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favorable to A given that B has already occurred. By

D(S1, S2) we denote the Hamming distance between

two strings S1, S2 of the same length (say λ). Also, the

number of places in which S1 and S2 match is denoted

by M(S1, S2), i.e., M(S1, S2) = λ − D(S1, S2). Let

M0(f1, f2) = #
(

f1[i] = f2[i] = 0
)

and

M1(f1, f2) = #
(

f1[i] = f2[i] = 1
)

, 0 6 i 6 2n − 1.

Thus,

M0(f1, f2) + M1(f1, f2) = M(f1, f2).

Next we define correlation immunity of a Boolean

function [4,2].

Definition 1.1. Let f be a Boolean function of n input

variables {X1,X2, . . . ,Xn}. Then f is correlation

immune if Prob(f = Xi) = 1
2
, ∀i, 1 6 i 6 n.

The set of all Boolean functions of n variables is

denoted by Ωn, and the set of all correlation im-

mune Boolean functions of n variables is denoted

by An. Further, CIWn(a) = {f ∈ An | wt(f ) = a}

denotes all n-variable CI functions of weight a and

Cn(a) = |CIWn(a)| denotes the number of such func-

tions.

We here show that,

(a) Cn(2a + 1) = 0,

(b) Cn(2a) = Cn(2
n − 2a), and

(c) Cn(2a) < Cn(2a + 2) for 2a < 2n−1.

The following simple result settles (a).

Proposition 1.1. Prob(f = Xi) = 1
2

iff #(f = 1 |

Xi = 0) = #(f = 1 | Xi = 1) ∀i, 1 6 i 6 n. Conse-

quently, Cn(2a + 1) = 0, for a > 0.

2. Weight distribution

It is easy to see that for a < 2n−1, the number of n-

variable functions of weight a is less than the number

of n-variable functions of weight a + 1. This follows

from simple properties of binomial coefficients. It is

then intuitive to expect the same kind of results for

correlation immune functions as well. In this section,

we prove such a result. First we show the following

which is analogous to the identity
(

m

a

)

=

(

m

m − a

)

.

Proposition 2.1. Cn(2a) = Cn(2
n − 2a).

Proof. The result follows on noting that f ∈ An iff

f c ∈ An. 2

Based on Proposition 2.1, in the rest of this section

we will consider 2a < 2n−1 unless otherwise men-

tioned.

Proposition 2.2. Let f ∈ CIWn(2a), n > 2. Then

M(f,f r ) ≡ 0 mod 4. Consequently, D(f,f r) is also

congruent to 0 mod 4.

Proof. Let f u, f l be the top and bottom halves (of

equal length) of f , respectively. Since f ∈ An, we

have wt(f u) = wt(f l) = a. Let there be k places out

of the a 1’s in the f u part where the corresponding

positions in (f l)r do not match, i.e., M1(f
u, (f l)r ) =

(a − k). Thus, there are k places out of (2n−1 − a) 0’s

in (f l)r where the corresponding positions in f u do

not match, which gives M0(f
u, (f l)r) = 2n−1 −a−k.

Hence,

M(f,f r ) = 2M
(

f u, (f l)r
)

= 2
(

(a − k) + (2n−1 − a − k)
)

= 2n − 4k ≡ 0 mod 4. 2

From the argument of the proof of Proposition 2.2,

we get the following result.

Proposition 2.3. Let f ∈ CIWn(2a) and M(f,f r ) =

x . Then M0(f,f r) = 2n−1−2a+ 1
2
x and M1(f,f r) =

−2n−1 + 2a + 1
2
x . Consequently,

M0(f,f r ) − M1(f,f r ) = 2n − 4a.

Now we provide a construction technique for g ∈

CIWn(2a + 2) from f ∈ CIWn(2a) and vice versa.

Definition 2.1. Let f,g ∈ Ωn and there exists i0, i1
with i0 + i1 = 2n − 1, such that

(1) f [i0] = f [i1] = 0,

(2) g[i0] = g[i1] = 1, and

(3) f [j ] = g[j ] if j 6= i0, i1.

Then we say that f,g are palindromically related.

Note that values of just a specific pair of positions

are toggled and the positions are at the same distances
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from top and bottom of the function string. It is impor-

tant to note that two functions f,g are palindromically

related means that D(f,g) = 2, i.e., M(f,g) = 2n−2.

Proposition 2.4. Let f,g be palindromically related.

Then M(f,f r ) = M(g,gr ). Equivalently, D(f,f r ) =

D(g,gr ).

The following result shows the importance of Defi-

nition 2.1.

Theorem 2.1. Let f,g be palindromically related.

Then f ∈ An iff g ∈ An.

Proof. Since f ∈ CIWn(2a), we have #(f = 1 | Xi =

0) = #(f = 1 | Xi = 1) = a for all i . Also there exists

τ such that f [τ ] = f [2n − 1 − τ ] = 0. Consider the

column of Xi in the truth table as a binary string. Note

that,

Xi[τ ] =
(

Xi [2
n − 1 − τ ]

)c
.

Thus, if we consider the function g, then we have,

#(g = 1 | Xi = 0) = #(g = 1 | Xi = 1) = a + 1.

Thus g ∈ An. The other direction can be proved

similarly. 2

Corollary 2.1. All palindromic functions are CI.

Proof. The identity function 0 is trivially correlation

immune. The result then follows from Theorem 2.1 by

induction on the weight of a palindrome. 2

This result has also been proved differently [2]. As

an immediate consequence of Corollary 2.1, we have

Cn(2a) >

(

2n−1

a

)

.

Interestingly, the exact proportion of Cn(2a) among

all functions of weight 2a is an open question. How-

ever, we have an exact result for 2a = 2. Since the

set CIWn(2) contains only the palindromes, we get

Cn(2) = 2n−1.

If we take f ∈ CIWn(2a), 2a < 2n−1, then from

Proposition 2.3, we have M0(f,f r ) > 0. Thus there

exists at least one position τ such that f [τ ] = f [2n −

1 − τ ] = 0. Then using Definition 2.1, we can get

some g ∈ CIWn(2a + 2), by replacing the pair of

0’s by a pair of 1’s. Moreover, if there exists more

than one τ , such that f [τ ] = f [2n − 1 − τ ] = 0,

then different functions of CIWn(2a + 2) can be

constructed from f . Let us now consider the other

way around. Let g ∈ CIWn(2a + 2). If M1(g, gr ) > 0,

then using Definition 2.1, some f ∈ CIWn(2a) can

be found. However, it is important to note that there

may exist some g ∈ CIWn(2a + 2) with M1(g, gr ) =

0. In that case it is not possible to get a function

f ∈ CIWn(2a) by changing one pair of positions.

Motivated by this discussion we make the following

definition.

Definition 2.2. Let Gn be an undirected graph where

the vertices are the elements of An and two vertices are

connected if they are palindromically related. We call

such a graph an n-variable correlation immune graph.

The following theorem describes the components

of Gn.

Theorem 2.2. If two vertices f,g of the CI graph Gn

belong to the same component of Gn then M(f,f r ) =

M(g,gr ).

Proof. The path u = u0, u1, . . . , uk−1, uk = v exists

in Gn iff ui, ui+1, 0 6 i 6 k − 1, are palindromi-

cally related. The result then follows from Proposi-

tion 2.4. 2

Next we define another graph which is basically a

subgraph of the CI graph.

Definition 2.3. By Gn(2a,2a + 2), we define an

undirected bipartite graph such that Gn(2a,2a + 2) =

(CIWn(2a) ∪ CIWn(2a + 2),E), where there is an

edge between f ∈ CIWn(2a) and g ∈ CIWn(2a + 2)

if they are palindromically related.

The following defines a special type of bipartite

graph.

Definition 2.4. Let G = (V1 ∪ V2,E) be a connected

bipartite graph. Then G is called homogeneous if all

the vertices of V1 are of the same degree d1 and all the

vertices of V2 are of the same degree d2.
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Homogeneous bipartite graphs have the following

simple property which will prove to be useful later.

Proposition 2.5. Let G = (V1 ∪ V2,E) be a homoge-

neous graph. Let the degree of each vertex of V1 be

d1 and the degree of each vertex of V2 be d2. Then

|V1| × d1 = |V2| × d2 = |E|. Consequently, if d1 > d2

then |V1| < |V2|.

Our next task is to show that the components

of Gn(2a,2a + 2) are homogeneous. We need the

following additional notation. Let

CIWn,x(2a) =
{

f ∈ CIWn(2a) | M(f,f r ) = x
}

and

Cn,x(2a) =
∣

∣CIWn,x(2a)
∣

∣.

By Gn,x(2a,2a+2) we mean the subgraph of Gn(2a,

2a + 2) induced by the vertices of CIWn,x(2a) ∪

CIWn,x(2a + 2). The following relates Gn,x(2a,

2a + 2) to Gn(2a,2a + 2).

Lemma 2.1. The subgraphs Gn,x(2a,2a + 2) of the

graph Gn(2a,2a + 2) are homogeneous for all possi-

ble values of x .

Proof. To prove the statement consider f,f1 ∈

CIWn,x(2a). Then, M(f,f r ) = M(f1, f
r
1 ) = x . Hen-

ce, degree of f ,

d(f ) =
M0(f,f r )

2
=

M0(f1, f
r
1 )

2
= d(f1).

Similarly, for g,g1 ∈ CIWn,x(2a+2), we have, d(g) =

d(g1). Thus Gn,x(2a,2a + 2) is homogeneous. 2

Lemma 2.2. Let f,g be vertices of Gn,x(2a,2a +

2) where, f ∈ CIWn,x(2a), g ∈ CIWn,x(2a + 2)

and 2a < 2n−1. Then, the degree of f is d(f ) =
1
2
M0(f,f r ) and the degree of g is d(g) = 1

2
M1(g, gr )

with d(f ) > d(g) > 0. Consequently, Cn,x(2a) <

Cn,x(2a + 2).

Proof. It is easy to check that, d(f ) = 1
2
M0(f,f r)

and d(g) = 1
2
M1(g, gr ). Using Proposition 2.3 we

have

d(f ) − d(g) =
2n − 4a − 2

2

which gives d(f ) > d(g) since 2a 6 2n−1 − 2. Also,

M1(g, gr ) = M1(f,f r) + 2 and hence d(g) > 0. The

last statement follows from Proposition 2.5. 2

Theorem 2.3. Cn(2a) < Cn(2a + 2) for 2a < 2n−1

and Cn(2a) > Cn(2a + 2) for 2a > 2n−1.

Proof. Using Proposition 2.1 it is sufficient to show

Cn(2a) < Cn(2a + 2) for 2a < 2n−1. Let there be

t distinct values x1, x2, . . . , xt of M(f,f r ) for f ∈

CIWn(2a). From Lemma 2.2, we have, Cn,xi (2a) <

Cn,xi (2a+2). Also, it is easy to see that CIWn,xi (2a)∩

CIWn,xj (2a) = ∅ for xi 6= xj . Hence,

Cn(2a) =

t
∑

i=1

Cn,xi (2a)

<

t
∑

i=1

Cn,xi (2a + 2) 6 Cn(2a + 2).

Thus,

Cn(2a) < Cn(2a + 2) for 2a < 2n−1. 2

3. Balanced functions

In this section we show that if the set of bal-

anced correlation immune functions CIWn(2
n−1) can

be enumerated with the cardinality of each partition

CIWn,x(2n−1) separately, then the exact enumeration

of An is possible. First we express the proportional

cardinality of two sets which follows from Proposi-

tion 2.3.

Lemma 3.1.

Cn,x (2n−1 − 2(i + 1))

Cn,x(2n−1 − 2i)
=

1
2
x − 2i

1
2
x + 2i + 2

,

for 1
2
x − 2i > 0, i > 0.

Let

MATCHn =
{

x | M(f,f r ) = x,

for some f ∈ CIWn(2a), 2a 6 2n−1
}

and

BMATCHn =
{

x | M(f,f r ) = x,

for some f ∈ CIWn(2
n−1)

}

.

The next result shows MATCHn = BMATCHn.
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Lemma 3.2. If f ∈ CIWn,x(2a), 2a < 2n−1, then

there exists a function g such that g ∈ CIWn,x(2n−1).

Proof. Let f ∈ CIWn,x(2a). Then it is easy to check

that there is a path f = f0, f1, . . . , fk = g of length

k = 2n−2 − a in the CI graph Gn, where

(a) wt(fi) = 2 + wt(fi−1) and

(b) M0(fi , f
r
i ) = 2n−1 − (2a + 2i) + 1

2
x for i > 1.

Thus g ∈ CIWn(2
n−1). Using Proposition 2.4, we have

M(f,f r) = M(g,gr ) and so g ∈ CIWn,x(2n−1). 2

Let BMATCHn = {x1, . . . , xt }. For 1 6 j 6 t , 0 <

2i 6 2n−1, σj,2i = 1 if 1
2
xj − 2i > 0 and σj,2i = 0,

otherwise.

Theorem 3.1.

Cn(2
n−1 − 2i)

=

t
∑

j=1

σj,2iCn,xj (2
n−1)

i−1
∏

k=0

1
2
xj − 2k

1
2
xj + 2k + 2

.

Proof. Using Lemma 3.1 we get, for i > 0,

Cn,xj (2
n−1 − 2i) = Cn,xj (2

n−1)

i−1
∏

k=0

1
2
xj − 2k

1
2
xj + 2k + 2

.

Since

(a) CIWn(2
n−1 − 2i) is a disjoint union of the sets

CIWn,xj (2
n−1 − 2i) for xj ∈ BMATCHn and

(b) CIWn,xj (2
n−1 − 2i) = ∅ iff σj,2i = 0,

the result holds. 2

Theorem 3.2.

|An| = Cn(2
n−1)

+ 2

t
∑

j=1

Cn,xj (2
n−1)

xj/4
∑

i=1

i−1
∏

k=0

1
2
xj − 2k

1
2
xj + 2k + 2

.

Proof. This follows from Theorem 3.1 and Proposi-

tion 2.1. The expression σj,2i is removed by summing

i from 1 to 1
4
xj . 2

Theorems 3.1 and 3.2 provide formulae for Cn(2a)

and |An| respectively. To use them one has to de-

termine BMATCHn and the Cn,xj (2
n−1)’s. These are

open problems and could prove to be nontrivial tasks.

These also show that the enumeration problem of

CI functions reduces to the enumeration problem of

balanced CI functions.

The correlation immune functions with the same

values of M(f,f r ) form an equivalence class and in

each equivalence class there is a hierarchy depending

on wt(f ). Also, each set CIWn(2a) can be partitioned

depending on M(f,f r ). This gives a new direction

to characterize and enumerate the correlation immune

Boolean functions.
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