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INTRODUCTION

We review some of the ways in which computer-intensive *“sim-
ulated” inference has impacted wildlife population assessment. Each
of our examples illustrates a different extension of the bootstrap, to
show how the simple concept of resampling the data leads to pow-
erful tools for data analysis. In the first example, we show how to
quantify model selection uncertainty. In the second, the problem of
accounting for uncertainty in the specification of a population dynam-
ics model is addressed, using weighted bootstrap samples. The last
two examples show that we need not assume that observations are
independently and identically distributed to bootstrap them. We use a
model for spatial distribution of wildlife as an example of bootstrapping
when the observations are not independently distributed. Bootstrapping
of observations that are not identically distributed is illustrated using
overdispersed counts from a fisheries survey.
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Computational power has freed statisticians of the constraints
imposed by the (non-)availability of analytic results. In academia,
the impact has been most dramatic in Bayesian statistics, in which
the Gibbs sampler and other Markov chain Monte Carlo methods
have allowed analysts to implement models that are unmanageable
by purely analytic methods. More important to most applied statis-
ticians is the development of the bootstrap and related resampling
methods.

Classical statistical inference depends largely on the existence of
analytic results that allow us to draw inferences from an observed
sample about a population of interest. Statistical inference based on
computer-intensive methods removes that dependence. Thus we can
choose the models we believe are most appropriate for the data, not
those for which we have analytic results. We can relax assumptions
as far as the data allow, and are no longer subject to the vagaries
of what i1s mathematically possible, and what has historically been
derived. We term such computer-intensive statistical inference “sim-
ulated inference”. This term 1s intended to refer both to frequentist
and to Bayesian methods. In a frequentist framework, we consider the
observed sample to be one of many (usually an infinity of) possible
samples, and develop inference according to the varnability we would
expect if we observed a large number of these samples. Simulated in-
ference allows us to generate this large number, from which we extract
summary information, and hence draw inferences by a much more di-
rect route than classical methods allow. In a Bayesian framework, we
condition on the observed sample, but generate different realizations
of the set of parameters by simulation, from which we draw inference.

Undergraduate teaching programmes in statistics have been slow to
respond to change. Adopting a frequentist framework, it is now easy to
generate resamples from data by a variety of methods, and to treat these
resamples as a subset of all possible samples. Inference is then merely
an exercise in extracting appropriate summary information. This 18
more Intuitive and less restrictive than relying on the Central Limit
Theorem, or deriving Student’s ¢ distribution, yet classical inference
remains the cornerstone of our teaching. Simulated inference, which
1s more directly rooted in the history of statistical inference, but whose
development was delayed until appropriate computational tools became
available, 1s too often treated as an afterthought, or ignored altogether.
Contrast this with practice. In many fields, the bootstrap is now the
method of preference for quantifying precision.
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2. THE BOOTSTRAP AS A TOOL FOR QUANTIFYING MODEL SELECTION UN=
CERTAINTY

Although model selection is widely recognised as central to good
inference, paradoxically, it has seldom been integrated fully into infer-
ence. For example, there are many methods in multiple regression for
identifying an appropriate subset of covariates. Having identified them,
subsequent inference is usually conditional on the selected model; that
1s, we assume that the model 1s correct. It.is more defensible to recog-
nise the uncertainty in model selection when quantifying the precision
of an estimator. Under this philosophy, “model mis-specification bias”
1S not bias at all, but merely a component of the variance. The diffi-
culty in incorporating model selection uncertainty into inference can be
circumvented using the bootstrap. The model selection procedure is ap-
plied independently in each bootstrap resample, and inference is based
on the resulting bootstrap estimates (Buckland, 1982; Hjorth, 1994).
We illustrate the approach with a line transect example.

In line transect sampling, an observer walks along a line, and
records the perpendicular distance from the line of each animal de-

tected. The usual estimate of animal density D-is a function of f (0),
the fitted probability density function of perpendicular distances, eval-
uated at zero distance:

= n-f(0)
b=—1 (1)

where n is the number of animals detected, and L 1s the total length
of transect travelled (Buckland et al., 1993).

We use a ruffed grouse dataset taken from Gates (1979), in which
n = 218, as an example of the effect of incorporating model selection
uncertainty in inference. Analyses were carried out in DISTANCE
(Laake et al., 1993), which allows the user to approximate the prob-
ability density function by a parametric “key” function, together with
a choice of adjustment terms, for when the key function alone fails
to provide an adequate fit (Buckland, 1992). Model selection was
restricted to four models here: a half-normal key and cosine adjust-
ment terms; a hazard-rate key and simple polynomial adjustment terms;
the Fourier series model (uniform key and cosine adjustment terms);
and a negative exponential key and simple polynomial adjustment
terms. Plots of the data, together with the fitted models, are shown
in figure 1.
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Fig. 2. The distribution of bootstrap estimates under each model from figure 1. The curves
were fitted using the kernel algorithm of Silverman (1982). Each curve was scaled
so that it integrates to the proportion of times the corresponding model was selected
when analysing bootstrap resamples. Thus the sum of the curves (the “composite

model”) estimates the probability density function of the estimate f (0). The vertical
lines indicate 95% percentile confidence limits for f (0) under the respective models.

Usually in line transect sampling, .the nonparametric bootstrap is
implemented by resampling from the transects, rather than individual
detections. However, for estimating the precision of £(0), resampling
from individual detections works well, and we adopt that strategy
here, as we only have the data pooled across lines. Each model was
fitted both to the original data and to each of b = 1000 resamples,
and Akaike’s Information Criterion (AIC) was used to select between
the four models. In figure 2, we show the distribution of bootstrap
estimates of f(0) under each model, using kernel density estimation to
smooth each distribution. Each curve is scaled so that the area under
it is equal to the proportion of times the corresponding model was
selected in the bootstrap resamples. Also shown is the sum of these
four curves; the area under this composite curve is unity. For each
curve, the endpoints of a 95% percentile confidence interval, calculated
as described by Buckland (1984), are shown. It can be seen that the
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lower confidence limit under the negative exponential model lies above
the upper limit for the hazard-rate model. The two remaining models
yield confidence intervals intermediate between these, although the
lower limit under the negative exponential model is close to the upper
limit under all three of the other models. The limits corresponding to
the composite curve better reflect uncertainty in the true value f(0)
than do those from any of the individual curves.

The average of the 1000 bootstrap estimates of f(0) 1s 0.1120.,
The estimate under the negative exponential model, selected by AIC ap-
plied to the original sample, is considerably higher, at 0.1333. The 95%
percentile confidence interval for f(0) obtained from the full set of
1000 bootstrap estimates is (0.0830, 0.1486), and the bootstrap stan-

dard error is se{ f(0)} = 0.0194. The data fail to rule out any of the
possible models, and the bootstrap confidence interval consequently
spans the range of estimates for f(0) obtained under the different
models.

3. SIMULATED INFERENCE USING A WEIGHTED BOOTSTRAP

Suppose we have a model from which we can readily simulate

. data, if the model parameters are specified, but for which we have no

rehiable means of estimating the parameters, given data. The bootstrap
cannot be applied in the normal way, because we have no means of
fitting the model to the bootstrap resamples. Instead, we can specify
prior distributions for the model parameters, and generate bootstrap
resamples from these distributions. The priors should be sufficiently
diffuse that the posterior distributions are insensitive to the choice of
prior distributions. Having generated a set of input parameters from
the prior distributions, predictions are derived (deterministic models)
or simulated (stochastic models) from the model determined by those
parameter values. A weight is defined that relates the real data to the

output parameters. This weight is the likelihood of the data, given the
model and the model parameters.

The above process is repeated a large number of times. Thus for
stmulations in which the model parameters match closely the “true”
model, the weight associated with that bootstrap replicate is likely to be
high; when they do not, the weight is small. Inference proceeds either
by resampling the parameter sets with probability proportional to the
weights (e.g. Smith and Gelfand, 1992), so that the resulting parameter
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gets are & sample from the joint posterior distribution and provide an
empirical estimate of that distribution, or by extracting the values of the
predictions from each resample, and attaching their respective weights;
when estimating the true parameters and the corresponding precision
of the estimates. If data are collected sequentially, then the weighted
resampling method may be applied sequentially, with the posterior
distribution from one step providing the prior distribution for the next,
Gordon etal. (1993) called this approach the recursive Bayesian filter,
based on work by Smith and Gelfand (1992). Liu and Chen (1998) give
an overview of recent developments of the general class of methods
which they refer to as sequential importance sampling.

We illustrate the method using a population dynamics model.
Given count and cull data on a population of red deer (Cervus ela-
phus), we wish to draw samples from the posterior distributions of the
parameters, to allow us to project the population forwards and exam-
ine the impact of different culling strategies. Exploitation and natural
mortality are strong functions of both age and sex, so that a large
pumber of parameters is required to model populations adequately.

The model parameters are initial population structure and propor-
tion of hinds with calves; parameters that allow the natural mortality
rate to be a function of age, sex and population density; and parameters
that allow fecundity to be a function of age, status (milk hind or yeld
hind, corresponding with whether or not the hind currently has a calf);
body weight and population density. The data are counts (which may
or may not be conducted annually), tallied separately for adult males
(stags), adult females (hinds) and calves; and annual cull data, tallied
by the same three categories. The initial conditions are given by the
first count. For each model parameter, a value is generated by simula-
tion from its prior distribution. Having generated a set of values for the
model parameters, the likelihood of the data given those parameters is
evaluated, and the population is projected forwards to yield predictions
of population size and structure. If the population dynamics model is
deterministic, the predictions are calculated by applying a Leslie matrix
model. A stochastic model is readily accommodated, by simulating
the fate of each animal in the population individually. The process i4
repeated a large number of times, and the posterior distribution of any
predicted variable is estimated by weighting the set of values obtained
from the simulations, -or by resampling those sets with probability pro-
portional to the weights, where the weights are determined from the
likelihood. More details are given by Trenkel eral. (1996).
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To implement this simulated inference approach, we need to be
able to assign weights to each simulated population. In addition, if
there are contending population dynamics models, we require weights
to assign to them. Consider first how to calculate a weight for simu-
lation i. By defining an appropriate state space model, we can define
and evaluate the likelihood of the counts of population size, given our
population dynamics model. The process of simulating from the prior
distributions of the parameters ensures appropriate prior weighting, so
that we may interpret the ratio of likelihoods, L;/L;, for two simula-
tions i and j as the posterior odds ratio for the respective simulations.
Thus the weight assigned to simulation i i1s simply

L;
2L

where summation is over all simulations. Suppose the simulation is
advanced a year at a time. For any year in which we have a count, we
can update the likelihood of all data collected up to that time, given
our model. Thus the weight in year y is
Wj,y—1Liy

Wiy ==
Z wj,y—1Ljy
J

(2)

W; =

(3)

where L; is the contribution of the data in year y to the likelihood
corresponding to simulation i. Note that the weights only change in
years for which there are counts. Because values for the parameters are
simulated from thewr prior distributions, w; ; = 1/b for all i, where &
is the total number of simulations.

Within each simulation, if there are contending population dynam-
ics models, the same approach might be applied to assign weights to
each model. However, if the number of parameters differs between
models, a penalized likelihood, such as Akaike’s Information Criterion,
might be used (Buckland, 1995; Buckland et al., 1997). We do not
pursue this here.

Each simulation provides estimates of population size and structure
by year. If we resample at each step with probabilities proportional
to the weights, then the parameter sets generated at the final step
provide an empirical estimate of the joint posterior distribution, and
appropriate percentiles from the empirical distribution for each pa-
rameter provide endpoints for an interval estimate for that parameter.
If the initial parameters sets are carried through, together with their
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associated weights, an average across simulations of the parameter es-
timates of interest, weighted by the final weights for the simulations,
provides the estimate of a given parameter, and a weighted sample
variance yields the corresponding variance estimate. A modification
of the bootstrap percentile method of setting intervals can be used, in
which the bootstrap estimates of a parameter are ranked from small-
est to largest, and the weights associated with the ranked estimates
summed to determine the percentile points in the distribution of sim-
ulated estimates. For example, to estimate the lower 95% limit, the
location of the 2.5 percentile is found by summing the weights of the
smallest estimates until the sum is equal to 2.5% of the sum of all
weights, b. The limit will be the estimate associated with the weight
that first takes the running sum above 2.5% of b.

There will be a tendency for most of the simulated populations to
have small weights after several counts, so that inference is dominated
by a small proportion of the populations originally generated. Thus,
the number of populations b generated from the priors should be large,
perhaps around one million. Alternatively, if we adopt the sequential
weighted resampling approach, and perturb- the resampled parameter
values slightly at each step using the smoothed bootstrap, we generate
new simulated populations after each year for which there was a count.
In this case, only a relatively small number of populations, perhaps a
few thousand, need be generated at each step.

The above approach is similar to the policy of simulating from
a grid of starting values for the input parameters, which has been
adopted by many researchers and wildlife managers. That approach
is dogged with difficulties. The outcomes are often implausible, and
no formal inference is possible, because the grid of starting values
takes no account of their relative likelihoods; if an unlikely combi-
nation of starting values i1s adopted, it 1s unsurprising if the outcome
is implausible. Simulated inference avoids the difficulty by assigning
distributions to the input parameters that reflect uncertainty, and by
evaluating the likelihood associated with the data. In common with
all Bayesian methodologies, the approach raises the question of how
to specify the prior distributions.

We show in figure 3 results from a population of red deer in
western Scotland. Counts and cull data were available on this popula-
tion for the period 1989 to 1997. Estimates of input parameters were
found from the literature, and prior distributions were centred on these
estimates. The spread of the priors was chosen to reflect both uncer-
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Fig. 3. Prior and posterior distributions for the predicted size of the stag, hind and calf
components of a population of red deer, and for the overall total, in spring 2000.

tainty in estimation in the earlier studies and uncertainty arising from
applying parameter estimates from populations of red deer elsewhere
in Scotland to the study population. Figure 3 shows the implicit prior
distributions for the size of the stag, hind and calf populations and
of the total population for the year 2000. These priors are derived

from the priors specified on the input parameters. Also shown are the
corresponding posterior distributions.

4. BOOTSTRAPPING CORRELATED SPATIAL DATA

The standard bootstrap assumes that observations are indepen-
dently distributed. There has been research interest in defining “moving
blocks” (Kiinsch, 1989), on the principle that observations sufficiently
far apart in space or time can be assumed independent. However,
this approach seems unsatisfactory as the first few observations in one
block are unlikely to be independent of the last few in the previous
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block. A more appealing strategy is to incorporate dependence into
the fitted model, and then use the parametric bootstrap to generate
simulated data with the desired correlation structure. We illustrate this
approach by bootstrapping from an autologistic regression model fit-
ted to presence/absence data on red deer. This example 1s summarized
from Augustin et al. (1996, 1998).

The primary objective of the modelling was to estimate the geo-
graphic distribution of wildlife species from incomplete field surveys
of a sample of grid squares. The autologistic regression model was
chosen because it allowed us to predict presence/absence in a square
as a function of habitat and other spatial covariates, and of an autoco-
variate that is a function of the responses in neighbouring squares. The
Gibbs sampler was used to predict presence/absence in the unsurveyed
squares.

Let y; be the response (y; = 0,1) and x;; be the value of co-
variate k for square i, k = 1,...,m — 1. Further, let p; = Pr(Y; =
1Y, =y, j #i), b, k=1,...,m—1}).

Then the model is defined by

log =a+ ) Bixk (4)

where x,,; represents the proportion of neighbouring squares that is
occupied.

The algonthm used for fitting the model is 1mplemented as fol-
lows. First, we fit an ordinary logistic model to data from the sur-
veyed squares. Next we predict the response in unsurveyed squares
by generating y; from p; stochastically: y; ~ binary(p;). We then use
the predicted responses to calculate the autocovariate for every square.
The autologistic model is then fitted to data from the surveyed squares.
New p; are obtained, and new y; generated from these p;. The Gibbs
sampler 18 then applied as described by Augustin et al. (1996, 1998).

The process appeared to converge after about T = 20 steps, but as
the stochastic vanation was large, convergence was difficult to judge.
Thus the algorithm was modified by replacing the predicted y; by p;
when calculating the autocovariate term. This increased the speed of
the algorithm, as a stochastic realization of the distribution was only
required in the final iteration of the Gibbs sampler, and stochastic
variation was reduced substantially, with clear convergence occurring
within T = 10 steps. The results presented below used this modifica-
tion of the algorithm.
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Having fitted the autologistic model, it is straightforward to extract
the estimated probabilities of occupation by square, and to generate
stochastically new presence/absence data from these estimated prob-
abilities. A bootstrap replicate i1s then obtained by selecting a new
random sample of squares, and the above algorithm is applied to it.
The whole process is repeated for a large number of bootstrap repli-
cates.

Note that the Gibbs sampler allows iterative generation of sim-
ulated data for unsampled squares in a way that preserves spatial
correlation. This allows the autocovariate term to be evaluated, and
so methods can be applied that would otherwise be restricted to the
case in which data are available for all squares. 1f generation of pres-
ence/absence data is always restricted to the unsurveyed squares, and
the predictions are supplemented with the observed responses from
surveyed squares, then this is analogous to using a finite population
correction to estimate the vanance of the estimated proportion of oc-
cupied squares in sampling theory. We implement this restriction in
the analyses presented here.

Figure 4 shows the observed distribution by 1km square of red
deer in north-east Scotland. A 20% sample of squares was selected
from these data, to assess how well the method could recreate the
(known) true distribution. Analysis of deviance for the autologistic
model with various definitions for neighbouring squares suggested that
a “chique” of side seven was optimal. Thus the autocovariate for square
1 was the proportion of occupied squares amongst the 48 neighbouring
squares in the clique of size 7 x 7 with square i at its centre.

Figure 5 shows stochastic realisations from the predicted prob-
abilities of presence for the above model and for a simple logistic
regression model. It is clear that the autologistic model has captured
the degree of clustering exhibited in figure 4 better than the logistic
model. The bootstrap was used on both models to quantify the pre-
cision of the estimated number of occupied squares, given the 20%
sample. Under the autologistic model, this number was estimated to
be 237 with standard error 59; under the simple logistic model, the es-
timated number of occupied squares was 241 with standard error 25.
The true number was 190. Results from simple random sampling
agreed closely with those under the logistic model, but with a slightly
higher standard error. The autologistic model gives a substantially
higher standard error because it models the population as if it were
a random realization from some super-population, whereas the simple
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Fig. 4. The observed distribution by 1km square of red deer in north-east Scotland.

300 320 340 360 380 400 420 | 300 320 340 3680 380 400 420
sastings eastings

Fig. 5. A stochastic realization generated from predicted probabilities of presence for a
simple logistic regression model (left) and an autologistic regression model (right).

logistic model nierely quantifies the number of squares occupied at the
time of the survey. The latter is thus better for quantifying population
size, or other global parameters, whereas the former is able to model
local distribution more effectively.
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8. BOOTSTRAPPING OVERDISPERSED COUNTS

Western mackerel and horse mackerel stocks support the largest
international fishery in European waters. Spawning stock biomass es-
timates are essential to sound management of the stocks. In recent
years, biomass estimates have been obtained from both the annual egg
production method and the daily egg production method. Generalized
additive models (GAMs) allow spatial variation in egg density to be
modelled, leading to improved precision. We summarize here how
an extension of the bootstrap due to Bravington (1993) was used to
quantify variances in egg abundance estimates from the daily method,
using GAMs, by Borchers et al. (1997).

The data from an egg survey comprise counts of eggs in sampled
water, in which the volume of water sampled varies. In the mackerel
and horse mackerel surveys, the counts ranged from zero to several
hundred, so could not be assumed to be identically distributed, ruling
out simple resampling from the data. Further, the counts were overdis-
persed, so that simple parametric bootstrapping from a fitted Poisson
model was also ruled out.

The methods used to model the mackerel data were as follows.
(The horse mackerel data were modelled slightly differently; see Bor-
chers etal., 1997.) A GAM with log link, overdispersed Poisson error
structure, and an offset parameter representing the volume of water
sampled (with a correction for bottom depth where this was less than
~ the normal maximum sampling depth) was found to be adequate. The
eggs were substantially overdispersed relative to a Poisson distribu-
tion, with estimated dispersion parameter of 9.8. However, this model
proved superior to one in which the cv was assumed to be constant.
Smoothing splines of four covariates were chosen for inclusion in the
model selection process. They were latitude, longitude, bottom depth
and distance from the 200m contour. Three first order interactions
were also found to be significant: linear interactions between latitude
and each of the other covanates

Egg abundance was estinrated by integrating over the fitted surface.
A parametric bootstrap was used to estimate the variance as follows. In
each of 200 bootstrap replicates, a sample was generated, the selected
model refitted, and egg abundance estimated by integrating under the
newly fitted surface. The variance of these bootstrap abundance esti-
mates IS our variance estimate. Generating a bootstrap sample requires
the generation of overdispersed Poisson random variables at each sam-
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ple point, with mean equal to the modelled abundance at that point.
This was achieved using the method of Bravington (1993), which we
now describe.

We obtain the predicted value y; from our model, corresponding to
observation y;, and hence estimate that the distribution of y; 1s Poisson
with mean y;. This determines the estimated cumulative distribution
function (cdf) of the observation Y;, which we evaluate at Y; = y;,
to give u;. In the absence of overdispersion, the resulting values
are approximately uniformly distributed on (0,1). (The approximation
arises because we estimate E(y;) by y;.) We now resample the u;,
reassign the resampled u’s to the predicted values, and back-transform
to generate the bootstrap sample of observations. In the presence of
overdispersion, the u;’s are not approximately uniform, but instead are
more likely to be close to zero or one. The above procedure preserves
the overdispersion in the bootstrap resamples.

The procedure 1s illustrated in figure 6. Figure 6(a) illustrates the
process of constructing the empirical distribution of u; values from
the sampled egg numbers using the fitted model. (Two realizations of
the fitted model are represented in the figure, the dashed line for a
location of low egg density and the dot-dashed line for a location of
high egg density.) Overdispersion is 1llustrated by the clustering of
the u; values of the sampled numbers towards O and 1. Figure 6(b)
illustrates the resampling process in which the u; values are randomly
permuted among the sampled locations and back-transformed to egg
numbers, using the fitted model evaluated at the appropriate location.

The following slight modification to the bootstrap procedure is
required when the response y; is discrete. Instead of using u; = F (yi)
(where F (yi) 1s ths estimatecl cdf at y;), we choose u; at random
from the interval (F(y; — 1), F(y;)). Bravington (1993) discusses the
modification 1n more detail.

- In our example, the coefficient of variation (cv) of egg abun-
dance was reduced from 10% using stratified sampling to just 3.4%
using GAMSs, leading to a reduction in the cv of the biomass esti-
mate from 13% to less than 9% (table 1). The variance of the egg
abundance estimate contributed 60% of the variance of the biomass
estimate when stratified sampling was used, and just 16% when GAMs
were used. Similar improvements were achieved for horse mackerel.
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Fig. 6. Diagrammatic representation of the resampling algorithm for generating overdis-

persed Poisson variates.

Fig. 6(a): Step I. Construction of the empirical cumulative distribution function (cdf).
Each observation y is transformed into an “observed” cdf value using the Poisson
distribution with mean equal to the GAM fitted value at that point. (Overdispersion
results in clustering of the “observed” cdf values towards 0 and 1, as indicated on the
vertical axis.) The transformation is shown for two observations only.

Fig. 6(b): Step I1. Construction of a new sample from the the empirical cdf. By
permuting the “observed” cdf values, resampled cdf values are generated for each of
the sampled points. Each of these is then back-transformed using the Poisson distri-
bution with mean equal to the GAM fitted value at that point to yield resampled y's.
The back-transformation is shown for the same two observations as in (a) and for the
case in which permutation resulted in swapping the two associated cdf values.
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TABLE 1: Estimates by stratum of egg abundance (Po), fecundity ( F ), spawning

Jraction (S) and spawning stock biomass (B) of western mackerel. Estimates are shown
Jor both the GAM estimation method and the previously used stratified method. Standard
errors are shown in round brackets, and percent cv’s in square brackets.

Stratum GAM Py  Stratified Py F S GAM B Stratified B
(x10'%)  (x10'%)  (eggs/g) ex10'y  (gx10'!)

Northern 1.20 1.20 28.7 0.467 1.79 1.80
(0.18) (0.56) 2.7)  (0.085)  (0.45) (0.91)

[14.9] [46.2] [9.5] [18.1] [25.3] (50.5)

Middle 7.42 9.19 47.4 0.573 5.46 6.86
(0.34) (1.54) 22)  (0.055)  (0.64) (1.36)

[4.6) (16.7) (4.6) [9.7) [11.7] [19.9]

Southen  10.30 13.17 49.8 0.480 8.62 11.03
(0.50) (1.69) 44)  (0.040) (1.12) (1.95)

[4.9] [12.9) [8.7) (8.4]) [13.0] [17.7]

Total 18.92 23.56 15.87 19.69
(0.64) (2.35) (1.37) (2.55)

13.4) [10.0] [8.6] [12.9]

6. DISCUSSION

The above examples illustrate the bootstrap as a tool for incorpo-
rating model selection uncertainty into inference; a weighted bootstrap,
for the case that not all bootstrap replicates are equally probable; a
bootstrap method for when observations are not independently dis-
tributed; and a bootstrap method for when observations are not iden-
tically distributed. Other important extensions of the bootstrap have
received little attention to date. For example, if estimation is carried
out in two or more stages, analytic methods of varance estimation
typically quantify precision at one stage, conditional on any previous
stages. By contrast, bootstrap resamples can be generated at every
modelling stage, so that a single replicate comprises a sequence of
resampling and modelling steps. It thus reflects the uncertainty prop-
agated from one stage to another. Buckland and Elston (1993) gave
such a case, for modelling changes in the spatial distribution of wildlife
over time. Their first stage was to model habitat suitability of sites
for a species using logistic regression. In the second stage, proba-
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bility of occupation of a site at one time point was modelled as a
function both of these habitat suitabilities and of distance from sites
occupied at a previous time point. The precision of predicted distri-
bution maps was quantified using the bootstrap. In a single replicate,
the parametric bootstrap was used to generate a resample from the
fitted logistic regression model; a new logistic regression was fitted to
the resample; the model for spread, fitted by maximum likelihood to
the real data, was then used to simulate a “bootstrap” distribution for
the second time point; the model for spread was then refitted, using
the bootstrap suitabilities and distribution; and finally predictions of
future distribution from that model were obtained. Buckland, Elston
and Beaney (1996) used the proportion of such bootstrap replicates in
which a species became extinct in a given time period as an estimate
of the probability of extinction for scarce species.

Another extension of the bootstrap that merits more investigation
is the multi-level bootstrap. For example in line transect sampling, it is
often unclear whether the sampling unit 1s more correctly the individual
detection (usually assumed for the variance of estimated effective width
of search, or of mean cluster size when animals occur in clusters) or
the line (usually assumed for the variance of estimated encounter rate).
A solution is to resample lines, then resample detections within lines,
which 1s thus a two-level bootstrap. If all lines are traversed by each
of a number of observers, then a third level might be added: resample
observers, lines within observers, and detections within lines. Program

DISTANCE (Laake et al., 1993) allows such analyses.
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Simulated inference, with applications to wildlife population assessment

SUMMARY

Large increases in computational power are leading to far-reaching changes in
statistical inference. For statisticians, simulation used to be merely a tool for testing
the validity of simple results from statistical inference when assumptions fail. Now, it
is replacing traditional statistical inference. The practical use of simulated inference far
surpasses the importance attached to it in undergraduate degree programmes. In this paper,
we illustrate the power and flexibility of simulated inference, using examples from the field
of wildlife population assessment. We restrict our attention to extensions of the bootstrap:
incorporating model selection uncertainty into inference; use of a weighted bootstrap when
there are insufficient data given the complexity of the model; bootstrapping spatial data in
the presence of autocorrelation; and bootstrapping overdispersed counts.

Inferenza simulata con applicazioni alla valutazione
della popolazione della fauna selvatica

RIASSUNTO

- I grandi incrementi di potenza del calcolo automatico stanno portando a grandi
cambiamenti nell’inferenza statistica. Nel passato la simulazione & stata utilizzata in

statistica soltanto come uno strumento per verificare 12 validita di semplici risultat: ot-
tenuti con metodi inferenziali dai dati empirici, nel caso di non validita delle ipotesi
di base dell’inferenza. Oggi i metodi dell’inferenza simulata sono largamente diffusi e

spesso sostituiscono i metodi tradizionali. E interessante notare che cid sta avvenendo
anche nell’insegnamento della statistica. Nel presente articolo applichiamo il metodo

dell’inferenza simulata a diversi casi di stima della popolazione animale di un territono.
L attenzione ¢ rivolta ai metodi bootstrap.

KEY WORDS

Bootstrap; Bootstrapping overdispersed counts; Bootstrapping spatial data; Model
selection uncertainty; Simulated inference; Weighted bootstrap.
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