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Abstract

The set of correlation immune (CI) Boolean functions can be partitioned into several disjoint sets depending on the Hamming
weight of their output column. We show that the number of n variable CI functions of Hamming weight 2a + 2 is strictly greater
than the number of such functions of weight 2a for 2a < 2"~!. This seemingly intuitive result turns out to be quite difficult
to prove. The combinatorial structure of CI functions revealed here reduces the enumeration problem of CI functions to the

enumeration problem of balanced CI functions.
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1. Introduction

The concept of correlation immune Boolean func-
tions was introduced by Siegenthaler [4]. Recently the
enumeration of correlation immune Boolean functions
has received a lot of attention as evident from [2,5,
3,1]. The set of n-variable Boolean functions can be
partitioned into 2" + 1 disjoint sets depending on the
Hamming weights of their output columns. In this con-
text it is natural to consider the set of CI functions
restricted to a particular weight. One particularly in-
teresting question that immediately arises is how does
the number of CI functions of a certain weight com-
pare to the number of CI functions of a greater weight.
We completely settle this question by showing that
(a) the number of CI functions of odd weight is 0,
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(b) the number of CI functions of weight 2a is equal
to the number of CI functions of weight 2" — 24,
and

(c) the number of CI functions of weight 2a is strictly
less than the number of CI functions of weight
2a + 2 for 2a < 2",

Parts (a) and (b) are easy and though (c) is intuitive
proving it is a nontrivial task. Our proof technique
throws new light on the inherent combinatorial nature
of CI functions and also reduces the enumeration
problem for CI functions to the enumeration problem
for balanced CI functions.

We interpret a Boolean function f as a binary string
of length 2", given by the output column in the truth
table and wr(f) means the number of 1’s (Hamming
weight) in the string f. The string f" is the reverse of
string f and f€ is the bitwise complement of f. By
S[t] we mean the tth bit in the binary string S. Also,
#(¢p) counts the number of outcomes favorable to the
event ¢. The notation (A | B) denotes the outcomes



150 S. Maitra, P. Sarkar / Information Processing Letters 71 (1999) 149-153

favorable to A given that B has already occurred. By
D(S1, $2) we denote the Hamming distance between
two strings S, S of the same length (say 1). Also, the
number of places in which S and S match is denoted
by M(S1, S2),1.e., M(S1, $2) =1 — D(S1, $?). Let

Mo(f1, f) =#(filil = f2li]=0) and

Mi(f1, f) =#(filil= folil=1), 0<i<2" -1
Thus,

Mo(f1, f2) + Mi(f1, f2) = M(f1, f2).

Next we define correlation immunity of a Boolean
function [4,2].

Definition 1.1. Let f be a Boolean function of n input
variables {X1, X»,..., X,}. Then f is correlation
immune if Prob(f = X;) = %, Vi, 1 <i <n.

The set of all Boolean functions of n variables is
denoted by £2,, and the set of all correlation im-
mune Boolean functions of n variables is denoted
by A,. Further, CIW,(a) = {f € A, | wt(f) = a}
denotes all n-variable CI functions of weight a and
Cp(a) = |CIW, (a)| denotes the number of such func-
tions.

We here show that,

(a) Cha+1)=0,

(b) C,(2a)=C,(2" — 2a), and

(¢) Ch(2a) < Cy(2a +2) for2a < 2" 1,
The following simple result settles (a).

Proposition 1.1. Prob(f = X;) = 5 iff #(f =1 |
Xi=0)=#(f=1|X;i =1 Vi, 1 <i<n. Conse-
quently, C,(2a + 1) =0, fora > 0.

2. Weight distribution

It is easy to see that for a < 271 the number of n-
variable functions of weight a is less than the number
of n-variable functions of weight a + 1. This follows
from simple properties of binomial coefficients. It is
then intuitive to expect the same kind of results for
correlation immune functions as well. In this section,
we prove such a result. First we show the following
which is analogous to the identity

(2)-("0)

Proposition 2.1. C,,(2a) =C,,(2" —2a).

Proof. The result follows on noting that f € A, iff
f¢eA,. O

Based on Proposition 2.1, in the rest of this section
we will consider 2a < 2"~ unless otherwise men-
tioned.

Proposition 2.2. Let f € CIW,(2a), n > 2. Then
M(f, f") =0 mod 4. Consequently, D(f, f") is also
congruent to 0 mod 4.

Proof. Let f“, f' be the top and bottom halves (of
equal length) of f, respectively. Since f € A,, we
have wr(f*) = wt(f') = a. Let there be k places out
of the a 1’s in the f* part where the corresponding
positions in (f!)" do not match, i.e., M1 (f*, (f1)") =
(a — k). Thus, there are k places out of "1 —a)0’s
in (f!)" where the corresponding positions in f* do
not match, which gives Mo(f*, (f)") =2"""—a—k.
Hence,

M(f, 1y =2M(f" (f1))
=2(a—kb+ Q"' —a—k)
=2" — 4k =0 mod 4. O

From the argument of the proof of Proposition 2.2,
we get the following result.

Proposition 2.3. Let f € CIW,(2a) and M(f, ") =
x. Then Mo(f, f7) =2""'—2a+3x and M (f, f") =

21420+ %x. Consequently,
Mo(f, 1) = Mi(f, 1) =2" — 4a.

Now we provide a construction technique for g €
CIW,(2a 4 2) from f € CIW,(2a) and vice versa.

Definition 2.1. Let f, g € £2, and there exists ig, i|
with ig 4+ i1 =2" — 1, such that

() fliol = fli1] =0,

(2) gliol=gli1l=1, and

() fLil=gljlif j #io, 1.

Then we say that f, g are palindromically related.

Note that values of just a specific pair of positions
are toggled and the positions are at the same distances
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from top and bottom of the function string. It is impor-
tant to note that two functions f, g are palindromically
related means that D(f, g) =2,i.e., M(f, g) =2"—2.

Proposition 2.4. Let f, g be palindromically related.
Then M(f, f")=M(g, g"). Equivalently, D(f, f") =
D(g, g").

The following result shows the importance of Defi-
nition 2.1.

Theorem 2.1. Let f,g be palindromically related.
Then f € A, iff g € Ay

Proof. Since f € CIW,(2a), wehave #(f =1 | X; =
0)=#(f=1|X; =1)=a for all i. Also there exists
7 such that f[t] = f[2" — 1 — t] = 0. Consider the
column of X; in the truth table as a binary string. Note
that,

Xiltl= (Xi[2" = 1 —1])".
Thus, if we consider the function g, then we have,
#g=1|X;=0)=#g=1|X;=1)=a+ 1.

Thus g € A,. The other direction can be proved
similarly. O

Corollary 2.1. All palindromic functions are CI.

Proof. The identity function O is trivially correlation
immune. The result then follows from Theorem 2.1 by
induction on the weight of a palindrome. 0O

This result has also been proved differently [2]. As
an immediate consequence of Corollary 2.1, we have

2n—1
Cn(2a) > ( )
a

Interestingly, the exact proportion of C,(2a) among
all functions of weight 2a is an open question. How-
ever, we have an exact result for 2a = 2. Since the
set CIW, (2) contains only the palindromes, we get
C,(2)=2""1

If we take f € CIW,(2a), 2a < 2", then from
Proposition 2.3, we have My(f, f") > 0. Thus there
exists at least one position t such that f[t] = f[2" —
1 — 7] = 0. Then using Definition 2.1, we can get
some g € CIW,(2a + 2), by replacing the pair of

0’s by a pair of 1’s. Moreover, if there exists more
than one 7, such that f[t] = f[2" — 1 — 1] =0,
then different functions of CIW,(2a + 2) can be
constructed from f. Let us now consider the other
way around. Let g € CIW,,(2a +2). If M1(g,g") > 0,
then using Definition 2.1, some f € CIW,(2a) can
be found. However, it is important to note that there
may exist some g € CIW, (2a + 2) with M;(g,g") =
0. In that case it is not possible to get a function
f € CIW,(2a) by changing one pair of positions.
Motivated by this discussion we make the following
definition.

Definition 2.2. Let G, be an undirected graph where
the vertices are the elements of A, and two vertices are
connected if they are palindromically related. We call
such a graph an n-variable correlation immune graph.

The following theorem describes the components
of G,.

Theorem 2.2. If two vertices f, g of the CI graph G,
belong to the same component of G, then M(f, ") =
Mg, g".

Proof. The path u = ug, uy, ..., ug—1,ux = v exists
in G, iff uj,u;y1, 0 <i <k — 1, are palindromi-
cally related. The result then follows from Proposi-
tion24. 0O

Next we define another graph which is basically a
subgraph of the CI graph.

Definition 2.3. By G,(2a,2a + 2), we define an
undirected bipartite graph such that G, (2a,2a +2) =
(CIW,(2a) U CIW,(2a + 2), E), where there is an
edge between f € CIW,(2a) and g € CIW,(2a + 2)
if they are palindromically related.

The following defines a special type of bipartite
graph.

Definition 2.4. Let G = (V| U V», E) be a connected
bipartite graph. Then G is called homogeneous if all
the vertices of Vj are of the same degree d; and all the
vertices of V; are of the same degree d>.
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Homogeneous bipartite graphs have the following
simple property which will prove to be useful later.

Proposition 2.5. Let G = (V1 U Va, E) be a homoge-
neous graph. Let the degree of each vertex of Vi be
dy and the degree of each vertex of V, be da. Then
[Vi| x d1 = | V2| x dy = |E|. Consequently, if d| > d>
then |V1| < |Va|.

Our next task is to show that the components
of G,(2a,2a + 2) are homogeneous. We need the
following additional notation. Let

CIW, x(2a) = {f € CIW, a) | M(f, ) =x} and
Cn.x(2a) = |CIW, x(2a)|.

By G, x(2a,2a +2) we mean the subgraph of G,(2a,
2a + 2) induced by the vertices of CIW, ,(2a) U

CIW, x(2a + 2). The following relates G, x(2a,
2a +2) to G,(2a,2a + 2).

Lemma 2.1. The subgraphs G, x(2a,2a + 2) of the
graph G,(2a, 2a + 2) are homogeneous for all possi-
ble values of x.

Proof. To prove the statement consider f, f1 €
CIW, »(2a). Then, M(f, f") = M(f1, f{) = x. Hen-
ce, degree of f,

Mo(f, f" M, , fr
d(f) = O(J;f): 0(f21 f1)=d(f1).

Similarly, for g, g1 € CIW,, »(2a+2),we have,d(g) =
d(g1). Thus G, x(2a,2a + 2) is homogeneous. O

Lemma 2.2. Let f, g be vertices of G, x(2a,2a +
2) where, f € CIW, (2a), g € CIW, x(2a + 2)
and 2a < 2""'. Then, the degree of f is d(f) =
%Mo(f, f") and the degree of g is d(g) = %Ml (g, 8"
with d(f) > d(g) > 0. Consequently, C, (2a) <
Cn.xQa+72).

Proof. It is easy to check that, d(f) = lMo(f, )
and d(g) = im, (g,g"). Using Proposition 2.3 we

have
2" —4a —2
d(f)—d(g) = — s
which gives d(f) > d(g) since 2a < 2n=1 _ 2. Also,

Mi(g,g") =M (f, f7) + 2 and hence d(g) > 0. The
last statement follows from Proposition 2.5. O

Theorem 2.3. C,(2a) < C,(2a + 2) for 2a < 2"~!
and C,(2a) > C,(2a + 2) for 2a >2""1.

Proof. Using Proposition 2.1 it is sufficient to show
Cn(2a) < Cy(2a + 2) for 2a < 2" 1. Let there be
t distinct values x1,x2,...,x; of M(f, f") for f €
CIW,(2a). From Lemma 2.2, we have, C, y,(2a) <
Ch.x;(2a+2). Also, it is easy to see that CIW,, y, (2a)N
CIWn,xj (2a) =¥ for x; # x ;. Hence,

t
Ca(2a) =) Cp;(20)

i=1

t
<Y Cux2a+2) < CaRa+2).

i=1
Thus,

Cn(2a) <CyRa+2) for2a<2""'. 0O

3. Balanced functions

In this section we show that if the set of bal-
anced correlation immune functions CIW,, (2"~!) can
be enumerated with the cardinality of each partition
CIW,, (2"~ 1) separately, then the exact enumeration
of A, is possible. First we express the proportional
cardinality of two sets which follows from Proposi-
tion 2.3.

Lemma 3.1.
Cox @1 =2G+1)  3x—2i
Cox (@71 =20) Ly 42i 42

for ix —2i>0,i>0.

Let

MATCH, = {x | M(f, ") =x,
for some f € CIW, (2a), 2a < 2"_1}
and
BMATCH, = {x | M(f, f") =x,
for some f € CIW,,(2"_1)}.

The next result shows MATCH,, = BMATCH,,.
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Lemma 3.2. If f € CIW,.(2a), 2a < 2"~!, then
there exists a function g such that g € CIW, x @' h.

Proof. Let f € CIW, »(2a). Then it is easy to check
that there is a path f = fo, fi1,..., fx = g of length
k =2""? — a in the CI graph G, where

(@) we(fi) =2+ wt(fi—1) and

(b) Mo(fi, 1) =21 — (2a +2i) + %x fori > 1.
Thus g € CIW,,(2"~1). Using Proposition 2.4, we have
M(f, fy=M(g,¢g") andso g € CIW, ,(2"~1). O

Let BMATCH, = {x1,...,x;}. For 1 < j<t,0<
2i <27 oy =1if %x, —2i>0 and 0j2i =0,
otherwise.

Theorem 3.1.

Cy (2"—1 —2i)
i—1

—20],21 nxj(zn 1)1_[1

k0 2 ]+2k+2

Proof. Using Lemma 3.1 we get, fori > 0,

izl Ly ok
(2}1 1 21) — (2}1 1) _ s S
nxj nxj Héx1+2k+2
Since
(@) CIW, (2" 1 —2i)is a disjoint union of the sets
CIW,,; (2"~ — 2i) for x; € BMATCH, and
(b) CIW, ;2" =2i) =0 iff 6j2 =0,
the result holds. O

Theorem 3.2.
|Anl = C, (2" 1
xj/4 i—1
+2Y Cpy.2'7h
Z i ;H x,+2k+2

Proof. This follows from Theorem 3.1 and Proposi-
tion 2.1. The expression o ; is removed by summing

zfromlto x;. O

Theorems 3.1 and 3.2 provide formulae for C,, (2a)
and |A,| respectively. To use them one has to de-
termine BMATCH,, and the Cy y; (2"~1y’s. These are
open problems and could prove to be nontrivial tasks.
These also show that the enumeration problem of
CI functions reduces to the enumeration problem of
balanced CI functions.

The correlation immune functions with the same
values of M (f, f") form an equivalence class and in
each equivalence class there is a hierarchy depending
on wt( f). Also, each set CIW, (2a) can be partitioned
depending on M(f, f"). This gives a new direction
to characterize and enumerate the correlation immune
Boolean functions.
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