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The underlying mathematical idea behind Galerkin's method of determining approximate sofution to a general
operator equation Lf=! alongwith approximation of the inner product [f./}, is explained where L is.a linear operator.
Application of the method to a number of water wave scattering problems involving thin vertical barriers arising in

the lincarised theory of water wave, is mentioned.
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1 Introduction

Water wave scattering problems involving thin
vertical barriers have been well studied in the
literature of linearised -theory of water waves.
However, explicit solutions could be obtained only
in a few simple cases. For example, when a single
barmer is present in deep water and an incoming
surface wave train arriving from a large distance is
normally incident upon the barrier, the resulting
reflected and transmitted waves and hence the
related reflection and transmission coeffictents,
can be found explicitly. However, for oblique
incidence and/or for water of uniform finite depth,
such explicit solutions cannot be obtained. Usually
certain approximate methods are employed to
obtain the related reflection and transmission
coefficients approximately. The Galerkin’s method
of approximate solution can be utilized success-
fully for this class of water wave problems to
obtain numerical estimates for the reflection and
transmission coefficients and its advantage lies in
the fact that approximate results for these
quantities of physical interest are obtained in terms
of certain integrals which are rather easy to
compute numerically.

In the present note we describe the underlying
mathematical idea behind the Galerkin’s method of
approximate solutions as employed n the aforesaid
class of water wave problems since this i1s not

understood properly in many situations. A number
of water wave scattering problems nvolving thin
vertical barriers for which this method has been
successfully employed is cited here. For some
problems, ‘single-term’ Galerkin approximations
involving exact solutions of appropriate related
problems, produce fairly accurate results.
However, for some other problems, ‘single-term’
approximations fail to produce the desired
accuracy in the numerical results. For these
problems, the method of ‘multi-term’ Galerkin
approximations needs to be utilized. The basis
functions for these approximations are to be
chosen suitably keeping in mind the appropnate
physical requirement to be satisfied. For a number
of problems, the basis functions are also cited here.

2 The Principal Method

Let us suppose that the major mathematical
problem is to determine the solution of an operator
equation in the form

(LYx)=l{x) xe A4 .. (1)
where L 1s a linear operator from a certain inner
product space § to itself and 4 denotes a simply-

connected domain in R”, in standard notations. In
certain problems of physical interest, along with
the problem of solving the eq. (1), it is also desired
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to evaluate the inner product [£.]] as defined by the
integral relation
1f.0)=],f(x) I(x)dx. . (2)

for the same /€S, representing the forcing function

in the eq. l,whcnfandlarcrtal. o
By Wh:llcsre:‘ the problem under consideration has

' it ) ible to
both the parts as mn €qs (1) and (2), 1t' is posst
give a special meaning to the solution of the eq.
(1), and this 1s described by the following defining

idea.
Definition A real-valued function fis said to
solve the operator eq. (1) if and only if

[Lf,l]=[l,Lf]=[lJ]
for all real A€ S.

If such a meaning is attributed to the solution of
the eq. (1), then the evaluation of the quantity [£/]
(see equation (2)) can be completed, at least
approximately, by replacing f by a new real
function F, say, where F is the solution of the
equation (1) in an approximate sense, as described

by,
[A4,LF)=~{A,l] ... (4)

for all real A€S, the symbol ‘~’ meaning approxi-
mately equal. Whenever the approximate relation
as in eq. (4) holds good, we will regard F as the
approximate solution of the operator equation (1).

The Galerkin’s method of determining such an
approximate solution of the equation (1) involves
expressing the function F in the form of the
fruncated series as given by

e (3)

F(x)= ga .9, (®) (5)

where {¢, (x)}’,, denotes a set, contained in S, of
n independent real-valued functions for xeA,

which is neither an orthogonal set nor is it

necessary to be complete. Then, taking the inner
product of both sides of the eq. (5) with AeS and

using the approximate identity eq. (4), we find that
jzﬂa; [Lé,(x), A= [I(x), A(x)] for AeS. ... (6)

In particular, choosing A(x)=¢,(x) for some

ﬁxec.i positive integer k, such that 1 < k< n, we
obtain from the relation eq. (6), that

5.a,(Lg,(x), 4, ()}=[1(x),8,(0)], k=12,.--,n.

J=l

o . )
we consider all the possible values of k in the eq.

(7), we obtain exactly n linear equations for the

determination of the » constants a,, a,, ..., a,, and

these constants can be easily determined, once an

approximate choice of the set of {§,(x)}, has

been made.

The approximation of f by F, where F is given
by the n-term fruncated series eq. (5) is usually
termed as multi-term Galerkin approximations.
Once the n constants a,, a,, ...a, are determined by
solving the linear system depicted in eq. (7), [f, 1],
the quantity of our physical interest, is approxi-
mately evaluated as

(f 1= 3a,i8,,0]

=

.. (8)

where {¢,./], in the case when the inner product is

defined by an integral of the form eq. (2), is
evaluated by utilizing an approximate numerical
quadrature formula.

3 Single-Term Galerkin Approximation

As a special circumstance, leading to a single-term
Galerkin approximation, we take n=1 in the eq. (7)
and find that

o o L8]
[L4,..].

producing the approximate solution for fx) as
given by

F(x)=a, ¢, (x). ...(10)

The approximate evaluation of the quantity {f, in
eq. (2), can then be completed by using the appro-
ximate relation

[f,1=[F,l]

which takes up the value a,[¢,,/], if only a single-
term Galerkin approximation is used, where the

constant a, is given by the eq. (9).
We now make the following very imporiant

observations:
We have

(i) (F,LF]=[F,l],

... (9)

.. (11)
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() () =lLf)=U,F)+l,f - F]),

()[4, f-F}={Lf)1-2,F)+(,F)=[Lf, /]
~2[LF,F)+[F,LF] (by using (i))

() [f - F,L(f - F)]=L/,Lf]-1/,LF}-[F,Lf]
+(F,LF)s~([LF, f]-2[LF ,F]+[F,LF]

if [Lh,,h,)=[h,,Lh,] for all h, h, €S, ie. ifLis

a self-adjoint operator.

Thus by using-the results (iii) and (iv), we find
that, if L is a self-adjoint operator, we have that
[l.f-Fl=Lf -F,L(f - F)). .. (12)
If, further, we have either of the facts that

(a) L 1s positive semi-definite, r.e.,
[k, LA]20 foralihe S

and (b) L is negative semi-definite, 1.¢.,
[h,Lh)<0 forallhe S,

we find from the eq. (12), that, cither
() [IFi<{l, f] incase (a),

or

(1) [I,F]2{l, f] incase (b).

... (13a)
... (13b)

The above two facts (I) and (II) imply that the
quantity [/, F], computed out of the approximate
solution F of the operator equation (1), provides a
lower bound for the actual quantity [/, f] in the
cases where L represents a positive semi-definite
operator whereas [/, F] provides an upper bound
for the actual quantity [/, /] in the cases where L
represents a negative semi-definite operator.

Several problems of water wave scattering an-
sing in the linearised theory of water waves, can be
resolved approximately in the sense as described
above, and bounds for certain useful quantities of
the type [/, f] for known I/, can be determined
approximately where one has to work simulta-
neously with a pair of operators in this class of
problems. In many cases it has been observed that
the two bounds, when computed numerically,
agrees upto 2 to 3 decimal places by employing the
atoresaid single term approximations, and beyond
s1Xx decimal places by employing multi-term
approximations, so that their averages produce
fairly accurate numerical estimates for the physical
quantity [/, f]. This principle has been utilized in
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many water wave scattering problems involving
barmers.

In section 4, we describe rather briefly the
operator L arising in the study of a number of
water wave scattering problems involving thin
vertical barriers and give a list of exact solutions of
appropnate related problems, which are used in the
single-term approximations, while in section §, a
list of appropriate basis functions used in multi-
lerm approximations are given.

4 Use of Single-Term Approximations

In this section, we describe a few water wave
scattering problems for which single-term Galerkin
approximations have been utilized successfully .to
obtain accurate numerical estimates for the
reflection and transmission coefficients.

4.1 Obliqgue Wave Scattering By A Thin Vertical
Barrier

I Deep Water

As mentioned in the introduction, the oblique
water-wave scattering problems involving a plane
vertical thin barrier in deep water cannot be solved
explicitly unlike the case when the incoming
surface wave train is normally incident on the
barrier. The surface-piercing barrier was consi-
dered by Evans and Morris', who used the
aforesaid single-term Galerkin approximation to
obtain upper and lower bounds for the reflection
and transmission coefficients. These bounds
involve some definite integrals which are rather
straightforward to compute numencally. It has
been found that these bounds, when computed
numerically for various values of the different
parameters, coincide upto two to three decimal
places and as such their averages produce fairly
accurate numerical estimates for the reflection and
transmission coefficients. |

In the course of mathematical analysis for the
problem of oblique wave scattering by a thin
vertical barrier present in deep water, the following
integral equations arise (see Evans and Morris',
Mandal and Das?)

f: f@M(y,u)du=e®, yelL, ... (14a)

[ g@)N(y,u)du=e", yel ... (14b)
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where L.denotes an interval whose length is cc!ual
to the length of the wefted protion of the vertical

barrier, L=(0,0)-L,% is the wave length in
deep water, f{y) is proportional to the horizontal
component of velocity in the gap above or below
the barrier while g(y) is proportional to the
difference of velocity potential across the barrier
so that fly) is required to have a square root
singularity near an edge while g(y) tends to 2¢ro as
one approaches an edge, M(y,u) and N(y,u) are
given by

P(k, y) P(k,u)

gk, yuel
(k1+v2)h“2(k2+K2) y

... {15a)

M@y,u)=|;

N()’,u):}!gll:(k +V ) P(k,y)P(k,u)

k*+ K’
xe ** dk, y,uel ... (15b)
with
P(k,y)=kcosky - K sin ky,

... (16
v=Ksna, (16)

a being the angle of incidence of the wave train,
the exponential termn being introduced to ensure
the convergence of the integral.

Thus M(y,u) and N(y,u) are real symmetric
functions of y and u and M, N are positive semi-
definite inear integral operators defined by

(M) =f; fW)M(y,u)du, yeL,

(NgXy)={,8() N(y,u)du, yeL
Alongwith egs. (14a) or (14b) we have that
Iif(y)ekxy d)"—'cr

!
n* K*C
where the real constant (unknown) C is related to

the reflection and transmission coefficients
(complex) R and T respectively be

{g(y)e"" dy = ... {17b)

C= (1-R)cosa _Tcosa
inR in1-T)’

.. (18)

a being the angle of incidence of a surface wave
train incident upon the barrier from a large

...(17a)

distance. The integral egs. (142 & b) can pe
identified with the operator equation (1) while the
integral eqs. (17a & b) can be identified with the

inner product eq. (2), A denoting L or L and the
inner product 1s simply the integral over A,

It so happens that for normal incidence of the
incoming wave train, the integral equationg
corresponding to (142 & b) possess exact
solutions. A single-term Galerkin approximation to

fly) in terms of the corresponding exact solution
£i»), say, for normal incidence of the wave traip

provides a lower bound C, for C by noting the
equality (17a) and using the inequality (13a) since
M is a positive semi-definite linear operator.
Similarly, a single-term Galerkin approximation to
g2.(y) in terms of the corresponding exact solution
2,(»), say, for normal incidence of the wave train,

provides a lower bound Z-forZand hence an

upper bound C, for C by noting the equality (17b)
and using the inequality (17a) again since N is also
a positive semi-definite linear operator. Thus it is
found that

C,<C<s(,. .. (19)
Now we have from the eq. (18)

IRI=(1+#77C? sec’ a)™?2,

|ITl=aC(x*C* +cos® a) ™. ... (20)

It is found that R, and R, obtained from eq. (20) by
using C, and C, respectively in place of C, provide
upper and lower bounds for the true value |R| of the
reflection coefficient. Similarly the bounds I, and
T, for the transmission coefficient |7] are obtained.
Since |[R]*+|T1*=1 always, it is sufficient to consider
IRl only. At least for three configurations of the
vertical barrier, viz. surface-piercing partially
immersed barrier (Evans and Morris'), submerged
vertical plate (Mandal and Das’), and thin wall
with a submerged gap (Das et al’) it has been
observed that R, and R, agree within one or two
decimal places when computed numerically for
any wave number of some particular values of the
different parameters. Thus averages of R, and K;
produce fairly accurate estimates for |R).

Four different configurations of the barrier ar¢

usually considered. For a surface-piercing partially
immersed barrier,

L=(0,a), L =(a,),
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for a submerged barmrier extending infinitely
downwards

L=(a,), L=(0,a),

for a submerged plate

L=(a,c), L =(0,a)+(c,)

and for avertical wall with a submerged gap
L=(0,a)+(c,), L =(a,c).

We state below the functions f,(y) and g, ()
in terms of which the single-term Galerkin appro-
ximations of the integral equations (14a) and (14b)
respectively are made for these four geometrical
configurations.

i) L=(0,q), L=(a,o) (see Ursell*)

f;l(y)}—[ N Iy__—x:;'ﬁdu]: yEI=(d,¢D),

dy -a’)
... (21a)
g, ()=e” | ” ," x:).,, du, yeL=(0,a).
... (21b)
(i) L=(0,c), L=(0,a) (see Ursell*)
d P el’u __=
fn(y)"&;[e L (uz _az)uz d“:lsyEL (0,9),
... (22a)
80)=™ |~ du, yeL=(00)
’ (a® -u’)

... (22b)

(iiiy L=(a,c), L=(0,a)+(c,®) (see Mandal and
Goswami’, Mandal and Kundu®)

2 2y K
[ i [:Em—-—:#;?-du], O<y<a,
f(y)= ;
d ~Ky J’(d U )8
dy[ e P d"]’ g
... (23a)
5 y(dl _ul)el{k
g.,(y)=e L Wd“: J’EL'—“(ﬂ,ﬂ)

... (23b)
where

o{u)=(u’ -a’*Yu’ -c*). (24)
I: uzex:n' du
o 0@

[ du
| p(u)]

(iv) L=(0,a)+(c,), L
Mandal and Dolai*)

e (25)

=(a,¢) (see Porter’,

_8| -xp ue™ _2
fﬁ(y)-dy[e Ic p(u)lm {5 EF(“)du}]:

g

yel, ...(26a)
2
- w fr_ue” --z—F(u)}du, y e
)l =
... (26b)
where
e;' 2]. ue _Fu) du
6= -—-—’-’-—'f-fi)—'-—-—-—-——, ..
. lp(u)l
Fo)=je 20 4, . (29)
V "'ﬂ

and p (u) is given by eq. (24)

As mentioned carlier, the oblique scattering
problems corresponding to the first, third and
fourth configurations have been considered
reSpectwely by Evans and Morris', Mandal -and
Das? and Das et al.’ by employing the single-term
Galerkin approximation. For the second confi-
guration, Evans and Morris' reported that similar
single-term approximations do not provide good
results. For this reason, and to obtain more
accurate results, multi-term Galerkin approxima-
tions in terms of suitable basis functions are
required. This will be considered in section S.

I Finite Depth Water
For water of uniform finite depth A, the oblique
wave scattering problems involving thin vertical
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where L.denotes an interval whose length is equal
to the length of the wefted protion of the vertical
barrier, L =(0,0)~L,% is the wave length in
deep water, f{y) is proportional to'the horizontal
component of velocity in the gap above or below
the barrier while g(y) is proportional to the

difference of velocity potential across the barner
so that fly) is required to have a square root

singularity near an edge while g(y) tends to zero as
one approaches an edge, M(y,u} and N(y,u) are
given by

P(k,y) P(k,u)

MO =l G mae ko et

... (15a)

o oK+ Plk,) Plku)
N(y,ﬂ)—- im Iﬂr k! +K2

«—0+
xe ™ dk, y,uelL

... (15b)
with
P(k,y)=k cos ky - K sin ky,
v=Ksina,

a being the angle of incidence of the wave train,
the exponential term being introduced to ensure
the convergence of the integral.

Thus M(y,u) and My,u) are real symmetnic
functions of y and u and M, N are positive semi-
definite linear integral operators defined by

... (16)

MNY)=]; fu)M(y,u)du,yeL,

(Ng)»)=/,8@) N(y,u)du, yeL.
Alongwith eqs. (14a) or (14b) we have that
fif/(Ne™® dy=C,

1
n K*C

{g(y)e"’ dy = ... (17b)

where the real constant (unknown) C is related to
the reflection and transmission coefficients
(complex) R and T respectively be

C= (I-R)cosa _ Tcosa
inR in(1-T)’

... (18)

@ being the angle of incidence of a surface wave
tain mcident upon the barrier from a large

... (17a)
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distance. The integral eqs. (142 & b) can pbe
identified with the operator equation (1) while the
integral egs. (17a & b) can be identified with the
inner product eq. (2), 4 denoting Lol and the
inner product is simply the integral over 4.

It so happens that for normal incidence of the
incoming wave train, the integral equationg
corresponding to (14a & D) possess exact
solutions. A single-term Galerkin approximation to
Aly) in terms of the corresponding exact solution
fo(»), say, for normal incidence of the wave train
provides a lower bound C, for C by noting the
equality (17a) and using the inequality (13a) since
M is a positive semi-definite linear operator.
Similarly, a single-term Galerkin approximation to
2o() in terms of the corresponding exact solution
g«(»), say, for normal incidence of the wave train,

provides a lower bound -fortand hence an

upper bound C, for C by noting the equality (17b)
and using the inequality (17a) again since N is also
a positive semi-definite linear operator. Thus it is
found that

C,sC<(,. ... (19)
Now we have from the eq. (18)

IRI"—'(I"}'?IJCI Secl a!)'m,

IT|=2C(n*C? +cos® a)™". ... (20)

It is found that R, and R, obtained from eq. (20) by
using C, and C, respectively in place of C, provide
upper and lower bounds for the true value |R] of the
reflection coefficient. Similarly the bounds T, and
T, for the transmission coefficient |7} are obtained.
Since |R[*+T)*=1 always, it is sufficient to consider
IR| only. At least for three configurations of the
vertical barrier, viz. surface-piercing partially
immersed barrier (Evans and Morris'), submerged
vertical plate (Mandal and Das?), and thin wall
with a submerged gap (Das et al’) it has been
observed that R, and R, agree within one or two
decimal places when computed numerically for
any wave number of some particular values of the
different parameters. Thus averages of R, and R;
produce fairly accurate estimates for |R|.

Four different configurations of the barrier are
usually considered. For a surface-piercing partially
immersed barrer,

L=(0,a), L =(a,®),
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for a submerged barrier extending infinitely
downwards

L=(a,x), L=(0,a),

for a submerged plate

L=(a,c), L =(0,a)+ (c,)

and for a-vertical wall with a submerged gap
L=(0,a)+(c,»), L=(a,c).

We state below the functions f,(y) and g,(y)

in terms of which the single-term Galerkin appro-
ximations of the integral equations (14a) and (14b)
respectively are made for these four geometrical
configurations.

(i) L=(0,a), L =(a,x) (see Ursell*)
ﬁ’(ybd—y[ I mdﬂ].yEL =(a,),

... (218)
g, (y)= =e™¥ I :z)uz du, ye L=(0,a).

.. (210)

(i) L=(0,c), L=(0,a) (see Ursell)

Kn

-du] yeL=(0,a),

Z)III

£ () =%[e""’ A :

... (22a)

Ku

v du, y € L=(0,00).

g.()=e™ ]’

y (d -y
.. (22b)

(iii) L=(a,c), L=(0,a)+(c,») (see Mandal and
Goswami’, Mandal and Kundu®)

rd oK y (d*—u?)e™
Jo(y) = :
i [ ""”]"(d -u)e” du] y>c
l dy o) |
.. (23a)
(dz _ui)exu

du, yel;=(a,c)

Sy

... (23b)

where

)=’ -a*Yu’ -c) ... (24)
]: uzen:rfdu
L )| - .. (25)
o = du
| p(10)|
(iv) L=(0,a)+(c,®), L=(a,c) (seec Porter’,
Mandal and Dolai)
o= i 4 = 5"'"" du
I dy[ I ()I"‘{ . }]
yeL, ...(26a)
TR 2o .
. '|p(u>|"’{ ;F( )}"" O<r<a
Ay {‘s'? ‘")}‘“
... (26b)
where
e® 2. ue™
—+—| F(u)du
_K = Ip(u)l"’ .
5= o )
IP(H)I
Foy=12 128 4, ... (28)

v —u?
and p (u) is given by eq. (24)

As mentioned earlier, the oblique scattering
problems corresponding to the first, third and
fourth configurations have been considered
respectively by Evans and Morris', Mandal -and
Das® and Das e? al.’ by employing the single-term
Galerkin approximation. For the second confi-
guration, Evans and Morris' reported that similar
single-term approximations do not provide good
results. For this reason, and to obtain more
accurate results, multi-term Galerkin approxima-
tions in terms of suitable basis functions are
required. This will be considered in section 5.

I Finite Depth Water
For water of uniform finite depth A, the oblique
wave scattering problems involving thin vertical
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barriers, the following integral equations arise &, = 2k h+sinh 2 k A,

(Mandal and Dolai') 5, =2k, h+sin2 k,h - &

[ f@) M(y,u)du=y,(y), y& L, .- (292)  Thus M (y, u) and N (y, u) are real and symmetric

functions of y and «, and regarded as integral

[, g@) NOLu)du=y,(»), yelL ... {290) operators, M, N are linear and positive sem;-

= definite.

alongw Here L=(0,a),L=(a,h) for a partially

f; fOw. () dy=C, ... (30a) immersed barrier, L=(a,h),L=(0,a) for 4
bottom-standing submerged barrier; L=(a,c)

1 - 7

WV DY =157 - (30b) L= (0,a) +(c.h) for a submerged plate with gaps

o ° above and below; and finaily,
L=(0,a)+=(c,h),L =(a,c)for a vertical wa]l

. 0’)=¢.u':»sl'| ko (h— y), ...(31) With a submerged gap. For all these four types of

0 “coshkyh barrier configurations Mandal and Dolai® employed

single-term Galerkin approximations involving the

_1-R T corresponding exact solutions for normally

C= R cosa = i(1=T) cosa rwn 0 incident waves in deep water to obtain good

L Tare defined below depending upon the numerical estimates for the reflection coefficient

IR,
configurations of the barriers, 2/k; is the wave

length in finite depth water where kg is the unique 4,2 Water Wave Scattering by Two Vertical

positive real root of the trancendental equation Barriers
I Deep Water
k tanh kh = K, s (33) For the problem of water wave scattering by a
‘ pair of thin vertical identical barriers separated by
M(y.u)= O lim a distance 2b when an incoming wave train is
' cosh’ ko €20+ normally incident upon it from a large distance and

the water is infinitely deep, the following pairs of
integral equations arise in the mathematical

5 X, COSK, (h—y) cosk,(h—u) -a, . y.u€L, analysis, after taking advantage of the geometrical
n=} Snan Symu}’-
... (34a)
Niyuy=—20__ lim fpf* @M (yu)du=e" yeL, ... (38)
cosh’ksh €0+ B
[ (N> (y,u)du=e",yel, .. (38b)
-s k - - -
;Iui&%_zlzom,-a. ,y.ueL,  alongwith
.. (34b) [ f (e Pdy=C", ... (392)
the exponential term being introduced to ensure [87 (y)ePdy=——r 12 — ... (39b)
convergence of the series. In the egs. (34a) and n°K°C
(34b), k, (n=1, 2, ...) are the positive roots of where L.L are the same as in eqs. (14a) and (14b)
k tan kh+K=0 .. (35) respectively,
and

M (y.u) =°° (I+coth kb) P (k ._y)P(k,u)

. dk, ...(40a)
52 =k +v%, (v=kysin o) ... (36) 0 k(k2+K2) (
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lim -
J

£-204+0

kP (k,y) P (k,u)
(k* + K*)(1+coth kb)

... (40b)

M* (y, u) and N°(y, u) are obtained from M’ and N'
respectively by replacing coth by tanh, P(k,y) is the
same as given by the eq. (16). The subscripts s and
a correspond to the symmetric and antisymmetric
case arising due to the splitting of the velocity
potential into its symmetric and antisymmetric
parts about x = 0. As before, f* (y) have square
root singularity near an edge while g*° (y) tend to
zero there. Also, the real constant C’ is given by

-i(1-R")
w{(1+R")—i(}- R")cot Kb}

N'(y.wu)=

.. (41)

while C? is the same as C* with the superscript s
replaced by a, and cot replaced by —tan, R*“ are

related to the reflection and transmission
coefficients R and T by
R,T=R L8 g 20 .. (42)

2
For L = (0, a) i.e. for two parallel surface
piercing identical barriers immersed to a given
depth a, Evans and Morris’ used the single-term
Galerkin  approximations  involving  the
corresponding exact solutions for the problem of
waves normally incident on a single barrier. In this
case fo(y) and go(y) are given by egs. (21a) and
(21b) respectively. Once the bounds for.C** are
obtained, bounds for IRl and IT} are obtained by
using the formulae

R =|1- ABj(1+ A* + B + A8,

|T|=|A+B|(1+A2=|-B’+A’B’)%. ... (43)
where
i
A=c0th-—l-—I,B=coth+ - .. (44)
xC

For other types of double barrier configurations
suchas L =(a, =),L =(a, ¢), L=(0, a),L = (c, o)
similar  single-term approximations involving
corresponding exact solutions for an incoming
wave train normally incident on a single barrier
can be carried out. However, the resuits for these
problems are not reported in the literature, perhaps
due to poor accuracy achieved by using the single-
term approximation.
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For oblique inctdence of the wave train on a pair
of symmetrical barriers, the modifications in
M N in egs. (40) and C*° in eq. (41) are
obvious. |

Il. Finite Depth Water

For water of uniform finite depth, the problems
of oblique wave scattering by two identical barriers
separated by a distance 2b have been considered by
Das et al.'’ and Kanoria and Mandal'' by using
single-term Galerkin approximation. In this case
the following pairs of integral equations arise

fpf )M (y,u)du=y,(y), yeL,

... (45a)
| g™ (N (y,u)du=yy(y)yelL,

... (45b)
alongwith
J ™ (Dv(y)dy=C"", ... (46a)
(28" (DWe()dy=— ... (46b)

kC**

where L and L are the same as in egs. (29b) and
(29a) respectively, ¥ () is the same as in eq. (31)
and
i(1-R)cosax
C'z2 ——————— .. (47)
1+ R’ -i(1-R")cot b
with 2 =ko cos a, C° is obtaaed from eq.(47) with
R’ replaced by R® and cot ub replaced by —tan ub,
> are related to R and T through eq. (42).
M*(y, a) and N’ (y, u) are given by
2
cosh’k,h
k,(1+coths,b)cosk,(h—y)

lim 5 cosk, (h—y) cosk, (h-u) ot

M*(yu)=

xe — 0+ =) $,0,
... (483)
N (. 0)= cos‘:gkoh
)E s, k, cosk,(h—y) cosk,(h—u)
a=) 0, (1+coth s,b)
... (48b)

k., s, O,being defined earlier. M” (y,u) and N° (y,u)
are obtained from M’ and N’ respectively by
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replacing coth by tanh. It is obvious that M*? (y,u)
and N** (y,u) are real and symmetric functions of y
and u and the integral associated with them are

semi-positive definite. |
Four types of configurations of the two identical

barriers, designated by type - 1, type - 11, type - III
and type - IV comesponding to L = (0, a), L =
(ah), L = (a,c), and L = (0, a) +(c,h) (0<a<C<h?ﬁ
respectively have been considered by Das « al.”
(types - I, II, III) and by Kanoria and Mandal

(type - IV), and numerical estimates for IRl in each
case have been obtained by employing the single-
term approximations involving the appropnate
exact solutions for normal incidence, of a wave
train on a single barrier in deep water given by eqgs.
(23) to (26). It has been observed that in some
cases, the estimates are not very accurate. Thus it
is necessary to wuse multi-term Galerkin
approximations for which the appropriate basis
functions in terms of which the approximations
will be made, are to be found. This will be given in

the next section.

§ Use of Multi-Term Approximations

Banerjea e ol.'> employed the single-term Galerkin
approximation to the problem of oblique wave
scattering by a submerged thin vertical wall with a
gap in finite depth water and its modification when
another identical wall is introduced, the single-
term approximation being made in terms of the
corresponding exact solutions for normal incidence
on a single submerged wall with a gap present in
deep water obtained by Banerjea and Mandal”. It
has been observed that for these two problems, the
numerically computed bounds for IRl are not very
close, particularly: for the double barrier problem,
and as such, their averages cannot serve as good
estimates for IRI. This type of difficulty associated
with single-term Galerkin approximation has also
been observed earlier by Evans and Morris' while
considering the problem of oblique wave scattering
by a vertical barrier submerged in deep water and
extending infinitely downwards. For this reason,
multi-term  Galerkin approximations involving
appropriate basis functions have to be utilized.
This results in obtaining very accurate numerical
estimates for the reflection and transmission
coefficients.

The basis functions, for multi-term Galerkin
approximattons are to be chosen judiciously. The
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choice is made keeping in mind the satisfaction of
appropriate physical conditions and the simplicity
in the final forms. Porter and Evans™ first utilized
multi-term Galerkin approximations for some
finite-depth single barrier and one double barrier
problems (see Evans and Porter"). Banerjea er o1
Das e al.'” used this method for oblique waye
scatterings problems involving two identica)
barriers of various configurations. The ‘basis
functions for the multi-term  expansions
appropriate to various configurations of a single
barrier or two identical barriers are given below.

(i) Surface Piercing Single or Two Identical
Barriers

In this case L = (0,a), L = (a,h) (O<a<h). To
choose the basic function for f (y) (a<y<h), we
note that for flow close to a barrier-edge ((0,a) for
a single barrier, (b,a) for two barriers),

fO) ~(y-a) " asy = a+0, .. (49)

and since ¢, =0 at y = h where ¢ (xy) is the
potential function, ¢ and hence f (y) «<¢; (at x = 0
for a single barrier, b for two barners) can be
continued across y = h as an even function of y.
Hence the even continuous function {(h-a)’ -
(h—)*}* f (y) can be expanded in (a, h) by a
complete set of even degree Chebyshev
polynomials of first kind. Hence we choose

2(-1)°

£ (9) m{(h~a)’ ~(h~y)’)" . (30)
T, (h_y),a <y<h,
h—-a

the constant factor being taken for convenience.

For the choice of the basis functions for tl:l_e
expansion of g(y) (0 < y < a) we have to keep In
mind the free surface condition at y = 0 and the
behaviour g (y) = 0 ((a—y)") as y—» a-0. Thus g ()
satisfies

Kg(y)+g'(»=0,y=0,

g(y)=0,y=a.
Let
g(y)=g(y)-K[ g u)du,0<y<a,
then

£'(y)=0, y=0,
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2(y)=0, y=a.

The first condition permits the extension of
g (y) into (—a, 0) as an even function of y, and
because of the second condition, (a® - y*)™ g (y)

can be expanded in (0, a) by a complete set of even

degree Chebyshev polynomials of second kind.
Thus we find

8.()’)-'—[3-“] 2 (U)e, K"du] 0<y<a
.. (31)

where g,(y) Is chosen as

., 2(=1)" 22— vy
3,(3’)““—""_’:(2’!_'_1)"( y?) Uzn(a)(){y(a
... (52)

the constant factor being taken for convenience.

(ii) Bottom Standing Single or Two Identical
Barriers __
In this case L=(a,h),L =(0,a)0<a<h).

To choose the basis functions for the expansion
of f(y)(0<y<a), we have to consider the free

surface condition at y = 0 and the behaviour
f(y)~(a-y)™ a y — a-0 derived by

considering the flow near the edge y = a. Thus f(y)
satisfies

Kf (y)+f'(»)=0 y=0,
f()~(@a-y)?asy—-a-0.
Let

FO=fO)-Kfdud<y<a
then the above conditions become

fi(»=0y=0,
f(y)~(a—y)'ﬁasy—+a~0.
The first condition shows that f (y) can be

continued as an even function of y into (~a, 0),
and because of the second condition,

(@> - y2)™ f(y)can be. expanded in (0, a) by-a

complete set of even degree Chebyshev
polynomials of first kind. Thus we find

d

(W =-—le

-Ky ra _Ku
& fre [, (u)du],O(y{a

. (83)
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where fn(y) 1s chosen as

S i M y
fn(y)" "r-'——___(az ~ yz)"/z Tin (a),O( y<a.

. . (54)
Similarly, it is not difficult to see that g, (y)’s
for a <y < h are to be chosen as

-0 [ o o
Jr(2n+l)(h-a)h{(h o ==y

th(hﬁy}a<y<h.
h—a

g, (y)=

... (33)

(iii) Totally Submerged Single or Two Identical
Plates

In this case, L=(a,c),L=(0,a) +(c,h)
(a<c<h). We have to choose two sets of basis

functions for f(y) according as O<y<a or c<y<h.
For O<y<a, the choice of the basic functions for

f is f(y) which is given by eq. (53). For
c<y<h, the choice is f\*(y) which is given by eq.

(50) with a replaced by c.

For choosing the basis functions g, (y) for g(y),
(a<y<c) we must ensure the requirements that
g)~(y-a)" as y— a+0 and g(y)~(c»)" as y—
c+0. For this we need the full set U, of Chebyshev
polynomials of second kind over (a, ¢). Thus we
choose

2A(y-a)e=-1"
n(n+(c-a)h

2y-a-c¢

g, (y)=
... {56)

U,(———),a<y<ec.

c—a

(iv) Single or Two Identical Walls with Submerged
Gap

In this case, L=(0,a)+(c,h), L=(a,c)
(a<c<h) Here f(y)(a<y<c) has square root
singularity near y = a and ¢ so that we have to

expand the continuous functions {(y-a)

(c=»)}" f() in terms of the full set of Chebyshev
polynomials 7, of first kind over (a,c). Thus we
choose

i

AT T L

E(M} a<y<c.
C—-a

.. (37)
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There exists two sets of basis functions to be

B N MANGAL AND A CHAKRABARTI

It has been observed by Das etal.'® and Banerjea

chosen for g(y) according as O<y<a or c<y<h. For 41" that by taking only.three to four terms in the

O<y<h, the choice of gV (y) which is given by eq.

(51) and for c<y<h, the choice of gff’( y) which is
given by eq, (55) with a replaced by c.

(v) Submerged Single or Two Identical Walls with
Gap
In this case, L=(a,c)+(d,h), L=(0,a)+(cd)

(a<c<d<h). The two sets of basis functions for
f(y) according as 0<y<a or c<y<d are obtained as

)= --gy- i (u)e“"du] O<y<a
... (58a)
with
z 2(-1)" y
fn(y)=';(';2£:-};f')'ﬁ TZn (';)n 0< y<a,
... (58b)
and
PN N
e 5 n{(y-c)d-y})"* ... (59)
TH(M),*C <y<d.
d-c

Also, two sets of basis functions for g(y)
according as a <y<c or d<y<h are given by

2A(y-a)c- )"

g ()= (n+1(c~a)h ... (60)
xU,.(M)'“{ yee

c—a
anj 2(-1)"l(h-d>’"(h‘Y5z}ﬁ
8 )= o ek
XUZH(-E—:_&.)’J'{)’{’L . (61)

References

multi-term approximations in the oblique waye
scattering problems involving two identical
barriers for the aforesaid five configurations,
accuracy in the numerical estimates for IR beyong
six decimal places have been achieved.

6 Conclusion

The mathematical idea behind Galerkin's methog
of approximate solution utilized in various water
wave scattering problems involving thin vertica]
barriers is explained clearly. The basis functions
for single-term as well as multi-term
approximations used in a number of water wave
scattering problems are listed. It may be noted that
the ‘single-term’ approximations as used here are
not the same as ‘one-term’ approximations in ‘n-
term’ approximations by putting n=1. The ‘single-
term’ approximations involve exact solutions for
normal incidence in deep water,

For thick rectangular barriers, similar multi-term
approximation method can be employed. However,
these configurations give rise to only one set of
integral equations for functions which are
proportional to the horizontal velocity in the gap
through the comer points of the thick barrier and as
such upper and lower bounds for the reflection
coefficients IRl will not be obtained although very
accurate numerical estimates for IRl can be
computed. The basis functions for these
configurations involve ultraspherical Gegenbaue

polynomials (see Evans and Fernyhough'®, Kanoria
et al').
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