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Camera Calibration with Genetic Algorithms

Qiang Ji and Yongmian Zhang

Abstract—1n this paper, we present a novel approach based on
genetic algorithms for performing camera calibration. Contrary

to the classical nonlinear photogrammetric approach [1], the
technique can correctly find the near-optimal solution

without the need of initial guesses (with only very loose param-
cter bounds) and with a minimum number of control points (7

ts). Results from our extensive study using both synthetic
and real image data as well as performance comparison with
Tsal's procedure (2] demonstrate the excellent performance of

the proposed technique in terms of convergence, accuracy, and
robustness.

Index Terms—Camera calibration, computer vision, genetic

algorithms, nonlinear optimization.

[. INTRODUCTION

AMERA calibration is an essential step in many machine

vision and photogrammetric applications including
robotics, three-dimensional (3-D) reconstruction, and men-
suration. It addresses the issue of determining intrinsic and
extrinsic camera parameters using two—dimensional (2-D)
image points and the corresponding known 3-D object points
(hereafter referred to as control points). The computed camera
parameters can then relate the location of pixels in the image
to object points in the 3-D reference coordinate system. The
existing camera calibration techniques can be broadly classi-
fied into lineay approaches [3]-[8] and nonlinear approaches
[31-15]. 6], [9). (10]. Linear methods have the advantage of
computational efficiency but suffer from a lack of accuracy and
robustness. Nonlinear methods, on the other hand, offer a more
accurate and robust solution but are computationally intensive
and require good imitial estimates. For example, the classical
nonlinear photogrammetric approach [1] wili not correctly
converge if the initial estimates are not very close. Hence, the
quality of an initial estimate is critical for the existing nonlinear
approaches. In most photogrammetry situations, auxiliary
equipment can often provide approximate estimates of camera
parameters. For example, scale and distances are often known
to within 10% and angle is known to be within 15° [11].

For computer vision problems, however, approximate
solutions are usually not known a-priori. To get around this
problem, one common strategy in computer vision is to attack
the camera calibration problem by using two steps [2], [12].
The first step generates an approximate solution using a linear

technique. while the second step improves the linear solution
using a nonlinear iterative procedure.
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The first step utilizing linear approaches is key to the Slic.
cess of two-step methods. Approximate solutions provided by
the linear techniques must be good enough for the subsequen
nonlinear techmques to correctly converge. Being susceptible o
noise in image coordinates, the existing linear techniques are,
however, notorious for their lack of robustness and accuracy
[13). Haralick er al. [14] shows that when the noise leve) ex.
ceeds a knee level or the number of points is below a knee leve],
these methods become extremely unstable and the errors sky-
rocket. The use of more points can help alleviate this problem
However, fabrication of more control points often proves to be
difficult, expensive, and time-consuming. For applications wit
a limited number of conirol points, e.g., close to the required
mirimum number, it is questionable whether linear methods can
consistently and robustly provide good enough initial guesses
for the subsequent nonlinear procedure to correctly converge to
the optimal solution.

Another problem is that almost all nonlinear techniques
employed in the second step use variants of conventional opti-
mization techniques like gradient-descent, conjugate gradient
descent or the Newton method. They therefore all inherit well
known problems plaguing these conventional optimization
methods, namely, poor convergence and susceptibility to getting
trapped in local extrema. If the starting point of the algorithm
15 not well chosen, the solution can diverge, or get trapped at a
local minimum. This 1s especially true if the objective function
landscape contains isolated valleys or broken ergodicity. The
objective function for camera calibration involves 11 camera
parameters and leads to a complex error surface with the desired
global minimum hidden among numerous finite local extrema.
Consequently, the risk of local rather than global optimization
can be severe with conventional methods.

To alleviate the problems with the existing camera calibration
techniques, we explore an alternative paradigm based on genetic
algorithms (GAs) to conventional nonlinear optimization
methods. GAs were designed to efficiently search a large,
nonlinear, poorly understood spaces and have been widely
applied in solving difficult search and optimization problems
including camera calibration [15), spectrometer calibration [16},
instrument and model calibration [17], [18). GAs have attractive
features for camera calibration problems because they do not
require specific models or linearity as in classical approaches
and can explore all parts of the feasible uncertainty-parametef
space. Compared with the conventional nonlinear optimization
techniques, the GAs offer the following key advantages:

1) Autonomy: GA does not require an initial guess. The ini-
tial parameter set is generated randomly in the predefined
parameter domain.

2) Robusmess: Conceptually, GA works with a rich pop¥
lation and simultaneously climbs many peaks in parallﬁl
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during the search process. This significantly reduces the
probability of geting trapped at a local minimum.
3y Noise Immunity: GA searches a fit parameter set and
moves toward the global opumum by gradually reducing
the chance of reproducing unfit parameter sets. It there-
fore has high accuracy potential in noise situation,
Results from our study are encouraging and promising. The
proposed GA approach can quickly converge to the correct so-
Jution without initial guesses and with the minimum number of
points (seven points), We believe that this study is significamt
for computer vision and photogrammetry in that
 the proposed technique does not require good initial
guesses of camera parameters.
» the proposed technique is robust and accurate even with
the minimum number of control points for noisy images.

The remainder of this paper is organized as follows. In
Section I1, we provide a brief introduction to the basic opera-
tions of the genetic algorithms and to the perspective geometry
for camera calibration. Section 111 defines the fitness function
for the camera calibration problem and Section IV describes
how genetic algorithms can be adapted to camera calibration
problems. Section V discusses the convergence and computa-
tional complexity of this technique. We present experimental
results and analysis in Section V1. Conclusions and summary
are presented in Section VI

11. BACKGROUND

To offer the necessary background, in this section we provide
short introductions to genetic algorithms and the perspective ge-
ometry used for camera calibration.

A. Genetic Algorithms

GAs are stochastic, parallel search algorithms based on the
mechanics of natural selection and the process of evolution [19].
GAs were designed to efficiently search large, nonlinear spaces
where expert knowledge is lacking or difficult to encode, and
where traditional optimization technique fail. GAs perform a
multidirectional search by maintaining a population of potential
solutions and encourage information formation and exchange
between these solutions. A population is modified by the proba-
bilistic application of the genetic operators from one generation
to the next.

The three basic genetic operations in GAs are 1) evaluation;
2) selection: and 3) recombination, as shown in Fig. 1. Evalua-
tion of each string which encodes a candidate solution is based
on a fitness function. This corresponds to the environmental
determination of survivability in natural selection. Selection i1s
done on the basis of relative fitness and it probabilistically culls
solutions from the population that have relatively low fitness.
Two candidate solutions (p, and p,) with high fitness are then
chosen tor further reproduction.

Selection serves to focus search into areas of high fitness.
Of course. if selection were the only genetic operator, the
population would never have any individuals other than those
introduced in the initial population. New population is gen-
erated by perturbing the current solutions via recombination.
Recombination, which consists of mutation and Crossover,

i2l

fp)) = 15% population
(p2) =%

f(pi) = $5%

Evatuation

Fig. 1. Three basic genetic operations.

imitates sexual reproduction. Crossover is a structured yet
stochastic operator that allows information exchange between
candidate solutions. The simplest way to perform crossover
1S to choose randomly some crossover point and everything
before this point copy from a first parent and then everything
after a crossover point copy from the second parent as shown
in Fig. 1.
Mathematically, crossover follows that

Cnew = ap; + PP, (1)
where
p; and p; parent individuals from the last iteration/genera-
tion;
Coci new individual in the current generation;

aand 3  the proportion of good alleles' which may be
probabilistically inherited from p; and p;.

After a crossover is performed, mutation takes place. This is
to prevent falling all solutions in population into a local op-
timum of solved problem. The mutation operator introduces
new genetic structures in the population by randomly changing
some of its building blocks, helping the algorithm escape local
minima traps. It is clear that the crossover and mutation are the
most important part of the genetic algorithm. The performance
is influenced mainly by these two operators. More introduction
on GA and a detailed discussion on mutation and crossover may
be found in {20} and [21].

In summary, the operation of the basic GA can be outlined as
follows.

1) Generate random population of n chromosomes?
(suitable solutions for the problem).

2) Evaluate the fitness of each chromosome z in the
population.

3) Select two parent chromosomes from a population ac-
cording to their fitness.

4) With a crossover probability cross over the parents to
form a new offspring.

5) With a mutation probability mutate new offspring.

6) Place new offspring in a new population.

| An alternative form of a gene that can exist at a single gene position.
2A linear end-to-end arrangement of genes.
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Fig. 2. Perspective projection geometry.

7) Use new generated population for a further run of algo-
rithm (foop from step 2 until the end condition is satisfied.

B. Perspective Geometry

Fig. 2 shows a pinhole camera model and the associated
coordinate frames. Let X = (z y z)¥ be a 3-D point in an
object frame and U = (u v) the corresponding image point in
the image frame. Let X, = (p q s)7 be the coordinates of X
in the camera frame and p = (c r)7 be the coordinates of U in
the row—column frame as illustrated in Fig. 2. The image plane,
which corresponds to the image sensing array, is assumed to
be parallel to the (X, Y.) plane of the camera frame and at
a distance f to its origin, where f denotes the focal length of
the camera. The relationship between the camera frame C, and
object frame C, is given by

X=RX.4+T (2)
where R is a 3 x 3 rotation matrix defining the camera
orientation and T is a translation vector representing the
camera position. / and T" can further be parameterized as

i1 T12 Ti13 £y
R=1|1ry ryp ra T=|{t, (3)
a1 732 T33 l.

The 7;; in matrix R can be expressed as the function of
camera pan angle w, tilt angle ¢, and swing angle « as follows:

11 = CGS(,E"COSH

™12 =sinwsindcos s + coswsinx
T3 = —Coswsin¢cosx + sinwsin
T21 = —CcosS¢sink

T22 = —Sinwsin ¢ sin Kk + COSw CO8 Kk
T23 = COSwSIN ¢ sin Kk + sinw cos &
T3 = sin¢

T32 = —Sinw cos ¢

T33 = COSwW COS ¢.

(4)

The collinearity of 3-D object coordinate X and 2-D image
coordinate p can be written as

THE + T2y + ™32 4+ ¢,
T31T + T3y + T332 + £,

r= fs, 2% + 22y + 232 + ¢,
Y35 + ragy + razz + {:

c= fs,

+up = Q(X: q)
(3)

+ v = w(X, q)

where
s- and s, scale factors (pixels/mm) due to spatial
tion;
ug and vo coordinates of the principle point in pixels relative
to image frame;
q vector of all camera parameters as defined in (6)
The main task of camera calibration in 3-D machipe Vision
is to obtain an optimal set of the interior camera Parameter
((uo, Vo), Sz, 8y, f)T and exterior camera Parameteys
(w, @, &, tz, ty, t;)T using known control points in tp,
2-D image and their corresponding 3-D points in the Object
coordinate system.

qUantiy,.

III. OBJECTIVE FUNCTION

Let q be an vector consisting of the unknown interior gn4
exterior camera parameters, that is,

q — [ug, ’UD, f; 3:1':: 31;1 w: ¢1 ﬁ'i ti‘-’? t!ﬁ tz]T' (6)

For notational convenience, we rewrite qas q = (q,q
L

<0y QII)Ti where 1, g2 and d11 concspond to ug, vg, and L.,
respectively, in the previous notation used for q. Assume q is 3

solution of interior and exterior camera parameters and q C Q,
then we have

Q={aucly;iq¢];i=12 ..., n} (7)

where g;” and ¢;" are the lower and upper bounds of g;. The
bounds on parameters can be obtained based on the knowledge
of camera. Any reasonable interval which may cover possible
parameter values may be chosen as the bound of parameter ¢;.
For example, we may have w, ¢, x € [—=, ], f € [20, 70] as
in our test cases and so on. An optimal solution of q with M
control points can be achieved by minimizing

M

Z [(g(q, Xt) — ci)2 + (W(q, X‘l) - l'i“"l'.)z]

=1
where X; = (z;, i, 2;) is the ith 3-D point; g and w are defined
in (5).

A key issue that arises in this approach is the extremely large
search space caused by the presence of uncertainties. Fig. 3
plots the landscape of the objective function as a function
of the three rotation angles with other camera parameters
such as |ug, vo, f, 8z, 8y, tz, £y, t.]T fixed. This figure
reveals several local extrema with the objective function. It is
reasonable to conjecture that, when more parameters need (0
be calibrated, the number of local extrema increases and the
landscape of the objective function becomes more complex.
This presents a serious challenge to conventional minimization
procedures since there may be several local minima as shown
in Fig. 3, and the choice of starting point will determint
which minimum the procedure converges to, or whether
will converge at all. If starting points are far away from the

desired minimum, the traditional optimization techniques could
converge erroneously.

qeQ 8

IV. GA OPERATORS AND REPRESENTATION

Designing an appropriate encoding and/or recombinat'iﬂﬂ
method is often crucial to the success of 2 GA algorithm, To 11°
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Fig. 3. Landscape of objective function under varying rotation
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prove GA’s convergence, we propose a new mutation operator
that determines the amount and direction of perturbation in the
search space. Mutation can be viewed as one dimensional (1-D)
or local search, while crossover perforrns multidimension, or
more global, search.

A. Representation

GA chromosome are usually encoded as bit strings and a long
binary string is required in order to represent a large continuous
range for each parameter. Instead, we encode the GA chromo-
some as 2 vector of real numbers. Each camera parameter g;, 2 =

1. .... nisinitialized to a value within its respective bounds as
defined in (7). The chromosome vector may be defined as
q‘::(qu-”&q&:“*:qn)r 1Sk.“§N (9)
q:-’rl=(QI="'rqi~j-'*1qﬂ)1 I‘SkSN
where
q! individual from population V at tth generation;
q!*! individual from the new generation after genetic
selection;

g,  parameter that has been modified during the

evolutionary process.

B. Mutation

There two types of mutation operators are 1) per-chromo-
some mutation operator and 2) per-gene mutation Operators.
Per-chromosome operator acts upon an eatire chromosome.
Per-gene mutation operator, on the other hand, acts on each

123

gene individually. Our mutation technique belongs to the
former. Specifically, we implement a local gradient-descent
search lechnique to identify a new solution nearby but with
a higher fitness. Our mutation technique doesn’t just tweak
individual genes:. it alters the chromosome as & whole.

Our mutation scheme comprises two steps: 1) determining
the search direction and 2) simultaneously determining the step
size in the selected search direction. In (7), the search space Q
should be a convex space S. The task of the GA is to determine
an unknown optimal point ¢; € [q; gi | in the convex space S
which minimizes the global error function of (8) at that point,

Assuming that the probability of receiving a correct step size
from the GA is p, whenever the current g < ¢; the GA cor-
rectly increases ¢, with a probability p. It may also, however,
incorrectly decrease . with a probability 1 —p. It is reasonable
to expect that it is equally likely for a GA to increase ;. as [0
decrease q.. Then the next current point g;. ' is given by

gt +IA(L ¢ )+ (I-1D)A(2, g )

t+1 .o t+1 +
g =19 ar. if g, > a
ar s if gi"! < qp

(10)

where A(t, i) and A(¢#, g ) are the step sizes for the upper
and lower bounds of g;.. respectively. I is an indicator function
assuming the value of 0 and 1 depending on the outcome of a
coin 10SS.

The crucial issue is the amount of perturbation (step size) of
point ¢;. in the interval [q; , gy ). Too small perturbation may
lead to sluggish convergence, while too large perturbation may
cause the GA to erroneously converge or even oscillate. Since
g € [97, q) € S holds, g, must be a fraction, say c, of the
way between its lower bound g, and upper bound q;:', i.e.,

+ _ .t
=c q_’;’_ -qf =1-c.
9 — U3

Assuming the successive point is g; !, where ¢;*' € [gr, ¢7],

we can utilize the golden section to determine the optimal step
size of ¢ T' as

{A(iaq;*)ﬂ(%f—qi%
At gr)=clat—ac),

where ¢ is the golden fraction with value of (3 — v/5)/2 and
a and b represent, respectively, |g — gi| and |qx — g; |- Since
(12) uses constant convergence step to its ideal value, to improve
the GA’'s efficiency and avoid unimportant search region in the
early stage of evolution processing, we then incorporate evolu-
tion time ¢ 1 (12), 1.e.,

At af) =c(af - gf) (1 - r0=t/eT))

Alt, g ) =c{a — gz ) (1 - "“Hmﬂ))

G — 0
9 —qr

(11)

if (@ > b)

12
otherwise )

(13)

(14)

where
r random variable distributed on the unit interval [0, 1);
o« liesin {1, 1.5];
T total number of iterations.
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Figz. 4. Comparison of mutation schemes. Nonuniform mutation (as
represented by diamonds): mean SQE error 107.2; our mutation scheme (as
represeated by crosses): mean SQE error 13.4. Most erors using the golden
sectiop mutation scheme are close to zero while most errors for the nonuniform

mutations scheme are much higher up to 1000.

The essence of our mutation scheme, termed golden section,
lies in integrating (12)—(14) together and in each generation
(or iteration) the scheme stochastically chooses one of them to
determine the position of the new current point. The random
determination of step size allows discontinuous jumps in the pa-
rameter interval, and then golden section is used to control the
search direction. This ultimately makes the GA converge more
accurately to a value arbitrarily close to the optimal solution.
Additionally, the proposed mutation scheme requires insignifi-
cant computational time.

A companson between the proposed mutation scheme and
nonuniform mutation [22]}, reportedly the most effective muta-
tion for nonlinear optimization, demonstrated the superiority of
the proposed scheme in the sense of convergence as shown in
Fig. 4. The figure indicates that with our mutation method, the
errors generated from 500 runs all lie close to the bottom line.

C. Crossover

Crus§over produces new points in the search space. The initial
p?pulanon forms a basis of the convex space S and a new indi-
vidual in population is generated via (1) in Section IL

Let q; and g}, be two individuals from population N at
generation ¢. They satisfy

9 = {g; € {¢j, ¢f] c S},

t=1,...,N =1 ..., n (15)

where N denotes the population size, and n the number of
parameters (or chromosome length). Following (15), a new

individual q; in generation ¢ + 1 can be expressed as a linear

comPinadon of two arbitrarily selected individuals from the
previous generation ¢, that is

t+1 (16}

t4+1
{qi = (1 - ap;)q; + ﬂfﬂi‘lﬁﬂ
q;11 = (1 - ﬂ’ﬂi+1)q:+1 + &ﬂi+lfﬁ
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Fig. 5. Convergence performance of calibrating camera parameters; y-axis ip
all figures represents scaled camera parameters.

where o ranges within [0, 1]. p is a bias factor that increases the
contribution from the dominating individual with a better fitness
at current stage. Assuming nonnegative fitness function, p can
be determined from the following equations:

— éi: if Ei <1
o {1, if € > 1 i
_ fa) | f(qi1)

where f(*) denotes the GA's fitness function defined in (8).

V. CONVERGENCE AND TIME COMPLEXITY

As explained in the previous section, our genetic operators
provide GAs with a richer population and more exploration to
avoid unfavorable local minima in the early stages. And later,
our GA operators gradually reduce the number of such minima
qualifying for frequent visits and the attention finally shifts
more to smaller refinements in the quality of solution. Fig. 3
plots convergence performance for all camera parameters as
GA’s evolution proceeds. It shows that after approximately 100
generations, all estimated parameters can simultaneously in
parallel converge to a well stable solution. We obtained similar
results in all our test cases described in next section. Different
from the conventional optimization approach, GA searches 2
fit parameter set in the uncertain parameter space and moves
toward the global optimum by gradually reducing the chance
of reproducing unfit parameter sets.

Our selection mechanism consists of two procedures which
are 1) roulette wheel proportionate selection and 2) lineaf
ranking selected individual. The proportionate selection takes
time approximately (N lg N) and while linear ranking needs
time of about (Ig N + Ig(ln N)) {23], where N denotes the
population size. Let £ be the number of control points 0D
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Fig. 6. The average run time (in seconds) as a function of calibration points.

calibration pattern, each evaluation then requires linear time
of &. Because our mutation and crossover only involve simple
arithmetics without heavy iterations, the time it takes in this
procedure is comparatively negligible. Assuming that the GA
converges after sn generations, the time compiexity t required
to accomplish a calibration processing can be approximated as

t=m(kNIgN +1gN +lg(ln N)). (19)

Fig. 6 offers an intuitive view of the average run time (wall
time) as a function of calibration pownts in 300 MHz Ultra
SPARC III machine, with GA population size 400 and number
of generations 100. The algorithm can be further parallelized in
a straightforward manner. 1f we simply partition the population
such that each processor performs an approximately equal size
of the subpopulation, the use of p processor can yield a speedup
of approximately p times.The following protocol was followed
to generate synthetic data.

1) Control points were randomly generated from the three
visible planes of a 58 x 58 x 58 hypothetical cube. To
study the performance with different numbers of control
points, we selected seven (seven visible cubic comers),
47, 107 points from the cube respectively.

2) Camera parameters used to generate control points serve
as absolute reference-ground truth.

3) Noise was added to the image coordinates of control
points. The noise is Gaussian and independent, with a
mean of zero and standard deviation of ¢ ranging from
zero to three pixels.

V1. EXPERIMENTAL RESULTS

This section describes experiments performed with synthetic
and real images to evaluate the performance of our approach in
terms of its accuracy and robustness under

1) varying amounts of image noise;
2) different numbers of control points;
3) different ranges of parameter bounds.

Furthermore, we describe results from a comparative
performance study of our approach with that of Tsai's
calibration algorithm {2]. Tsai's algorithm presented a direct
solution by decoupling the 11 camera parameters into two
groups; each group 1s solved for separately in two stages. It

has since become one of the most popular camera calibration
techniques in computer vision.
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TABLE I
CAMERA PARAMETER GROUND TRUTH AND BOUNDS

Ground Truth | Parameter Bound

Notation

25.0 20, 40
s 144.0 110, 160
oy 144.0 110, 160
Uo 250.0 200, 300
vo 192.0 170, 230
Lo -38.0 -80, 50
£y 35.0 -80, 50
ts 1210.0 900, 1400
-1.80140 -7, &
@ 0.20516 -, X

0.15152

A. Simulation with Synthetic Data

We generated 200 independently perturbed sets of control
points for each noise level so that an accurate ensemble av-
erage of the results could be obtained. For each data set our GA
was executed ten times using different initial populations gener-
ated by different random sceds. To ensure fair comparison, GA
parameters were identical in all test cases.

We assess the calibration accuracy by measuring the value
of both parameter errors and pixel errors. Throughout the
following discussions, we defined pixel error as the average
Euclidean distance between the pixel coordinates generated
from the computed camera parameters and the ideal pixel
coordinates. The error of individual camera parameter (camera
error) is the averages Euclidean distance between the estimated
camera parameter and its ground truth. For rotation matrix,
the estimated error of rotation matrix is the Euclidean norm
between the estimated matrix and its ground truth values.

We first investigated how image noise and control points af-
fect the performance of our approach. For this study, the initial
camera parameter bounds and their ground truth are given in
Table 1.

Fig. 7 plots the pixel errors and camera errors versus the
number of points participating in the calibration and the amount
of image noise. Table Il briefly summarizes the estimation
accuracy which is defined as the ratio of an estimated camera
parameter and the corresponding ground truth camera param-
eter, where two examples of control points 7 and 107 under
noise level (o) 0.0 and 3.0 are given.

Several tmportant observations can be made from these resulits.
Firstly, the pixel error is substantially small (less than 4 pixels
given o = 3) and increases linearly with the image perturbation.
Contrary to conventional techniques, our method shows no im-
provement in pixel errors by use of more redundant control points.
Although for a few specific camera parameters, the result shows
more contro] points may enhance the estimation accuracy, most
of camera parameters such as £, t,,, ug, vo, 3z, 8y show theexact
opposite. Furthermore, no improvement can either be achieved in
camera errors with more control points. More redundant control
points may lead to the deterioration of GA’s convergence since
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