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The Football

1 From Euclid to Socceriitis ...
_____—______________———————_—————-_ﬁ___

AR Rao

A football is a 3-dimensional convex polyhedron with

A R Rao is at the Indian each face a regular pentagon or a regular hexagon and

Statistical Institute, with at least one hexagonal face.
Calcutta.

This article is in two parts. In this first part, we will
prove that a football exists and is unique and in the
second, we identify its group of symmetries. (We will
incidentally do similar things for the platonic solids to
some of which the football is closely related.) I heard
of this problem from Amit Roy of TIFR, Mumbai. The
ideas used in the proof of the existence and uniqueness
are also his. Most of the other proofs presented here can

be found in Gallian (1999) and Coxeter (1948).

A convez set is a set C C IR such that A,B € C =
AB C C. (Here AB denotes the segment joining A
and B and we will study only convex subsets of IR°.)
Intersection of any family of convex sets is convex. There
are plenty of examples: the empty set, a point, a line, a
line segment, a plane, a half plane, a quadrant, a disc,
an elliptic region, a half space (i.e., points lying on one
side of a plane), a ball, a pyramid and a prism with a
convex base (right or not). See V S Sunder’s articles (3]
for a discussion on various aspects of convexity. The five
platonic solids are convex. The two figures in Figure 1
are not. Note that the hexagon shown in the figure is
equilateral but not equiangular. By a regular polygon
Figure 1. we mean a plane polygon which is both equilateral and
equiangular.

A convez polyhedron is a finite intersection of closed hali-
spaces. The disc and the cylinder are not convex poly-
hedra.
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A convez polytope is a convex polyhedron which is bounded.

By a reqular solid we mean a convex polyhedron such
that the faces are all regular, equal polygons and the
same number of faces occurs at each vertex. It was al-
ready known 2400 years ago that there are exactly five
such solids, viz. the platonic solids, see Box 1. The
Greeks associated the tetrahedron (this means a solid
bounded by four faces) with fire, the cube with earth,
the octahedron with air, the icosahedron with water and

the dodecahedron with universe or cosmos. The study of

dodecahedron was considered dangerous and restricted
during some period. On the other hand, the dodecahe-
dron was used as a toy at least 2500 years ago.

Apparently Theaetetus “first wrote on the ‘five solids’
as they are called” around 380 B.C. and probably knew
that there are exactly five regular solids. Around 320
BC, Aristaeus (known as ‘the elder’) wrote a book called

Comparison of the five reqular solids. Euclid wrote his
Elements around 300 BC.

In the diagrams in Boz 1, the symbol {p, q}, known as

a Schlafli symbol, means that each face is a regular »-
gon and that there are g faces at each vertex. Of the
five regular solids, the cube and octahedron are duals
of each other, the dodecahedron and the icosahedron
are duals of each other and the tetrahedron is self-dual
In the following sense: if we start with the cube and
form a new solid by taking a new vertex at the centre of
each face of the cube and joining two new vertices by an
edge iff they are centres of adjacent faces of the cube,

we get the octahedron. If we do the same starting from
the octahedron we get back the cube; similarly for the
dodecahedron and the icosahedron. (This duality is the

same as that used for planar maps in graph theory.)

Incidentally, the tetrahedron, cube and octahedron are

the crystal structures of sodium sulphantimoniate, sodium

chloride (common salt) and chrome alum, respectively.
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The skeletons of certain microscopic sea animals called
Circorrhegma dodecahedra and Clircogonia icosahedra
(and some other viruses) are in the shape of a dodecahe-
dron and an icosahedron, respectively, see Gallian (1999)
and Coxeter (1948). In 1985, Robert Curl, Richard
Smalley and Harold Kroto created a form of carbon by
using a laser beam to vapourize graphite. The resulting
molecule has 60 carbon atoms arranged in the shape of
a football. Curl, Smalley and Kroto received the Nobel
Prize for this discovery in 1996.

We now show briefly how vertices, edges and faces, which
we all understand intuitively, can be defined formally.
An extreme subset of a convex set C is a convex set
D € Csuchthat C € D,C € AB,C # A,C # B and
A Be(C=ABeD.

Such an extreme subset is called a vertez, edge or face
accordingly as it is of dimension 0, 1 or 2. The dimen-
sion of a non-empty proper subset of R3 is 0 if it is
a singleton, 1 if it is contained in a line and is not a
singleton and 2 if it is contained in a plane and is not
contained in any line. Note that a cube has 8 vertices,
12 edges and 6 faces.

Recall the Krein-Milman theorem which was discussed
in V S Sunder’s article [3]. A simple consequence of the
theorem is: A convez polytope has finitely many vertices
and 1s their convex hull. Conversely, the convex hull of
finitely many points is a convex polytope.

Every extreme subset of a convex polytope C is the in-
tersection of C with a plane P such that C is contained
in a half-space corresponding to P. An extreme subset
of an extreme subset is an extreme subset. Each edge
of C is the line segment joining two vertices of C and is
on the boundary of exactly two faces. Each face of C is
a convex polygon formed by some edges of C.

Since each face of a football is bounded, it can be proved
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that the football is bounded and, so, is a convex poly.
tope. We omit this proof.

From now on, we consider only convex polytopes with
dimension 3. Also, whenever we talk of ZABC, we shy]
mean that angle which is between 0° and 180°. We prove
the uniqueness of a football first assuming its existence
and later prove the existence. We start with a simpje
result which is intuitively obvious.

Lemma 1. There are at least 3 edges at every vertex of
a convex polytope.

Lemma 2. (Euclid, XI1.20) Suppose A, B,C and O are
not coplanar. Then ZAOB 4 /BOC > [AOC.

Proof: We may assume that ZAOC > LAOB, for, oth-
erwise the result is trivial. Let D be a point in the
plane AOC such that LAOD = LAOB and OD =
OB. Refer to Figure 2. We may take C to lie on
AD extended. Now triangles AOB and AOD are con-
gruent, so AB = AD. Since AB 4 BC > AC, we
get BC > AC — AD = DC. So comparing trian-
gles DOC and BOC, we get /BOC > /DOC. So
LAOB + (BOC > LAOD + LDOC = LAOC. O

Lemma 3. (Euclid, XI.21) The sum of the angles in
all the faces at any vertex u of a convex polytope with
dimension 3 is less than 360°.

Proof: We may take the faces at u to be uuu;y,i =
1,2,...,k where ujuz...u; is a convex polygon in a
plane P and u € P. See Figure 3. Let us call the
angles of the type uu;u;_; or uusu;4+1 base angles, angles
of the type u;_ju;u; ;1 polygonal angles and angles of the
type u;uu;y; vertical angles. Using the result that the
sum of the angles in a triangle equals 7, we see that
the sum of the base angles and the vertical angles is k7.
Using the fact that the sum of the two base angles at
u; is greater than the polygonal angle at u;, we see that
the sum of all the base angles is greater than the sum of
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all the polygonal angles which is (k — 2)7r. So the sum At every vertex of
of all the vertical angles is less than 27. This proves the

a football, there is
lemma. O

exactly one

It may be worth noting here that the following simple pentagonal face
‘proof’ for the preceding lemma does not work always: and so there are
let v be the foot of the perpendicular from u to the two hexagonal
plane P. We may assume that v lies inside the convex faces.

polygon ujuq ... ux. Then, it is perhaps natural to guess

that angle u;uu;; < angle u;vu;,; for each 7, and so the

lemma would follow. But, the inequality stated can be

false if one of the angles vu;u;41 and vu;41u; is greater

than a right angle (to get a counter-example, take angle

vu;ui+; close to 180° and length uv moderately large).

Next, we can single out an observation about the foot-
ball.

Theorem 1. At every vertex of a football, there are
exactly three faces and so three edges.

Proof: Since the angles in a regular pentagon are 108°
each and the angles in a regular hexagon are 120° each,
there cannot be more than three faces at any vertex by
lemma 3. So the theorem follows from lemma 1. O

Lemma 4. If two regular polygons ... ABCD ... and
...XBCY ...in R’ have a common edge BC (see Fig-
ure 4), then ZABX = LDCY .

Proof: We first clarify that a regular polygon is, by
definition, planar. Now triangles ABX and DCY are
congruent since each is the reflection of the other in the
plane P perpendicularly bisecting BC'. Thus, the lemma
follows. O

Here is another observation about the football.
Figure 4.

Theorem 2. At every vertex of a football, there is ex-

actly one pentagonal face (and so there are two hexag-
onal faces).
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Figure 7.

Figure 8.

Proof: Suppose that at a vertex u there are three pep-
tagonal faces P;, P, and P3. See Figure 5. Then, lemmg,
4 applied to P; and P, gives F} is a pentagon. Similarly,
F, and F; are pentagons. Since we can go from P, tq
any face by passing along adjacent faces, it follows that
all faces are pentagons, a contradiction. (Incidentally,
there is a convex polytope called dodecahedron with 19
faces all of which are regular pentagons.)

Suppose next that at a vertex u there are two pentagonal
faces P, and P, and a hexagonal face H; (see Figure
6). Then, lemma 4 applied to P, and Fi, gives F5 is a
pentagon. This gives a contradiction to lemma 4 whep
applied to P; and Fj.

Thus at any vertex there is at most one pentagonal face.
By lemma 3, all the three faces at a vertex cannot be
hexagonal, so the theorem follows. O

Lemma 5. Suppose UiUoU3U4US IS a regular pentagon in
some plane in IR®. Then there is a unique way in which
two regular hexagons can be attached at uyu, and ugus
so that they have a common edge uov and lie above the
plane of ujug...us. (See Figure 7).

Proof: Teke ug = (0,0,0),v = (-1,0,0) and us =
(a,8,0). Refer to Figure 8. Since Zvuguz = 120°, we
have —a = (v,u3) = c0s120° = —1/2. Here (u,v) de-
notes the dot product of u and v. Since uou; = 1, we
may take 8 = —v/3/2. Thus u3 = (1/2, —/3/2, 0).

Let u; = (v,4,¢). Since Zvusu, = 120°, we get v = 1/2
as above. So u; = (1/2,6,¢) where 62 + ¢ = 3/4. Now
Luyuguz = 108° and cos 108° = (1 — v/5)/4. So

1-+v5 iﬁé
4 9

Hence 6§ = v/5/(2v/3) and ¢ = +1/v/3. Assuming that
uy lies above the z-y plane, we get ¢ = 1 /v/3. Thus
ur = (1/2,v/5/(2v/3), 1/v/3). Since a regular polygon

1
= <UI,‘U3) — Z =
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i1s determined by three consecutive vertices, it follows
that the relative positions of the three polygons at us
are uniquely determined and the lemma follows. O

[t is easy to write down the equations of the three planes
at ug and so their normals at u,. Using these, we can
find the angle between the planes of the two hexagons
to be cos™1(v/5/3) = tan"1(2/v5) ~ 41.81° and the
angle between the planes of the pentagon and each of
the hexagons to be tan~!(3 — v/5) ~ 37.38°.

We can now prove that there is at most one football.

Theorem 3. Given a regular pentagon P in some plane
in IR®, a football with P as a face and lying on a given
side of the plane of P is unique if it exists.

Proof. The positions of the five hexagons around P are
unique by the preceding lemma. Imagine attaching reg-
ular pentagons and regular hexagons (with the side same
as that of P) in the order shown in Figure 9. At each
stage, the type of face to be used is unique by theorem
2 and 1ts position is unique since three or four consecu-

tive vertices of a regular polygon determine the polygon.
Hence the uniqueness follows. O
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Here is a result which provides the key to actually as.
sembling the football thereby proving its existence.

Lemma 6. Let ... ABCD ... be a regular polygon. Let
BFE and CF besuch that LZABF = /DCF and LEBC =
LFCB (see Figure 10). If E and F are both on the
same side of the plane of ABCD, then E,B,C and F

are coplanar.

Proof: We may take B = (-1/2,0,0),C = (1/2,0,0)
and D = (a,b,0). Then clearly A = (—a,b,0). Now let
F = (a,8,7) and E = (§,¢,¢). We may also suppose
that BE = CF = BC. Then

The footballs we i 1
see are not cos LEBC = ((6 + =,¢,¢),(1,0,0)) =6 + =
2 2

supposed to be

footballs as and cos LZFCB = —(a—3). So§ = —a. Now cos LABE =
O — cos LDCF gives be = bf and so € = 8. Now BE? = CF?

because nobody gives ¢* = 4%, Since v and ¢ have the same sign, they
wants to play are equal. Thus F = (—a,8,v) and F,B,C and F lie

football with a solid on the plane yy — 2 = 0. O

with sharp edges We now prove that a football exists. Why, one may won-

and comers., der, because all of us have seen footballs. Well, there is a
problem here. Firstly, the footballs we see are not sup-
posed to be footballs as defined here because nobody
wants to play football with a solid with sharp edges and
corners. (The edges of the football we see are geodesics
and the faces are spherical regions.) Secondly it is pos-
sible that a football as defined here does not exist and
the footballs we see dre only approximations.

Theorem 4. The football referred to in theorem 3 ex-
ists.

Proof: We show that the football can be assembled as
shown in Figure 9 used in the proof of theorem 3. Refer
also to Figure 11. We start with faces 1, 2 and 3. This
18 possible by lemma 5. By lemma 4, ZABC = 120°, so
we can attach face 4 at ABC. Similarly we can attach
face 5 also. Then by lemma 6, D, E, F and G are copla-
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nar, so face 6 can be fitted there. Then clearly faces 7
and through 11 can be fitted. Then, again by lemma
6, H,I,J and K are coplanar, so face 12 can be fitted
there. Next we can fit faces 13 through 16. Now Q, R, S
and T are coplanar, so face 17 can be fitted there. Pro-
ceeding thus we fit faces 18-21, then 22-26, then 27-31
and finally face 32. This proves that the football can be
assembled and so exists. [

We next see how symmetric the football is. We start
by showing that the vertices lie on a sphere. Note that
the following analogue in two dimensions is false: the
vertices of a convex polygon with all sides equal lie on
a circle. The polygon shown in Figure 12 is far from
equi-angular and can be perturbed further.

Theorem 5. The normals to any three mutually ad-
jacent faces of a football are concurrent at a point O
which is the centre of a sphere on which the vertices lie.

Proof: By the normal to a face we mean the line passing
through its centre and perpendicular to its plane. Refer
to Figure 13. Let AB be the common edge between
two faces and C and D the centres of the two faces.
Then it is easy to see that the plane perpendicularly
bisecting AB will contain the normals to the two faces.
So these normals are coplanar. Since the faces are not
parallel, these normals intersect at, say, O. Since O
lies on the normal to face ABF, we have OA = OB =
OF. Since O lies on the normal to face ABG,0OB =
OG. Thus OF = OB = OG. So O lies on the planes
perpendicularly bisecting BF and BG. Hence O lies on
the normal to the face FBG. Thus the normals to the
three faces are concurrent at O and OA = OB = OF =
OG. By proceeding through adjacent faces, we can see

that O lies on the normal to every face. This proves the
theorem. O

It will be an interesting exercise to determine the radius
of the sphere on which the vertices of the football lie,
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Figure 14,

given the length of an edge.

We now determine the numbers of vertices, edges ang
faces on the football. This will be needed later in part
II where we determine its group of symmetries. Though
these numbers can be counted from a drawing of the
football, we will use a bit of graph theory to find these
(partly explaining my interest in the topic).

A (finite) graph G consists of a finite non-empty set V
whose elements are called vertices and a finite collection
E of unordered pairs (called edges) of elements of V.
A plane graph is a graph whose vertices are points in
the plane and whose edges are arcs joining the vertices,
no two of these arcs meeting each other except at the
ends. A face of a plane graph G is a maximal connected
region of the plane left when the vertices and edges of
G are removed. It is easy to see that the vertex set of
a graph G can be partitioned into its components such
that we can go from every vertex in a component to
every other vertex in the same component and to no
vertex in any other component by travelling along edges

(see Figure 14). We now prove a slight generalisation

of a well-known formula so that we can use induction
conveniently.

Lemma 7. (Euler’s formula): For any plane graph G,
v—et+y=1+p

where v is the number of vertices, ¢ is the number of

edges, 7y is the number of faces (including the unbounded
face) and p is the number of components.

Proof: We prove the result by induction on €. If € =0,
then v = 1 and p = v, so the result follows. So assume
the result for plane graphs with less than € edges and let
G have € edges. If an edge belongs to a ‘cycle’, then by
deleting this edge, we get a plane graph with v vertices,
¢—1 edges, v—1 faces and p components, so by induction
hypothesis, we are done. If an edge uv does not belong
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to any cycle, then by deleting this edge, we get a plane
graph with v vertices, ¢ — 1 edges, 7y faces and p + 1

components, so by induction hypothesis, we are again
done. O

Theorem 6. A football has 60 vertices, 90 edges and
32 faces of which 12 are pentagons and 20 are hexagons.

Proof: Any football can be represented by its Schlegel
diagram which is what the football (assumed to be trans-
parent except for the edges) appears like when seen from
a position just outside the centre of one face. This is
like stereographic projection from the top (assumed to
be not a vertex and not lying on any edge) of the sphere
on which the vertices of the football lie, onto a horizon-
tal plane below the sphere. The Schlegel diagram is a.
plane graph G, vertices, edges and faces of the football
corresponding naturally to those of G, the face of the
football nearest to the viewer corresponding to the un-
bounded face. Note that G has only one component, so
Euler’s formula reduces to v — e +y = 2. By theorem 1,
there are exactly three edges at every vertex and every
edge is incident with exactly two vertices. Thus 2¢ = 3v.
Since every vertex is incident with exactly one pentagon
and each pentagon is incident with exactly 5 vertices,
it follows that the number of pentagons is »/5. Since
every vertex is incident with exactly two hexagons and
each hexagon is incident with exactly 6 vertices, it fol-
lows that the number of hexagons is v/3. Substituting
these in Euler’s formula we get

, 3IJ+I/+V__2
2 5 3 7

s0, ¥ = 60. Now the theorem follows easily. O

Finally, we show how Euler’s polyhedral formula can be
used to show that there are only five regular solids. In
a plane graph, a k-cycle refers to a sequence of edges of
the type vyvg,vovs,. .., vk_19k, V7 Where the vertices
V1,V2y...,V; are all distinct and k 2 1.
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Lemma 8. If each face of a connected plane graph G is 5
p-cycle for a fixed p > 3 and if there are ¢ > 3 edges at
every vertex of G, then (p,¢q) = (3,3), (3,4), (3, 5), (4,3)
or (5,3).

Proof: We first note that every edge joins two distinct
vertices since if there is a self-loop, the face just inside
it cannot be a p-cycle with p > 3. So, as in the proof
of theorem 6, we get qv = 2¢ = py. Now, by Euler's
formula, v — e+ v = 2. So
v _€_ Y _Vv—e+Y p 4pg
s—3+tz 2p—pg+2g

So2p—-pg+2q > 0or (p—2)qg—2) < 4. It follows
easily that p < 5. Moreover, if p = 3, then g can take
only the values 3, 4 and 5. If p = 4 or 5, then ¢ can take
only the value 3. U

Lemma 9. (Euclid’s Comment at the end of Book XIII):
The Schlafli symbol of any regular solid (i.e., a 3-dimen-
sional polytope with each face a regular p-gon and with
exactly g faces at each vertex) is (3,3), (3,4), (3,5), (4,3)
or (5,3).

Proof: We will give two proofs of this result, the first
using Euler’s formula. The Schlegel diagram of any reg-
ular solid with Schlafli symbol (p, q) is a plane graph G
satisfying the hypothesis of lemma 8, so (p,q) can take
only one of the five values mentioned in that lemma.
This proves lemma 9.

We now give a second proof, essentially due to Euclid,
which is applicable only to regular solids and which does
not use Euler’s formula. Since each angle in a regular p-
gon is (1—2/p)r and there are q such faces at any vertex,
it follows from lemma 3 that ¢q(1 —2/p)m < 2r which, on
simplification, becomes exactly 2p — pg + 2¢ > 0. Now
the conclusion follows as in lemma 8. O

Now, if there is a regular solid with Schlafli symbol (p, ).
then (p, q) can take only the five values stated in the

" ﬂ ﬁ f\ 5 .
40 RESONANCE | January 2001




GENERAL | ARTICLE

preceding lemma. Using the equalities displayed in the
proof of lemma 8 (or by direct counting), it is easy to
find the numbers of vertices, edges and faces in each of
the above five cases. Finally it can be shown, as for a
football, that a regular solid with Schlafli symbol any
one of the five referred to above, is unique. This shows

that the platonic solids are the only ‘regular solids’ as
stated by Euclid at the end of Book XIII.

Incidentally, a plane tessellation is a covering of the
plane with nonoverlapping (except for the edges between)
polygons. A tessellation is a regular tessellation if the
polygons are all regular p-gons for some p. If a regu-
lar plane tessellation exists with p-gons and if there are
g such polygons at some vertex, then we have q(1 —
2/p)m = 2m, so (p — 2)(q¢ — 2) = 4. It follows that
(p,q9) = (3,6),(4,4) or (6,3). Each of these is actually
possible as the tessellations in Figure 15 show. (Note
that, now, p determines ¢ and the same number of poly-

gons occurs at every vertex; this was not assumed in the
definition).

We mention in passing that a beehive looks quite like a
3-dimensional convex polytope with every face a regular
hexagon and with three faces meeting at every vertex. Suggested Reading
However, this cannot really be, since the sum of the
angles at any vertex will then be 360° and the polytope
has to be planar by lemma 3. Thus the polytope with

[1] H S M Coxeter, Regular
Polytopes, Methuen, 1948,
[2] J A Gallian, Contemporary

the stated properties does not exist and a beehive is only Abstract Algebra, 4th Ed.,

a clever approximation. This shows the need for proving Narosa, 1999.

the existence of a football. [3] VS Sunder, Some aspects of
convexity I & I1, Vol.5, No.

We end the first part here. In the next part, we shall 5 pp.5-16; No.6, pp.49-59,

identify the group of symmetries of a football. That will o

also contain a discussion on the groups of symmetries of

some other objects in 3-space. Address for Correspondence
A R Rao

indian Statistical Institute
203, B T Road
Calcutta 700 035, Indio.
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Chemical Research of Sir Pratulla Chandra Ray

Sreebrata Goswami and Samaresh Bhattacharya
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Prafulla Chandra Riy was the pathfinder and originator of
chemical research in modern India. He was introduced to re-
search by Alexander Crum Brown, a notable chemist and teacher
at Edinburgh University. His doctoral work was on the chemis-
try of double sulphates. He received the D.Sc. degree of
Edinburgh University in 1887. A year later he returned to India
and 1n 1889 started his career as a junior professor in Presidency
College, Calcutta. He was then twenty-eight. His research activi-
ties flourished in the laboratories of the college even though the
facilities were inadequate. He moved to the College of Science of
Calcutta University as the first Palit Professor of Chemistry in

the year 1916 and the work of his school continued there with
renewed vigour.

Prafulla Chandra was a synthetic chemist specially of inorganic
compounds. But he also made outstanding contributions to the
chemistry of thio-organic compounds. He and his students
prepared many new interesting families of compounds and
examined their physical properties to the extent possible at that
time. He first became well known for his work on the inorganic
and organic nitrites. Among metals, he had a very special fasci-
nation for mercury probably because of its importance in
Ayurvedic medicines in which. he was very interested. He
published about two hundred original papers. The majority of
his contributions until 1924 (the year when the Fournal of the
Indian Chemical Society was born) were published in the Fournal

of Chemical Society (London).

It 1s convenient to discuss Prafulla Chandra’s research contribu-
tions under a few broad categories highlighted in Box 1.

In the following sections we shall present a few selections from
his many-sided experimental findings. His celebrated historical

#
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research culminating in the creation of History of Hindu Chemis-
try has not been elaborated in this article.

Box 1. Categories

of Research
Contributions

Mercurous Nitrite and Related Compounds

In 1895 Prafulla Chandra reported the first synthesis of the (1) Metal nitrites with
hitherto unknown mercurous nitrite, Hg,(NO,),. This event 25?::: ;:::::nce = e
was described by him in his autobiography as “the discovery of (i) Ammonium nitrite
mercurous nitrite opened a new chapter in my life”. It is relevant and related compounds
to mention here that stable mercury(I) complexes are sparse in (iii) Chemistry of sulphur
literature, even today, owing to the instability of mercury(I) compounds

towards disproportionation to mercury(II) and metallic mer- (iv) Coordination com-
cury 1n solution. Moreover, the nitrite ion is not very stable and pounds

can undergo facile decomposition. The compound, Hg,(NO,), is
thus a fascinating example of a stable substance composed of two

relatively unstable ions.

The preparation of Hg,(NO,), was an accidental discovery. He
wanted to prepare water soluble mercurous nitrate as an inter-
mediate for the synthesis of calomel, Hg,Cl,. Accordingly, di-
lute aqueous nitric acid (1:4) was reacted with excess mercury. Figure 1. Coordination

To his surprise this resulted in the formation of yellow crystal-  modes of NO,- to metali.
line Hg,(NO,), .

Hg (excess) + HNO, (dilute) —p Hg,(NO,), (1)

This result was first published in the Fournal of Asiatic Society of
Bengal which was immediately noticed by Nature. This was the
beginning of a series of thorough investigations which resulted

In many significant publications on this nitrite and its deriva-
tives.

It is now known that the nitrite ion can bind to a metal ion in
three different fashions (Figure 1) and there have been numerous
structural investigations in many laboratories around the world
to sort out the coordination modes. As mercury (Figure 1a) is a
soft cation, the nitrite ions in Hg,(NO,), are likely to be linked
to mercury (Figure 1a), which exist as a dimer due to metal-metal
bonding, through the soft nitrogen centers forming a linear N-
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Hg-Hg-N chain (Figure 2). It was not possible to make such 5
proposal in Prafulla Chandra’s time because structural prip.
ciples were in their infancy. A direct experimental proof of the
structure of the above nitrite is still awaited.

Figure 2. Structure of Subsequently, Prafulla Chandrabecame interested in the chemis-
Hg,(NO,),. try of hyponitrites. Structure of the hyponitrite anion (N,0,)* i
shown in Figure 3. The hyponitrites were prepared by reacting
the corresponding nitrite with aqueous solution of sodium hy-
ponitrite, Na,N,O,. The reaction of mercury with nitric acid was
used to prepare a solution containing a mixture of mercurous
~—O | nitrite (Hg,(NO,),) and mercuric nitrite (Hg(NO,),). From this
- O—f mixture, he isolated the corresponding hyponitrites in the pure
form by following the scheme shown in Box 2. A simpler proce-
Figure 3. Structure of dure for the direct synthesis of mercuric hyponitrite from mer-
hyponitrite anion (N,0,7".  curic nitrite was invented later using KCN as the reducing
agent. The hyponitrites of mercury were found to be thermally

more stable than the corresponding nitrites and nitrates.

Box 2. Preparation of Hg,N,0, and HgN,O,

aqueous sohuion of
Hgy(NOy), + Hg(NO,),

Hg,Ch solution of
(Residue) Hg(NOy),
dilute aqueous solution
of NayN,O,
HgN>0,

S ,, ﬂ ﬂ n : e
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Prafulla Chandra also synthesised numerous nitrites of alkali, Contrary to the
alkaline earth and coinage metals as well as double nitrites such view held earlier.
as those containing both mercury and alkaline earth metals. Prafulla Chandra
Thermal decomposition of the compounds was thoroughly in- established
vestigated. Other physicochemical properties such as relative beyond doubt that
stability, molecular volume and molecular conductivity were nitrites were stable
studied. Contrary to the view held earlier, Prafulla Chandra substances.

established beyond doubt that nitrites were stable substances.
Ammonium Nitrite and Alkylammonium Nitrites

One of the very notable contributions of Prafulla Chandra in the
field of nitrite chemistry was the synthesis of ammonium nitrite
in pure form via double displacement between ammonium
chloride and silver nitrite, (2).

NH,Cl +AgNO, — NH,NO, + AgCl )

Ammonium nitrite, so formed, was sublimed at 32-33°C under
reduced pressure to afford crystalline colourless needles. It had
all along been believed that ammonium nitrite undergoes fast
thermal decomposition yielding N, and H,O.

A
NH,NO, — N, + 2H,0 (3)

Prafulla Chandra established that this reaction is far less facile
than thought. He carried out a series of experiments to show that
pure ammonium nitrite is indeed stable and it can be sublimed
without decomposition even at 60°C. The stability of this salt in
its vapour state was firmly established by vapour density mea-
surements. He presented the results in a meeting of the Chemi-
cal Society in London and the scientific audience including
William Ramsay was greatly impressed. Nature (August 15,
1912) immediately highlighted the successful preparation of
‘ammonium nitrite in tangible form’ and the determination of
the vapour density of ‘this very fugitive salt’. The details of these
experiments were published in the fournal of Chemical Society,
L.ondon in the same year.
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Figure 5. Structure of thio-
camphor.

CH;

His success with ammonium nitrite prompted Prafulla Chandr,
to develop the chemistry of alkylammonium nitrites. He pre.
pared a family of such compounds by double displacemen; of
alkylamine hydrochlorides and stlver nitrite.

RNH,Cl + AgNO, — RNH,NO, + AgCl 4)

in cold aqueous solution. The relative stability of these com-
pounds were studied and compared. He then proceeded to work
on mercury alkyl- and mercury alkylaryl-ammonium nitrites,

Organic Sulphur Compounds

In the College of Science, Prafulla Chandra made major contri-
butions to the chemistry of organic sulphur compounds. He
synthesised new compounds and studied their interactions with
the salts of mercury. Moreover, ligating properties of some of
these thio-compounds were investigated. Long-chain sulphur
species, sulphur-containing condensed heterocycles and
thioketones are some of the systems that he synthesised. For
example, as a by-product of the synthesis of 1,4-dithian (Figure
4) from dithioethylene glycol and ethylene bromide, he isolated
the long chain compound, BrC,H (SC,H ), Br (5), which was
‘the first instance of a crystalline organic sulphur compound of
such high molecular weight as 3068’.

Br-C,H-Br + NaS-C,H -SNa + Br-C,H,-Br + ... + NaS-C,H,-
SNa + Br-C,H,-Br »BrC,H (SC,H,) Br + nNaBr 5)

He also worked on the synthesis of condensed heterocyclic
systems. Of these, the synthesis of triethylene tri- and tetra-
sulphides from simple reactions of ethylene dibromide and
alcoholic KSH (6) are noteworthy. Potassium permanganate
oxidation of the tetrasulphide to the corresponding sulphone¢
compound (7) was also examined. A brief report of his work on
the synthesis of thiocamphor and other cyclic thioketones was
published in Nature in 1934. Thiocamphor (Figure 5) was sy
thesized in a good yield by the simultaneous action of dry H,S
and dry HCI gas at 0°C on a solution of camphor in absoluté
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Br—CHs—Br C;l{ He S—CaHe3_
; . + —cH,
Ko CH,
Triethylene tri-sulphide Triethylene tetra-sulphide (6)
\<
FOHTSS L, KMo, 0= H,
2 '
dl H,S0 —
S—CpHy— PO o=y /<2
O O
tetra-sulphide sulphone compound (7)

alcohol. This method was extended later to synthesize cyclic
thioketones containing different ring systems.

Coordination Compounds

Prafulla Chandra made extensive contributions to the coordina-
tion chemistry of the heavier transition metal ions like plati-
num, iridium and gold. Particularly noteworthy are his studies
on organic sulphides such as methyl sulphide, ethyl sulphide,
diethyl sulphide and diethyl disulphide as ligands. Complexes
of different types were isolated and their compositions were
deduced based on elemental analysis and molar conductance.

From the reaction of diethyl sulphide with iridium tetrachlo-
ride he isolated two isomers of composition IrCl,.3Et,S, one
orange and another red. The orange compound is now known to
have the pseudooctahedral meridional geometry (Figure 6a) and
not the facial geometry (Figure 6b)assigned by Prafulla Chandra.
This work indeed represents the isolation of the first mixed
halide octahedral thioether compound of the generic type
MX,(R,S), which now has rich chemistry (M=Ir(IIT), Rh(III),
Os(IIT) and Ru(Ill); X = Cl, Br, I) representing the efforts of
many later workers in different countries. The first seed was
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By the interaction
of chioroplatinic
acid with thio-
organici
compounds,
numerous platinum
complexes were
synthesised by
Prafulia Chandra
and different
oxidation states
were assigned to
the metal ion.

O=—C
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however sown by Prafulla Chandra. The red isomer of IrCl3.3Etzs
was shown by later workers to be 2a salt of type

[IrCL(EL,S),}+ [IrCl,(Et,S),J-

By the interaction of chloroplatinic acid with thio-organic com-
pounds, numerous platinum complexes were synthesised by
Prafulla Chandra and different oxidation states were assigned to
the metal ton. Similar studies were carried out on gold com-
pounds. However, the proposed structures and the oxidatiog
states of such species deserve further scrutiny.

Other Activities

In Presidency College, Prafulla Chandra began his research
activities by chemical examination of certain fats and oils like
ghee, butter and mustard oil, used as cooking media in India.
The purpose was to create standards and identify the adultera-
tion of foodstuffs in metropolitan cities of India. He published a

long report on this work in the Fournal of the Asiatic Society of
Bengal in 1894.

Much later in the College of Science, he developed certain
methods for facile fluorination of organic compounds using
thallous fluoride as the fluorinating agent. For example, one-pot
synthesis of monofluoroacetone from the reaction of
monoiodoacetone and anhydrous thallous fluoride (8) was suc-
cessfully achieved in a high yield. He also isolated methyl

fluoroformate and fluroacetals using the same principle of ha-
lide substitution.

CH; CH;
O—— + TH

CH,I CHSF

(8)

~AN\\W——— ———
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Conclusion

The above account reveals the versatility of Prafulla Chandra’s
research activities. Most importantly, he initiated chemical
research in modern India and was successful in developing the
first research school of chemistry that in time spread far and
wide. In his obituary notice, Nature (July 15, 1944) wrote “it was
by the enthusiasm for research with which he inspired his
students that he will best be remembered”®.
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A Tailor-made Integral Matrix

An n x n integral matrix with n given integers as its eigenvalues is
trivially obtained by considering a diagonal matrix with these diagonal
entries. If one is also given n non-zero integral vectors, how can one
make up a matrix which has integer entries and which has these vectors
as 1ts eigenvectors? Here is a simple way. First, note that if a, b € Z"
are integer vectors considered as columns, and if ab # —1, then the
matrix I + ab' is invertible; it has the inverse I — sab® where s = ﬁlsg;.
Further, a and b may be so chosen that bta = 0 because this only means
that (I +ab*)~! = I — ab’. If we are given n integers and n non-zero
integral vectors a, b satisfying b*a = 0, let us form the diagonal matrix
A with the given integers as its diagonal entries and let us consider the
matrix B = (I +ab’)A(I +ab')~!. We see that B is actually an integral
matrix. Moreover, the eigenvalues of B are exactly those of A and the
columns of I + ab! are eigenvectors of B.
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Acharya Prafulla Chandra at the
College of Science

Gurunath Mukherjee

Dream of Life

The College of Science of Calcutta University was founded ip
March 1914, by Vice-Chancellor Sir Asutosh Mookherjee. For
this, a piece of land at 92 Upper Circular Road (now Acharya
Prafulla Chandra Road) was donated by Sir Taraknath Palit,
who together with Sir Rashbehary Ghose and the Raja of Khaira
Estate provided funds for construction of buildings and creation
of several faculty positions. Anticipating these developments,
Sir Asutosh had already invited Prafulla Chandra in 1912 to be
‘The first University Professor of Chemistry’.

Prafulla Chandra, then a Professor of Chemistry in Presidency
College, received the invitation letter in London where he was
attending the Congress of the Universities of the Empire as a
delegate. He wrote back, “I look upon the proposed College of
Science as the realization of the dream of my life and it will be a source
of gratification to me to join it ...”. Prafulla Chandra retired from
Presidency College in 1916 and joined the College of Science as
the first Sir Taraknath Palit Professor of Chemistry in the same
year. He was fifty five.

Research School

He had already created history while working in Presidency
College - by his teaching, his research, his industrial activities
and by his remarkable book, ‘History éf Hindu Chemistry’. His
activities progressed unabated and in fact, got augmented after
he arrived at the College of Science. He was already recognised
as the originator of chemical research in India and he then
proceeded with renewed vigour to work in new areas especially
on the chemistry and coordination chemistry of sulphur com-
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pounds and noble metals as elaborated in another article in this
1SSue.

Prafulla Chandra’s research school flourished more than ever
before with the likes of N R Dhar, J] C Ghosh, P K Bose, ] N
Mukherjee, P Ray, P B Sarkar and H K Sen. One of his young
research associates, now 90, Nripendra Nath Ghosh, who retired
from the College of Science in 1975, recalls with great nostalgia
the first synthesis and characterisation of the two isomeric
forms of IrCl;.3Et,S. At that time funds for research equipment
were not easy to come by and this had both a negative and a
positive effect on research work especially for those in the
physical chemistry area. Prafulla Chandra has described how
this actually helped J C Ghosh to proceed with his seminal work
on conductivity. ‘Deprived of the use of apparatus he shut himself up
in his room in the College of Science .... He tabulated the enormous
data on conductivity and by a sort of happy sagacious intuition arrived
at the equations...’. |

Indian Chemical Society

It has hitherto been the custom to publish research papers in the
chemistry journals in England, Germany and America. Prafulla
Chandra himself was publishing most of his works in the Fournal
of the Chemical Society, London. It was increasingly felt by him
and his associates that time has come to start a chemical society
in India with a journal as its organ. The idea was discussed in
1919 by S S Bhatnagar (a grandpupil of Prafulla Chandra), [ N
Mukherjee and | C Ghosh, then working at the University
College Chemical Laboratory, London. They felt that an Indian

Chemical Society should be established with Prafulla Chandra
as the President.

The Society was finally established in 1924 with a generous
donation from Prafulla Chandra who also agreed to be the
President for the first two terms. The London Chemical Society
sent this telegram, “Hearty congratulations and warm wishes to the
newly formed Indian Chemical Society”. The Fournal of the Indian

Prafulla Chandra
himself was
publishing most of
his works in the
Journal of the
Chemical Society,
London. it was
increasingly felt by
him and his
associates that
time has come to
start a chemical
society in India
with a journal as its
organ.
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