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Linkage-disequilibrium (LD) mapping is a powerful tool for fine-mapping
disease genes. Recently, McPeek and Strahs [(1999) Am J Hum Genet 65:858-
875] proposed a multilocus model for LD mapping based on the decay of
haplotype sharing. Here we extend their approach in two ways. First, instead of
assuming each marker allele has an equal chance to mutate to one of the other
marker alleles, we use the stepwise-mutation model to describe the mutation
process for microsatellite markers. Second, in addition to the independence
model and the constant population size model they considered, we model the
dependence among observed haplotypes due to population structure by using a
general conditional-coalescent model with variable population size. Through
simulation studies, we study the effects of the stepwise-mutation model and
variable population size on the estimates of disease gene location, mutation rate,
and time to the most recent common ancestor of the sampled haplotypes. We then
use this method to analyze progressive myoclonus epilepsy data. Genet.
Epidemiol. 19(Suppl 1):899-S105, 2000.
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INTRODUCTION

Linkage disequilibrium (LD) mapping has been successfully applied to map many
disease genes, and various statistical methods for its implementation have been proposed.
McPeek and Strahs [1999] proposed a multilocus model based on the decay of haplotype
sharing that has been found to work well for fine mapping. This method models
dependence across loci within a haplotype by considering LD as the extent of a region of
a shared haplotype around a variant. It allows for mutation and dependence among the
observed haplotypes due to population structure. For mutations, McPeek and Strahs
[1999] assumed that each allele of a given marker has equal chance to mutate to any
other allele (the equal-mutation model (EMM) discussed below). The conditional-
coalescent model they considered assumed a constant population size.

Microsatellite markers are widely used in genetic linkage studies. They evolve
predominantly by the gain or loss of a single repeat unit, or a small number of repeat
units. The stepwise-mutation model (SMM) [Ohta and Kimura, 1973] has been found to
model well the mutation process for microsatellite markers [Goldstein, 1997]. Here we
use SMM to describe the mutation process for microsatellite markers, and use the general
conditional-coalescent model with variable population size (CCV) [Kingman, 1982;
Griffiths and Tavaré, 1994, 1997] to model the population history. We incorporate SMM
and CVV to extend McPeek and Strahs’ [1999] decay-of-haplotype-sharing method, and
study the performance of our modified approach for locating the disease gene and for
estimating the mutation rate and the age of the most recent common ancestor for the
sampled haplotypes. We then apply our method to analyze a real data set.

METHODS
Decay of Haplotype Sharing

Suppose a sample of haplotypes sharing a specific genetic variant are descendents of
the same ancestral haplotype 4, , with the genetic variant introduced t generations ago.
We further assume that genetic markers with known locations are observed surrounding
the genetic variant. In our analysis, the position of the variant and the ancestral haplotype
are unknown parameters. Define the position of the variant to be at 0, with markers 1, 2,
3, ..., I, at increasing distance on one side of the variant and loci -1, -2, -3,..., - [, at
increasing distance on the other side of the variant. The likelihood function for the
observed haplotype A, (equation (4) in McPeek and Strahs [1999]) is
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In the above likelihood function, g(r,-j,i)=e "4~ (1-e “~i-bJ y1—e "i*1)is the
probability that during T generations there are no crossovers between markers —j and i, at
least one crossover between markers —j - 1 and — and at least one crossover between
markers i and i + 1, where d,, is the genetic distance between loci & and /. If either marker
—j or i is on the edge of the observed haplotype, the term (_."%-j-1-j)or (1_9"""""“ )is not
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in the expression. The factor m(k,t,h gy (k), hops(k)) is the conditional probability that a
tth generation descendant has allele 4,,,(k) at marker &, given that the ancestral haplotype
has allele 4,,.(k) at marker %, and given that there are no crossovers between the genetic
variant and marker & during the T generations, i.e., m is the mutation rate. The factor
Prutilhops 4+ 1), hops (i +2),.... hops(Ire)] is  the joint probability that the alleles
hops i +1), hops (i +2),..., hops (Ie) OCCUr in a nonancestral haplotype, and the
factor Py i [hops (=7 =1), hops (—j = 2),-.-s hops (<11 )] is defined similarly.

Extension 1: The Stepwise-Mutation Model (SMM)

Here the factor m(k,t,hg,o(k), hops(k))is evaluated under SMM. For a given
marker, SMM assumes that allele M, is indexed according to the number of repeats.
SMM also assumes that allele M, can only mutate to the next larger allelic state M,,,
(expansion) with probability p and to the next smaller allelic state M, (contraction) with
probability v. Let M, denote the allele with the smallest number of repeats and M, denote
the allele with the largest number. Assume that allele M, only can mutate to allele M, and
that allele M; only can mutate to allele M;_,. We also assume p = v. Let P = (p,), where
p;=1-2uwheni=j,i#1,i#G;p,=1-pwheni=j=1ori=j=G;p,=pn when
li = j]l = 1; and p; = 0 otherwise. Then, the mutation probability from allele M, to allele M,
after 1 generations at locus /, denoted by m(l,7,i,j) is the ijth entry in the matrix
exponential P*. While we assume the same mutation rate for all markers, it is a
straightforward extension to allow different marker mutation rates.

Extension 2: Conditional-Coalescent Model for Variable Population Size

(ccv)

If the observed haplotypes can be considered to be independent, the overall
likelihood is simply the product of the likelihoods for individual haplotypes. In general,
the independence assumption is not valid, especially for isolated populations that
underwent rapid population growth. Assume that the variance of the score function for
every individual is equal, and the correlation (denoted by p) between any two individuals
is also equal. Then, the quasi-score estimators of parameters are equivalent to the MLEs
of the parameters for the independence case, but the standard errors are inflated by a

factor \/1+(n-1)p , where n is the sample size. McPeek and Strahs [1999] showed that

_"‘1 2(n+1) Tt
P= L e evmgen IO

where f,(¢) is the density function of the jth coalescent time conditional on time 7 to the

most recent common ancestor. We model the population structure by CCV conditional on
time 7T to the most recent common ancestor and use the correlation of the ancestral
segment length of two individuals as an approximation of p. Our conditional-coalescent
model is a variation on the coalescent model of variable population size [Kingman, 1982;
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Griffiths and Tavaré, 1994, 1997]. Suppose that the Wright-Fisher model holds and the
population size is N(0) = N (haplotypes) at the time of sampling, and is size N(r) at the
rth generation back from the present day. We assume that there is a relative size function
v such that forall x>0,

v(x)= lim N(N=D >0.
Nox N

Define the population size intensity function A(f)= Iév(x)_ldx, where T; is the jth
coalescent time with unit of N generations. Then, g ;= A(T;)-A(T)) are independent
exponential random variables with parameter (- j)n-;+1)/2. The density of A(T;)

under the condition 7;,_1=—;¢,=a (or A(T,_1)=A(a)=b)1is
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where A; =i(i+1)/2 . Then the correlation p can be calculated as

n-1 2n+1) b * a-A"\@)
= (1) —————=dt.
P= oo+ 1O T

When the population underwent exponential growth,  N(r)=Ne"and
A@) =™ =1 /(rN).

RESULTS

Analysis of Simulated Data

In our simulations, we considered six microsatellite markers. Each had five alleles
with equal allele frequency in the normal population. These six markers were evenly
distributed across a 1cM region (0.2cM between each pair of markers), with the variant
located at the middle of the six markers (0.5cM from the leftmost marker). We assumed
that the ancestral haplotype was introduced 100 generations ago (t = 100). To obtain a
confidence interval for the location of the variant, we inverted the likelihood ratio test
[McPeek and Strahs, 1999]. In the first set of simulations, we assessed the performance
of the method under different mutation rates for SMM. In addition, we compared the
results with those obtained under EMM studied by McPeek and Strahs [1999], and a no-
mutation model (NMM) [Service et al., 1999]. The results are summarized in Table I. For
the genetic variant location estimation, the three models yielded similar results when the
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TABLE 1. Statistical Estimates of Genetic Variant Location, Mutation Rate, and Age of Mutation
Under Different Mutation Models (50 Independent Haplotypes)

True Estimate  Location = Coverage SD for Mean Mean
n d Estimate for 95% Location Length of T
n CI Estimate 95% CI Estimate
SMM  1x10*  9.7x10° 0.50 95% 0.052 0.17 101
6x10*  8.5x10* 0.50 94% 0.059 0.19 99
1x10®  1.5x10° 0.50 94% 0.065 0.20 99
3x10° 3.7x10° 0.51 92% 0.110 0.26 104
EMM 1x10* * 0.50 94% 0.054 0.17 98
6x10™ * 0.50 95% 0.065 0.22 104
1x107 * 0.52 91% 0.070 0.26 110
3x103 * 0.57 75% 0.215 0.49 125
NMM  1x10* 0 0.50 94% 0.041 0.16 109
6x10* 0 0.50 96% 0.042 0.18 168
1x107 0 0.51 91% 0.048 0.20 220
3x10° 0 0.56 65% 0.200 0.30 424

*Values not shown, since these parameter estimates have different meaning from those in SMM.

mutation rate was small (p <6x107*). When p was larger, there was little bias in location
estimation using SMM and the approximate correct coverage probability for the 95% CI
was obtained. However, the results from EMM and NMM yielded larger bias and the
constructed 95% ClIs had poor coverage probability. The estimated T was more sensitive
to the mutation model used in the analysis. When SMM was used, the estimated t was
very close to the true value (100 generations). The bias was larger when EMM was
assumed, and the bias was substantial under NMM.

We then studied the effects of marker distance, sample size, and the presence of non-
ancestral haplotypes on the variant location estimate. Larger inter-marker distance did
not result in bias but did increase the CI. When the sample size was varied, there was no
bias even for samples of size 25, but larger sample size lead to smaller Cls. In the
circumstance where the variant may lie on two or more ancestral haplotypes, McPeek
and Strahs [1999] introduced a parameter p to represent the proportion of the variant
haplotypes in the population that are not descended from the ancestral haplotype. Using
this parameter p, the likelihood for the observed haplotype 4, can be written as
(1= p)L(hops |T5 hane s 1) + PPuyii (hops ). The presence of non-ancestral haplotypes did
not cause bias, but resulted in more uncertainty in the location estimate.

We further studied the performance of our method under the exponential population
growth model. We assumed that the current disease population size is 10° and the
founding population size was 10, with the most recent common ancestor at 100
generations from the present day. The results are summarized in Table II. The location
estimate for the genetic variant was almost unbiased and the 95% CIs had approximately
the correct coverage probability. In addition, the estimated T was almost unbiased. The
increase in the size of the CIs due to non-independence among observed haplotypes
depended on the population growth model specified. For example, in the above
simulations, the factor \/1+(n-1)p used in the CI construction was 1.98. This factor
would be 2.38, 1.70, 1.60, 1.45, and 1.37 if the current disease population size were 10°,
105, 107, 108, and 10°, respectively.
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TABLE II. Statistical Estimates of Genetic Variant Location, Mutation Rate, and Age of
Mutation Under the Exponential Population Growth Model (50 Haplotypes)

True Estimated Location Coverage SD for Mean Mean
n n Estimate for 95% Location Length of T
CI Estimate 95% CI Estimate
1x10* 1.3x10* 0.50 95% 0.087 0.38 97
6x10* 9.5x10™ 0.50 96% 0.096 0.43 98
1x107 1.7x10% 0.50 94% 0.121 0.46 98
3x10° 3.7x10° 0.51 93% 0.180 0.54 104

Analysis of Progressive Myoclonus Epilepsy Data

The EPM1 gene involved in progressive myoclonus epilepsy was mapped to
chromosome 21q22.3 [Vitaneva et al., 1996] using 88 haplotypes with five microsatellite
markers spanning a 900-kb region (D21S1885-D21S2040-D21S1259-D21S1912-PFKL),
and it was then cloned between D21S2040 and D21S1259 (~30-kb from marker
D21S2040). We applied our method to this data set to estimate the location of the EPM1
gene, time to the most recent common ancestor T, mutation rate p, and the heterogeneity
parameter p. Because the estimated heterogeneity parameter p was not significantly
different from zero, we assume p = 0 in the following discussion. Figure 1 shows the log-
likelihood curve. The estimated location (triangle in the figure) was in the correct marker
interval. The 95% CI assuming independent haplotypes (top horizontal bar) and the 95%
CI based on CCV assuming an exponential population growth model (bottom horizontal
bar) both contain the true gene (vertical bar). The estimated mutation rate was 10* and
the estimated time to the most recent common ancestor of the sampled haplotypes was 1
= 50. In the exponential population growth model, we assumed that the present day
population with the disease mutation is 10, and the founding population size was 20.
Compared to McPeek and Strah’s [1999] results, our estimated EPM1 location was closer
to the true location, and the 95% CI based on CCV was smaller (0.33cM vs. 0.50cM).

log < likelihood

T T T
0.0 0.2 04 06 08

location

Fig. 1. Log-likelihood versus location for the EPM1 data set.
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DISCUSSION

We have extended McPeek and Strahs’ [1999] model for LD based on the decay of
haplotype sharing to incorporate SMM for microsatellite markers and CCV to model
dependence among the sampled haplotypes. Our simulation results showed that the
method performed well for small sample sizes, a relatively high mutation rate, and the
presence of non-ancestral haplotypes. For genetic variant location estimation, EMM and
NMM yielded similar results when the mutation rate was low, but may have larger bias
when the mutation rate was high if the mutation mechanism follows SMM. The mutation
rate estimate was not as good, but the estimation of time to the most recent common
ancestor was nearly unbiased under the correct mutation model. Note that SMM is most
applicable for microsatellite markers. For single nucleotide polymorphisms (SNPs) that
will be increasingly used in the future, all three mutation models will likely yield similar
results because the mutation rate for SNPs is believed to be very low.

When the population structure was taken into account, the CI based on a conditional-
coalescent model for constant population size larger than the CI based on the
independence assumption. The CI based on the conditional-coalescent model for constant
population size model is conservative when there is population expansion. When the
exponential growth model was assumed in the analysis of the EPM1 data set, the CI
based on CCV was smaller than the CI based on the coalescent model for constant
population size, and it contained the true gene. This CCV model will provide more
accurate information on the disease gene location when there is good knowledge on
population history, which is the case for most isolated populations currently under study.
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