h+ B))(2), 1<i<d, t20.

Proor. By assumption, for fixed i, (y;,2z;) solves the one dimensional (normal)
Skorokhod problem in {0,00) for (X(y,2; w));. Therefore we have

(3.9) w(t)= sup max{0, —(X(»,z;w))(s)}.
0<s<t

By (A3), (3.3), (3.4), (3.6) note that
~(X (3,2 WN(5) S hu(s) + Bils) + D _ vyyy(s).
i

Consequently as A, §;, y; are nondecreasing, by (3.9) we get

yi(t) S h(8) + B(t) + D vy, 1)
JH

for 1<i<d, ¢>0. That is

(3.10) (I = VIV S (h+BX®).
Observe that ¥ is a nonnegative matrix; by (A3) we have that
(3.11) =V)=I+V+V 4

is a well-defined nonnegative matrix. So the conclusion (3.7) is now immediate from
3.10). O

ReEmARK 3.3. Note that h; and B; respectively can be "
demands on Sector i due to “exogencous consumption™ and

of innovation.” So the preceding proposition states that the stan

taken as the maximum possible
“consumption on account

dard subsidy need not
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exceed the Leontief-output ( — ¥)~!(h + B) corresponding to the worst possible demand

(h+p). O
From the preceding proof the following is clear.

ProrositioN 3.4. Assume (Al), (A2), and that ry(---) 20 for all i,j. Let (y,z) be as
in Proposition 3.2. Then y<(h+B). O

Before proceeding further the following comment concerning the Lipschitz condition
may be in order.

Let a;’s be as in Remark 3.1. For x€ R?, put ||x||= Zﬁ;, a;|x;|. As a; > 0 for all i,
this gives a norm equivalent to the Euclidean norm. So we may assume (under (Al),
(A2)) without loss of generality that there is K > 0 such that

(3.12) Ifyz)~ £, 5.0 <K(ly - 5l + Iz = 2I[)
with /=8 or r;;,1<i, j<d, >0, (y,2),(3,£)€Gx G.

A semiconstructive method of solution. The method consists of several steps. Assume
(Al)-(A3).

Step 1. As Yw(0-)=0=2w(0-), at t=0, solving (SP) amounts to solving the fol-
lowing Linear Complementarity problem (LCP): given w(0)€ R? and matrix R(0,0,0),
to find Zw(0), Yw(0) € G such that

(3.13) Zw(0) = w(0) + R(0,0,0)Yw(0),
(3.14) (Zw)(0)-(Yw)(0)=0, 1<i<d.

We can write R(0,0,0)=7 + R(0,0,0) with spectral radius of R(0,0,0) less than 1; to
see this use (3.1) and the remark on p. 160 of Dupuis and Ishii (1991b). So by standard
results on LCP (see Cottle, et al. 1992 or Berman and Plemmons 1979) a unique solution
exists. This can be constructed by the fixed point argument given on pp. 176-177 of
Shashiashvili (1994); such a method can also be gleaned from the analysis given below
in a more general context. See also Step 1 of §4.

Step 2. We claim that it is enough to consider the case when w(0) € G. To see this con-
stder Zw(0)+w(-)—w(0), Yw(:)—=Yw(0), (&, y,z)— b(u, y + Yw(0),2), (u, y,z)— R(u, y+
Yw(0),2) respectively in the place of w, Yw, b, R, and use Step 1.

Step 3. Let we D({0,00):RY) be fixed with w(0)€G. In such a case note that
Yw(0) =0. We now define a map (7,5) on Dy x D (depending on w as a parameter) as
follows:

(3.15) (L,SXy.z)=(T(y,z;w,b,R),$(y,2; w,b,R))=(T(y,z; w), S(y,2; w)),

(3.16) (T(y,z; w))i(t) = | Sup. tmax{ 0, —(X(3,2; w))i(s)},
(3.17) (S(y,z; w))i(t) = (X (3, z; w))(t) + (T(y,2z; w))i(¢),

for i=1,2,....d, t>0, yeDw([O,oo):C?), z € D([0,00): G), where X(y,z;w) is given
by (3.6). Observe that any solution to the (SP) will be a fixed point for the map (7,5)
(this has been partly indicated in the proof of Proposition 3.2 as well). It is also clear
from (3.16), (3.17) that (T(y,z;w)){:) can increasc only when (S(3,z;w))i(-) is zero.
The map T as a function of y is similar to the one considered by Harrison and Reiman
(1981) and by Mandelbaum, Massey and Pats (1995). As (S(y,z;w))i(1)20 is clear
from (3.16), (3.17) the following proposition is immediate.
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prorosiTioN 3.5. (T,S) is @ map from Dy x D into itself with T( »:2; w) € D1o([0, 00):
G) and S(y,z;w) € D([0,00): G). If w is continuous then Cyo([0,00): G)x C([0,00): &)
is invariant under (1,S). U

Another invariant set is provided by the following result, which enables the fixed point
approach to work.

PropOSITION 3.6. Assume (A1)-(A3); let w(0)e G and (h+ B) be as in (3.5). Let
y € D10([0,00): G) be such that y <(I = V)Y“I(h 4+ B) in the sense of (3.8). Then

(3.13) T(y,z;w) < - V) '(h+ B)

for any z € D([0,00): G); that is (T, z;w)E) < - V)~ + B)(?) for 1<i<d,
t >0, z€D([0,00). G).

Proor. Observe that (A + ) and (I — V)~!(k + B) are in Dyo. Next note that

(3.19) Y ] rij(a, y(u=), 2(u=)) dy;() < ) vy y;(s)

ji 70 j#i
<) v d = V) B+ B )= - VY (h+ B)N(s)
J#i

=((I = V)" '(h + B))i(s) — (hi(s) + Bi(s))

whence 1t follows that

(3.20) - (X(hz W) S (U = V)" h + BYils).
This completes the proof. [
Step 4. Set
d
(321) ()y=t+ Y (I = V)" (h+ B)s).
j=1

Let (3,2),(9,2) € Dyg x D with y <(I-V)~'(h+B),  <(I-V)~!(h+B). For convenience
denote T(y,z;w), T(3,%;w),S(y,2z;w),S(9,Z; w) respectively by Ty, T'9,52,8Z; also write
K =E(Zf=l a;) where K is the Lipschitz constant given by (3.12) and the g;’s are as in
Remark 3.1. By the lemma of Shashiashvili (1994 pp. 170-175) concerning variational
distance between maximal functions, and using (3.12), (3.21), (A3) we get |

(322) o (Ty) ~ (T9))
S O((X(»,2;W))i(:) — (X(D,Z; w))(-))

< fo iy (), 7)) — bty $u), 3(u))|

¢
+ Z f i, y(u—),2(u~=)) — ry(u, (u-),2(u—-))| dy;(u)
i V0 |

+ ¢ (Z / | rij(u, P(u—),2(u—))d(y; - J?;)(H))
- j#i /0
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<R f [ly(w) — Pl + l2(u) = Gae)][] A

+R ] [lly(u—) — $u=)|| + llz(u=) — Zu=)]) (Zdy,(u))

J#

+ > vyo(y - )
i

<[ |ozm, (Setor-s0or) (‘"‘*Zd"’"s’)

= ki

+K /9 L s ( g az| ye(u) — f’z(“)l)} (ds + Zdyf(-‘f))

i
+> 50y = 9)
i

d
<K{() (Eaj'h(zj - fj))

j=

d
+IEC(() (Zdj(ﬂ;(}{; = fj)) + Z U:j(ol(.]ff = j’j)'
j=1 J#

Multiplying (3.22) by a;, adding and using (3.1) we obtain for any 7> 0,

d
323) ) aip((Ty) — (TH))

i=]

d
<[+ K(1)) (Za,qo,(x, x,)) + K@) ( Y au(z —é}))

J=1 j=l
Next using (3.17), (3.1), (3.12), (3.23) we can similarly get

d
(3.24) D ah((S2)i — (S£))<2 {rhs. of (3.23)}.

i=1

Consequently for any ¢ > 0, with d; defined by (3.2) we have

(3.25) d((T,§)(»,2),(T,5)(,2))
+2
< ["‘ —( )] [Czj;laj'l’r(z; -—z;)}
Y d
+ [c: -:l 2(a+KC(t))] [c, Y aoi(y; — 53,)] :
J=1

Therefore if we choose ¢y, ¢ such that

(1 -+ 20t)
7 (l—a)’

(3.26)
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and ¢ > 0 such that

(3.27) (1) < o K(:':’_ )

(such a ¢ exists as {(#) 10 as ¢ 0 since w(0) € G), then (7,S) is a contraction map on
the complete metric space

(3.28) By:={(».2)€(D1o x D,d,): y < - ¥)"\(h + B)}.

Qo there exists a unique fixed point in (D,,d,). However, any fixed point (y,z) in Dyg x D
is a solution for (SP), and hence y < (] V)~ l(k +ﬁ) by Proposition 3.2. Therefore (7, S)
has a unique fixed point in (D1o([0,£): G) X D([0,): G), d,) and the fixed point lies in D,.
Thus (SP) is uniquely solved on [0,1].

Step 5. Observe that ¢y, ¢, are chosen so that (3.26) holds and is fixed. Let

h= 4 : < —fﬂ-——} :

LSS =i 0 0S g

Note that f, > 0 as w(0) € G. If {(#) <ac2/K(c) — ¢3), then by the preceding step the
problem is solved uniquely on [0,#]. If {(1) > ac2/K(c1 — ¢;) then { has a jump at ¢
(which can happen only if some of the w;’s have negative jumps of sufficient magnitude
at ;). As {(t) < acy/K(c) — c3) for all 1 <, the problem has a unique solution over
[0,] for every t < t;. Consequently Yw(t;—), Zw(1,—) are well defined and are at our
disposal. Now to extend the solution to [0,#;] we need to find Yw(t),2Zw(t;) € G such
that the following hold:

(3.30) (Zw)(t) = (Zw)(t1—) + w(n ) — w(ty—)
+ (R(tl: YW(H - ): ZW(tl . ))A YW(I] )r
(3.31) (Zw)i(th) - A(Yw)(n)=0, 1<£i<d,

where AYw(t;) = Yw(#;) — Yw(t;—). This is again a linear complementarity problem with
Zw(t)), AYw(t;) as the unknowns. Since

R(ty, Yw(t1—), Zw(ti—=)) =1 + R(t,, Yw(t1 —), Zw(t; =))

with the spectral radius of R(t,, Yw(t,—), Zw(t;—)) less than i, as in Stepl, we have a
unique solution (which again can be constructed in principle). Thus (SP) has been

uniquely solved on the interval [0,#].
Step 6. Set

w(s)=(Zw)(n)+w(s+6) —w(t),  (Yw)s)=Yw(s +4)— Yw(n),
ZW(S)-"'—‘-ZW(S + tl)! E(.s',y,z)*-:b(s + fh}’ + YW(II),Z),
R(s,y,2)=R(s +ti,y+ Yw(),2),  s20, »2€G.

To solve SP(w, b,R) on [f),00) it is enough to solve SP(w,b R) on [0, 00) where w(0) € G
and b, R satisfy (A1)—(A3). Using the analysis as in Steps 3-5, this problem can be
uniquely solved, say, on {0, ¢, — #;]. This means that the ongmal (SP) is uniquely solved
on [0,1]. Repeating this procedure one gets 0 < #; <f2 < =+ <y < -+ such that the
Skorokhod problem is uniquely solved on [0,1,] for each n. |

Step 7. Let to, = sup{t: (SP) corresponding to (w,b,R) has a unique solution on [0,s]
VO<s<1}. If t., < o0, then there exists £, ] foo Such that the problem is well posed on

[0,¢,) for each n. So by Proposition 3.2 we have for 1 <i<d,
(B32)  (Fwh(tw=)= lim (¥w(t)S(( — V) (h+ B)hlteo=) <00
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Consequently by (2.2) and (A3) we get (Zw);(toc—) < 00 for all i. Thus Zw{fo,—) and
Yw(t,.—) are well defined and the problem is uniquely solvable on [0,7] for any 1 < ¢.
Now, as in Step 5 the solution can be uniquely extended on [0,7¢.); and then, as in
Step 6 the solution can be uniquely extended to [0,/] for some f > to. This contradicts

the maximality of 1.
Thus we have proved:

THEOREM 3.7. Assume (A1)-(A3). Then there is a unique solution (Yw,2Zw) for the
Skorokhod problem corresponding to (w,b,R). Moreover

(3.33) (Yw(1) S = V)~ (h + B))(e),
(3.34) (Zw)i(t) S wiH(E)+ 7)) + (T + VYT = V)7 (h+ B))(e),
where V is as in (A3), h, B are given by (3.3), (3.4) and

f
y{t)= f sup{b} (s, y,2):(»,2) € G x G} ds.
0
Also, if w is continuous then so are Yw, Zw. [J

Note that (3.34) follows from (3.33) and (2.2).

One can explicitly solve the Skorokhod problem in the following situation:

ExampLe 3.8. Suppose b;(-,-,-) <0 for all i, r;;(-,-,-) <0 for i # j, wi(:)= —hi(-), 1 <i,
j <d where h; are nonnegative nondecreasing functions. Since w;(¢) + f{; bi(s,-,-)ds in a
nonincreasing negative function for each i, the nature of the Skorokhod problem suggests
that one may try out Zw=0. In such a case the Skorokhod equation (2.2) gives for
1<i<d, 0<s<1,

(3.35) (W) = ()ls) + 3 [ i, =), 0)d(Yw) )
j# T

= (1) — hi(s) + b, (u, Yw(u—),0)du.
(s.1]

Or, equivalently,
(3.36) R(s, Yw(s—),0)d(Yw)(s)Y=dh(s) + b~ (s, Yw(s—),0)ds,

where h(')=(h]('),”.,hd(')), b_("r '1')=(b|_('1 ':')HH&b:('i 'i'))' Thus Yw can be taken
as the solution of the vector integral equation

(3.37) y(t) = h(0) + /0 R™1(s, y(s—),0)dh(s)

!
+ / R=\(s, y(s—), 0)b™ (s, (s~ ), 0) ds.
0

In addition to (A2), (A3) assume that R~!(s, y,0) is Lipschitz continuous in y uniformly
in 5. So by a Picard iteration scheme, the integral equation (3.37) has a unique solution.
As ri(-,-,-)<0 for i#/j by (A3) and an analoguc of (3.11) note that R='(-,-,-) is a
nonncgative matrix valued function. Thus y;(-) given by (3.37) is nonncgative and non-
decrcasing. (It is easily verificd that if we take Yw as the solution of (3.37) and Zw =0,
then they solve SP(w, b,R).) This class of exampies admits the following interpretation.
The equation (3.37) gives the standard subsidy nceded just to keep a system afloat when
there is no production (due to exogencous evolution or innovations) but therc is an ever-
increasing demand due to consumption (due to exogeneous evolution, innovation and
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allocation of subsidies). Such a situation need not be as bad as it may sound! If one
considers, for example, only the collection of all welfare/no surplus sectors then (3.37)

gives the standard subsidy needed to be mobilised from other sectors/external sources.

- ug e D
In view of the lemma of Shashiashvili (1994, pp. 170~1 75) conceming the variational

distance between maximal functions, and Proposition 3.2, the following resuit is easily
proved proceeding as 1n Step 4 above.

ProposITION 3.9. Let w,w € D([0,00):R?) be such that w — w is of bounded varia-
tion over every finite interval. Let (Yw,Zw) (resp. (Yw, ZW)) be the solution of (SP)
corresponding to (w,b,R) (resp. (W,b,R)). If w(-)—w(-) in the variation norm over
[0,£), then YW(-)— Yw(:) in the variation norm and Zw(-)— 2w(-) in the sup norm
over [0,t]. In particular for x € R*,w € D([0, 00): R?) denote Wi(-) =w(-) + x; then for
any t >0, Ywi(-) — Yw(-) in the variation norm and Zwi(:) — 2Zw(-) in the sup norm
over [0,¢), as x—0. [

ReMARK 3.10. Assumptions (Al), (A2) are standard; (3.1) has been assumed by
Shashiashvili (1994) when R depends on z alone. Note that (A3) is a sort of uniform
Hawkins-Simon condition known in input-output analysis. If we assume that R(s, y,z) =
I +R(s, y,z) with spectral radius of R(s, ,z) less than 1 for each 5, ¥,Z, then (3.1) holds
with a;, @ depending on s, y,z (this is precisely condition (3.8) on p. 557 of Dupuis and
Ishii (1993) when R depends on z alone). Using continuity of R it is not difficult to show
that for any s, y,z one can find a neighbourhood around s, y,z such that (3.1) holds with
the same a;,« in that neighbourhood. So by a localisation argument one can establish the
existence of a unique solution to (SP) in such a case (but analogue of (3.33) can be
asserted only locally). |

If ryj, b; are functions only of time ¢, one can obtain an estimate on 3 ; @,((Ty);—(T9);)
in terms of Z}Ll o«((yi — ¥;) In (3.22); it is enough to consider only T rather than (7,S),
and the contraction map argument goes through without any need for restriction to D;;
see Mandelbaum, Massey and Pats (1995). O

REMARK 3.11. In our approach, only Step 7 is not constructive (this explains the adjec-
tive in the subsectional title). To make it fully constructive one has to show that given
t > 0 there exists # such that ¢ < t, where ¢;’s are as in Step 6. It may be noted that both
Dupuis and Ishii (1993) and Shashiashvili (1994) use a compactness argument (invoking
the Ascoli theorem) to prove existence of a solution. [

4. Comparison result. The objective in this section is to prove a comparison result
for the Skorokhod problem. Comparison results for ordinary differential equations and
stochastic differential equations are well known; see Birkhoff and Rota (1978), Ikeda and
Watanabe (1981); such results for one dimensional s.d.e.’s with (normal) reflection at 0
have been obtained recently by Zhang (1994). |

In our context we will be dealing with a partial order, viz. x <X ¢ x; <X; for all . T_hls
partial order has been found very useful in queueing networks, LCP, (SP) and concerning
RBM in the orthant (for example, the notion of completely-& property plays a crucial
fole in the semimartingale formulation of RBM; see Bernard and El Kharroubi (1991),
Williams (1995) and the references therein).

The main result of this section is

Tueorem 4.1. Let b,R (resp. b,R) satisfy (Al1)—(A3). Assume that for ¢20,1<4,
j<d,

4.1) bi(¢, 5,2) < bu(t, 3,2,
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(4.2) 7iy(t, ¥, 2) <ry(t, »,2) <0,
whenever y >y, <z. Let w,w be such that
(4.3) wi(t2) — wity) S wi(t2) — wi(n))

Jor any 0<t) <t;, and wy(0) <wi(0) for i=1,2,...,d. Let (Yw,Zw) (resp. (YW, Zw))
solve the Skorokhod problem corresponding to (w, b, R) (resp. (W,b,R)). Then

(4.4) (Yw),(£) < (YW)(1),
(4.5) (Yw)(t2) ~ (Yw)(t)) S (YW)(t2) — (YW)i(11),
(4.6) (Zw)i(t) > (Zw)i(t),

Jor any 120, 0< <, 1<i<d. O

Proof of the theorem basically involves a comparison of the map (7,S) defined by
(3.15)~(3.17) and the corresponding map (7, S) for (w, b, R). For this we initially use the
followtng simplified set-up.

Set-up 1: 1. w,w are as in Theorem 4.1; also b(-)=b(-)=0.

2. R(z)=((r;;(t))),ﬁ(t)-:((r‘-'}j(t))) are r.c.Ll. functions of ¢ alone, satisfy (A3), r,(:)

=1=r(-), and

(4.7) () <ry(t)<0, i#j, t20.
3. », 7€ Dyo([0,00): G) and

(4.8) yi(t2) — y() < y(t2) — yi()

forall 0<n <8, 1<i<d.
Now define for 1 >0, 1 <i<d,

(49) N =we)+ 3 [ ryu-)dytu)
J#

(4.10) ) =vie)+ 3 ]o =) dy (u),
j#

(4.11) (Ty)(t)= sup max{0,—(Xy)(s)},

0<s<y

(4.12) (T90)=sup max{0,~(X7)(s)},

(4.13) (Sy)(t)=(Xy)(t) + (Ty)(r),

(4.14) (SPi(1)=Xy)ute) + (F3)(e).

Note that Ty, Ty € Dy and Sy,Sy € D([0,00): G).

LemMMma 4.2. Under set-up |, for 1 <i<d, t20,
(4.15) (Ty)(0) < (Ty)(r).

Proor. Easily verified. O
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Lo 4.3. Assune setup L If (I9)(0)=(T5)(5) for some 1<i<d, 0<t <
then (Ty) t)=(Ty) 12}

Proor. If (F9)(0)=(TP)(12) =0, then the result follows by the preceding femma. So
we may assume that (7¥)(1;) > 0. Observe that ™

(4.16) (TV(1) = mu{(fﬁ):(n).n sup h{-().'y).(:)}} :

So there exists § <# such that one of the following two cases obtains, viz. for all
‘E['Il‘ll’

(4.17) (TP = ~(X5)(5) 2 = (R5)ds)
or
(4.18) (THAn) = (X)W =) 2 ~ (RF)(s).

We consider the case when (4.18) holds; the case when (4.17) holds can be similarly
dealt with. By (4.3), the inequality in (4.18), (4.7), (4.8) we get

(4.19) wi(s) ~ wi($)—) 2 Wi(s) — W, (§;-)
2) | (~Fyu-))d5u)
St 4:.9)
2 [ (~rdu=))dyu)
ol i.9)

for all 1) < s <1y From (4.19) it follows that —(Xy){$;~)2> —(Xy)(s) forall s, <s<t,.
The required conclusion is now clear. O

Lo 44, Under set-up 1, for 1 <i<d, 0< <n,
(4.20) (Ty)(12) = (Ty)(n) < (T5)(12) - (T5)1y).

Proor. We may assume that the left side of (4.20) is > 0, for otherwise there is nothing
o prove. This forces the right side of (4.20) to be > 0 also by the preceding lemma. So

by (4.16) there exists the least number $; in [f), 73] such that one of the following holds,
viz.

(421) (1)) < =(X9)(6) = (T5)(52) = (T5)n)
o
(4.2) (T5)(01) < =(R9)8—) = (Fy)d) = (Ti)(n).

Note that 3, could depend on /, but i is fixed for this discussion. Because of the stnct
incquality in the above and right continuity of the functions conccrned. we have §; > 0.
Similarly by the analogue of (4.16) for Ty, there exists the least number 3; in [0).0))
such that one of the following holds, viz.

(423) (Ty)h) < ~(Xy)92) = (TyMs:) =(Ty)(n)
or

(4.24) (Ty)n) < ~(Xy)(o2—) = (Ty)ds)=(TyM2)-



324 S. RAMASUBRAMANIAN

Again, as before s, > #,. By the last equality in (4.21) or (4.22) and the preceding lemma
we get (Ty)i{t)=(Ty)i(S2). Therefore by minimality of s; it follows that

(4.25) hh <5 <5 <t

Now if (77):(¢;)=0 the result follows by Lemma 4.2. So assume (75):(#;) > 0. Let 5
denote the least element in [0, ;] such that

(4.26) 0 < —(X7)(5) =(TP)(&) = (THu(n),
or

(4.27) 0 < —(XP)(E1-)=(TP)($1) = (T9)(h).
Observe that

(4.28) 0<§<t1 < <H <.

We consider only the case when (4.22), (4.24), (4.27) hold (the other seven cases can
be treated analogously). We have
(429) (T9)n) = (T9)(n) = (T5)(E2) — (TP)(H)

> (T9)(s2) = (T9)i(51)

2 [—(XP)i(s2—)] — [(X¥)i(51-)]

= —[Wi(s2—) — Wi(5)-)] + z / (—7ij(u—))dy;(u)

j#f [311.32)

> )~ w0+ Y [ (=)
JH#I [$1,52)

= (Ty)(t2) — [-(X»):i(51—)]

2 (Ty)i(t2) — (Ty)t),

where we have used (4.28), (4.3), (4.7), (4.8), definitions of Ty, Ty, besides (4.22),
(4.24), (4.27). This completes the proof. D

LemMA 4.5. Under set-up 1, for 1 <i<d, t20,
(4.30) (Sy)i(t) > (SF)(r).

Proor. Fix i, ¢. Consider first the case when (77);(t) =0. Then (Ty);(¢)=0 by Lemma
4.2. So

(4.31)  (Sy)i(t) — (S7)(t) = wi(t) — wi(t) + Z /; (rij(u—) — Fij(u=))dy;(u)
J#i

+Y / (—Fy(u=))d(F; — y)(u)
j#i 70

>0

by (4.7), (4.8) and as Wi(-) S wi(").
Now suppose (T7);(¢) > 0. Then there exists f < ¢ such that

(4.32) (T9)i(t)= — (XP)(t) > 0,
or

(4.33) (T9)(t) = — (XPN(to—) > 0.
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We consider only the case when (4.33) holds. Since [—(Xy)i(to—)] < (Ty)i(2), by (4.3),
(4.7), (4.8), (4.13), (4.14), (4.33) we get

(4.38) (Sy)(t) — (S7)i(®)
> [wi(t) — wi(to—)] — [wi(t) — wi(to—)]

+ Z / (rij(u=) — Fij(u=)) dy;(u) + Z f (—Fi(u—)) d(§; — 3 Xu)
i i 1# 0

20,

completing the proof. O
Remark 4.6. Let w, w, b, b, R, R be as in Theorem 4.1. For ye€Do([0,00):G),

ZGD([O:OO): (-;) let T(y,z;w,b,R), S(y:z; W,b,R), T(y,Z;ﬁ,E,E), S(y:z; V.I},E,E) be de-
fined using (3.6), (3.15)—(3.17). For notational convenience put

r(y,2)=T(yzw,bR),  TM(,2)=T(yz%,5R),
S(l)(J’:Z) =S(J’:z; W, b:R)I §(l)(yiz) =S(y’z; W, E’E)’
and for n=2,3,..., set

T™)(y,2)=T(T"~Vy, $®Vz:w b R),
S"(y,2)=S(T""Vy, 8"z, w, b, R),
T (y,z)=T(T" Dy, SODz: % b, R),
§®)(y,2)=S(T"Vy, Sz b R).

Under the hypotheses of Theorem 4.1, with Lemmas 4.4 and 4.5 applied repeatedly we
obtain for 1 <i<d, >0, 0<t <t

(4.35) (T™(y,2))(t) < (T (3,2))(2),
(436) (T™(y,2))(t2) — (T™(y,2))i(t1) < (T3, 2))i(R2) — (T3, 2))itr),
(4.37) (S(")( ¥,2))(t) 2 (§ ("=)( ¥,2)i(2),

forn=1,2,3,.... O
ProoF oF THEOREM 4.1. The proof is in a few steps roughly paralleling the steps in the
proof of Theorem 3.7.

Step 1. We consider (SP) at =0, so the set up is as in Step 1 of §3. Define 7: G—G,
6:G—-G by

(ty)i= max{oﬁ = {wl(o) + Zrﬁ(os oso)yf}} ’

j#i

(oy) = wi(0) + Y _7/(0,0,0)y; + (zy):.
Ji

Similarly £, ¢ are defined by
(Ty)i= max{O,— {fﬁs(o) + Y F(0, O,O)y;} } ,
Ji

(Ey)i=wi(0) + Y _ 7(0,0,0)y; + (Ey)
J#
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Set tMy=1(z("-Dy), ¢@y=g(c"Ny), iMy=7i(FH-Ny), §My=FF"Vy), for
n=2,3,..., with of course 1y =1y, ¢y =gy, {Vy=17y, 6dVy=4y.

Observe that 7, 7 are the analogues of T, T of (4.11), (4.12) when w, W, R, R are
constants and y is degenerate. As R, R satisfy (A3), by a contraction mapping argument
it is easily seen that ©™y— Yw(0), Ty — F1(0), ¢y — Zw(0), 6™y — Z¥(0), as
n— oo. By the proofs of Lemmas 4.2-4.5 and Remark 4.6 it follows that ty < $(® A
oMy > ¢y componentwise for each n. Hence Yw(0) < Yw(0) and Zw(0) > Zw(0).

Step 2. Now the set up is as in Steps 2-4 of §3. Let 7™, st F™ ¢ o o
in Remark 4.6. By Step 4 of §3 there is ¢ > 0 such that T(y,z)(-) + Yw(0) — Yw(-)
in variation norm over [0,s], $"(y,z)(-)— Zw(-) uniformly over [0,s) for all s < ¢ for
a sufficiently large class of (y,z) (for example one can take ¥(:)=0, z(-)=0; this is
because (7,S) is a contraction on D;). Similarly there is 7> 0 such that T »z)(:) +
Yw(0)— YW(-) in variation norm and 5‘")(y,z)(-)—rfﬁ(-) uniformly over {0,s] for all
s <t for a large class of (y,z). Take fh=tAF. By Step 1 and Remark 4.6 it is now seen
that the theorem holds on [0, ).

Step 3. With the theorem holding on [0,1,) we want to show that it holds on [0, 1];
see Step 5 of §3. Analogous to Step 1, define 7, ¥ on G by

(Ty) =ma>t{0, - [(ZW).-(to—) +wito) — wilto—) + D _ rij(to, Yw(to—), Zw(te—))y; | ¢,
J#i

() = max { 0,— [(z”w*).-(:o-) +Wi(t0) = Wito=) + ¥ Fylto, Ti(to—), ZW(to=))y,;
J#i

Similarly ¢, & can be defined with obvious modifications. As in Step 1, t®y :=g(z(*=) y)
= Yw(to) — Yw(to—), oWy:=a(cVy)—Zw(yy), t™My:=#(F""Vy) Fi(y) -
YW(to—), 6™y :=(6""y) - Zw(ty) as n— co. By an argument as in Step 1 it is seen
that the theorem holds on [0, 7).

Step 4. To complete the proof, in view of Step 7 of §3, it just remains to show that

the theorem holds on [0, 4 + ) for some 7 > 0 if it holds on [0, 2]. For this as in Step
6 of §3 we consider the functions

b(l‘ + 1o, y + YW(‘O):Z): 5(“ + b,y + Fﬁ(‘ﬂ):z)i
R(u + o,y + YW(I{)),Z), E(H + fo, y -+ Fﬁ(‘ﬁ)iz)j

as functions of (u, y,z). By the preceding step and our hypotheses, note that the situation
Is very similar to the one in Step 2; hence the proof can be completed proceeding as in
Step 2. O

ReMArk 4.7. In addition_ to the hypotheses of Theorem 4.1, assume that wi(:) = —m(:),
wi(-)= ~hi(-), where h;, h; are nonnegative nondecreasing functions, and that strict in-
equality holds in the first mequality of (4.2) or in (4.3). Then strict inequality holds in
(4.4) for all 7> 0 and in (4.5) for all 0<# < f; this is easily seen from the proof. In
such a case note that Zw=0=Zw. O

Following the terminology in the theory of ordinary differential equations, one can say
that SP(w, b,R) is stable if Zw is attracted to the origin; that is, for every &£ > 0 there
is an M < oo such that |Zw(t)| < & for all t > M. The next corollary is immediate from
Theorem 4.1.

CoroLLARY 4.8. Assume the notation and hypotheses of Theorem 4.1. If SP(w,b,R) is
stable then so is SP(w,b,R). O
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Another immediate corollary from (4.4), (4.5) is

CorOLLARY 4.9. Under the hypotheses of Theorem 4.1, for i=1,2,...,d the measure
d(Yw); is dominated by d(YW);; that is, for any Borel set A C [0, 00),

[ d(Fw)(e) < ] dFAN(E),
A A

and the Radon-Nikodym derivative d(Yw),/d(¥Ww); <1. O

ReMaRK 4.10. In addition to the hypotheses of Theorem 4.1, suppose b;(-,-,-) <0, wi(-)
=—hi(:), wi(-)=—h(-) where m(-), h(-) are nonnegative nondecreasing functions for
1<i<d. Note that dh;(-) <dh(*), 1 <i<d.Let dYw(t)/dYw (resp. dh(t)/dh) denote the
(d xd) diagonal matrix whose ith diagonal entry is d(Yw)(¢)/d(YW) (resp.
dhi(t)/dh;). Thea by (3.36), (3.37) in Example 3.8 one can see that

(4.38)
4
ﬂ:ﬁ(u)dfﬁ(u)= Yw(t) — Yw(s)
s dYw
_ f‘R-n(u, Fi=),0) =2 (IR F9(u-),0)d P (u)

4 ] | R~ Y(u, Yw(u—),0) [b'(u, Yw(u—),0) — g%(u)g'(u, fﬁ(u—),O)] du.

In particular if b(---)=0=4(- - -), and R(u, y,0) 15 independent of y, then

dyw . dh 5 5.
(4.39) m(s)—R (s,0,0)dil.(s)R(s, Yw(s—),0)

for almost all s w.rt. dYw(:). O

What happens if the condition of nonpositivity of r;;, 7, i #j in (4.2) is dropped? The
following examples indicate that one cannot expect very general results.

ExampLe 4.11. Let d=2and 0 <g<g<a<l <al;set ry=1=ry, rip=q=ry,
Pu=1=Fp, Fn=§="ry, m(t)=—1(t), wa(t)= —af(t), >0, where f(-) is a non-
negative nondecreasing function, b(---)=0=b(---), W(-)=w(-). Then SP(w,0,R) is
solved by Yw(-)= y(-), Zw=0 where

(1 —qa)
(1-¢q?)

Similarly SP(w, 0, R) is solved by Yw(-)=(-), Zw=0 where

@, =329 1

yl(t)= (1 ___q2)

s o (1 —ga) " (@—3)
yl(t)" (1 _&z)f(t): y2(t)"" (1 _ &z)f(t)

It is easily seen that yi(1)>,(t) & a>(g + §)/(1 + g§) and y(1)2 (1)
™! 2 (g + §)/(1 + q3). Observe that (g + §)/(1 + q4) < 1. Consequently, if g <a <
(@ +§)/(1 + q4) then yo(-) > $,(-) but () < $,(). If (@ +§)/(} +¢§)Sa<] then
Y2 5(), i=12. O |
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ExampLE 4.12. Let d=3, ¢, 4, a be as in Example 4.11, 0 <go <1 and f(:),g(-) be
nonnegative nondecreasing functions. Set

1 ¢q¢ 0 1 g 0 —f(1)
R={qg 1 0|, R=(g 1 0], w)=]—-of@®)
go 0 1 go 0 1 g(t)

Then SP(w, 0, R) 1s solved by Yw(-)=(»:1(:), »2(+),0), Zw(:) = (0,0 ,23(+)), and SP(w, 0 R)

is solved by Yw(-)= (¥,(-), y,(: ),0), Zw(-)=(0,0,%3(-)) where yi, ys, Y1 Vo are as in

Example 4.11 and z3(-) =g(:) +qoy1(-),23(:) =g(-) +qoy,(-). If § < a <(g+¢)/(1 +49)
then z4(¢) > z3(¢) for all ¢; but if (¢ + §)/(1 + q¢) < a <1, then z3(¢) < z3(¢) for all ¢.

H

S. Feasibility and minimality. Recall that the standard subsidy Yw can be mobilised
only when the corresponding sector is empty. There can of course be situations when
it may be advisable not to have such a restriction. This leads to the following natural
definition.

Let (w,b,R) be as in §2. Let (y,z) € D1([0,00): G) x D([0,00): G) be such that

5.1) 2() = wi(t) + /ﬁ i, y(u—), 2(u—)) du + yi(#)

e / riju, y(u=), 2(u~)) dyj(u)
J#i

is nonnegative for 1 <i<d, t > 0; then y is called a feasible subsidy, z a feasible surplus,
(¥,2) a feasible solution corresponding to (w, b, R).

If b,R satisfy (Al), (A2), for a given w € D([0,00): R?), y € D{([0,00): G) the system
of integral equations (5.1) has a unique solution in D[0, o0); this can be seen by a Picard
iteration (moreover if w, y are continuous then so is the solution of (5.1)). For feasibility
we demand that the solution be nonnegative in each coordinate. Clearly the solution to
the Skorokhod problem is a feasible solution.

The next result shows that the Leontief output (corresponding to the worst possible
demand) forms a feasible subsidy.

THeOREM 5.1. Let we D([0,00): RY); let b, R satisfy (A1)—(A3); let V be as in (A3);
let h, B be given respectively by (3.3), (3.4). Then (I —V)~Y(h+ B) is a feasible subsidy
for (w,b,R).

Proor. Define R(u V,2) = ((ru(u ¥:z))) by Fii(e, ) =wi(eyy ), i), 74(--)=0. Then
we can write for any u, y, z

(5.2) R(u,y,2)=(I = V) + (V + R(u, y,2)).

Note that by (A3), V+R(u, y,z) is a nonnegative matrix.
Let z(-) be the unique solution for the vector integral equation

(5.3) z(t) = w(t) + fo b(u, y(u—),z(u—)) du

" / R(u, y(u—), 2(u—)) dy(u),

0
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