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ABSTRACT. Under a general non-circular, non-additive model which al-
lows for the possible presence of interactions among treatments applied in
successive periods, small cross-over designs are proposed. The proposed
designs are shown to be optimal for the estimation of carry-over eflects
while being highly efficient for the direct effects under the stated model.
The results are shown to be robust under a random-subject-effect model.
Cheng and Wu [2] showed that these designs are optimal for both direct
and carry-over effects under an additive model. Our results show that their
result for carry-over effects remains robust under non-additive models and
also under random-subject effects.

1. Introduction

Cross-over designs are used for experiments in which each of the experi-
mental subjects or units receives different treatments successively over a
number of time periods. These designs are widely used in clinical trials,
learning experiments, animal feeding experiments, and agricultural field
trials and in several other areas of experimental research.

A distinctive feature of cross-over experiments is that an observation is
affected not only by the direct effect of a treatment in the period in which
it is applied, but also by the effect of a treatment applied in an earlier
period. That is, the effect of a treatment might also carry over to one or
more of the subsequent time periods following the time of its application.
The possible presence of this carry-over effect complicates the design and
analysis of such experiments. An excellent review of the literature on the
subject is by Stufken {20].

The study of optimality aspects of cross-over designs was initiated by
Hedayat and Afsarinejad [6]. Cheng and Wu [2], Magda [13], Kunert [9,10]
Stufken [19] and others studied the optimality properties of these designs
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under simple additive models, with no possible interactions among the
treatments applied in successive periods.

The available cross-over designs which are optimal over a wide class of
competing designs, are often quite large. However, in most experimental
situations, notably in clinical trials, the number of available experimental
subjects is usually quite small and the experiment cannot be continued for
a large number of periods. To overcome this problem, this paper studies
small efficient designs. To compare ¢ treatments, these designs require only
t subjects if ¢ is even and ¢ or 2¢ subjects if ¢ is odd, and further require only
t + 1 periods. Under a model that incorporates interaction effects among
direct and carry-over effects, as well as the individual direct and carry-over
effects, these designs are shown to be universally optimal and hence A-,
D- and E-optimal for the carry-over effects. Under the same model, these
designs are highly eflicient for the direct effects as well. Consideration of a
non-additive model is motivated from practical considerations as, in many
experimental situations, the interaction eflects may also affect the response.
Examples of data sets are given in John and Quenouille [7, p. 213] and
Patterson [16], where such interaction effects are found to be statistically
significant. In such situations, the assumption of absence of interaction
may not be justified and a non-additive model seems more suitable.

The existence of these efficient designs is also discussed. Finally, we
prove that all the above mentioned results are robust under a random-
subject non-additive model. The proois of the results rest heavily on the
use of the Kronecker calculus, introduced by Kurkjian and Zelen [11]. For
a review of the calculus in the context of complete and fractional factorials,
see Gupta and Mukerjee {5] and Dey and Mukerjee [4] respectively.

Cheng and Wu (2] showed that the designs considered in this paper are
universally optimal for the estimation of both direct and carry-over effects.
Our results demonstrate that their result for the carry-over effects remains

robust under the presence of interactions and also under random subject
effects.

2. Model and Analysis

Let €); ,, » be the class of all cross-over designs with ¢ treatments applied to
n units over p periods. We introduce the following model by incorporating
interactions among direct effects and carry-over effects of the successive
treatments applied to the same subject, into the usual model in the litera-
ture; see for example, Cheng and Wu [2].

Consider a cross-over experiment with ¢ treatmnts applied to n experi-

mental units over p time periods and let d(i, §) denote the treatment applied
to the jth unit at the ith period, ¢ = 0,1,...,p~1; § =1,2...,n. Then
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the non-additive model is given by :

E(ng) =4+ Qg+ ﬁj +Td(0,j), j = 1,....,'!3,

and forz=1,...,p-1, 5=1,...,n,
E(Y,_,) = M+ 0; + 135 + Ta(s,5) + Pd(i-1,7) + 7d(i,j).d(i-l.j), (l)!

where u,a;, 05, T4(i, ) Pd(i-1,5)» Vd(i.5),d(i—1,j) are respectively the general
mean, the ith period effect, the jth unit effect, the direct effect due to treat-
ment d(z, 7), the carry-over effect due to treatment d(i—1, 4) and the inter-
action eflect between d(3,j) and d(i - 1,7),i=1,...,p-1; j =1,2,.. LN
where we define Pd(0,j) = 7d(l,j),d(0,j) = (.

Under model (1), a direct extension of the usual method of analysis and
proof as given in Cheng and Wu [2] becomes intractable. Instead, model (2)
below can be conveniently studied by noting that cross-over designs may
be looked upon as a t* factorial experiment with two factors, Fy, Fy, where
the direct eflects correspond to the main effect Fy, the carry-over effects
correspond to the main effect F, and the direct versus carry-over interaction
effect corresponds to the usual factorial interaction, Fy F5. The advantage of
this formulation is that now these designs may be analysed under model (2)
by applying the calculus for factorial arrangements introduced by Kurkjian
and Zelen [11).

Model (1) may be rewritten in the following equivalent form:

’

EYij)=p+a;+B;+2;§1=0,...,p-1,j=1,...,n, (2)

where the t° x 1 vector € = (€00, &01,---,&t—1.¢—1)' i8 the vector of the effects
of 2 factorial treatment combinations:

A‘Ij — ed(!,_’}) ®ed(1—113)? ‘i —_ 1,. o ,p"‘ 1; j — 1,-- . ,n, (3)

Aoj = €d(o,j) ®t ', j=1,...,n, (4)

where for a pair of matrices A and B, A ® B denotes their Kronecker
product; e; ;) is a £ X 1 vector with 1 in the position corresponding to
the treatment d(7,j) and zero elsewhere and 1; is a ¢ x 1 vector with all
elements unity.

Let X4 denote the design matrix for a design d in ; , , under model
(2). Then, it can be shown from model (2) that X, X4 is given by
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i=0 j=1 j=1 j=1 J=
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i=0 i=0 §=0

The matrices Ng and M; in (5) are the treatment versus period and the

treatment versus unit incidence matrices respectively, where the treatments
are actually the ¢* treatment combinations in €.

From (5) it follows that the coefficient matrix of the reduced normal
equations for estimating £ from a design d in € ,, , is given by

1 1 1
Cqg=V; — ;NdNé -— EMdM:, 4 E(Ndlp)(Ndlp)’- (8)

Let P, be a (t—1) x  matrix such that (¢~71,, Pj}) is orthogonal. Define
P" = (t"%1,/)® P, P =P, @ (t-31,), P = B, ® P, (9)

Note that P%¢, P'%¢ and P!¢ together represent a complete set of or-
thonormal treatment contrasts.

Following Mukerjee [15], it can be shown that, for a design d in Q4. o,

the coefficient matrix of the reduced normal equations for estimating the
carry-over effects is given by

_ [ POCy(PY
Ad = Pmcd (POI)’ — (POI Od(Plo)‘i POlCd(Pn)')G ( PHCZEPOI;' ) ’
(10)
where C) is as in (8) and G~ is a generalised inverse of G given by

G: Pmcd(Pm): Pde(Pn)'
Pllcd(PIO)r Pllcd(Pll): .
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3. Optimality Results
We need the following definitions in the sequel.

Definition 3.1. A design in QU ,, , 13 called uniform if the treatments occur
equally often in each period and also equally often in each unit.

Definition 3.2. Under model (1), a design d in Q; , , is called balanced

if, in the order of application, no treatment is preceded by itself and each
treatment is preceded by all other treatments equally often.

Let d; be a design obtained by repeating the last row of a balanced
uniform design. Thus, d, ‘is an extra-period balanced design as defined in
Lucas {12] and Patterson and Lucas [17]. The following theorem gives the
optimality properties of d; under model (1).

Theorem 3.1. Under model (1), a design dy in Q; , , ts untversally optimal
for the separate estimation of residual effects in the class of all designs in
Qt!nlp'

Proof. The proof of the theorem rests on the following two lemmas, the
proofs of which are given in the Appendix.

Lemma 3.1. For the design d;, the matrizx Aq,, given by (10) with d
replaced by d,, 1s completely symmetric.

Lemma 3.2. The design d; mazximises the trace of Aq among all designs
d in th P

From Lemmas 3.1 and 3.2, it is clear that d; satisfies the sufficient
conditions for universal optimality of a design as given by Kiefer (8], for
the estimation of complete sets of orthonormal contrasts belonging to the
carry-over effects. Hence the theorem is proved.

Remark 3.1. A design that is universally optimal over a class of competing
designs is also, in particular, A-, D- and E-optimal over the same class of
competing designs. Thus, the design d, is, in particular, A-, D- and E-
optimal for carry-over effects in the class 2, p.

Remark 3.2. Cheng and Wu [2] showed that the designs d; are universally
optimal for both carry-over and direct effects under an additive model.
Theorem 3.1 shows that their result is robust for carry-over effects under
the non-additive mode! as well. One can show however that under model
(1), though d, remains universally optimal for the carry-over effects, it
does not necessarily remain universally optimal for the estimation of the
direct or the interaction effects. It can be shown using a necessary and
sufficient condition for inter-effect orthogonality in Mukerjee [15] that while,
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under a model with no interactions, the design d; permits the estimation of
direct and carry-over effects orthogonally in the sense that the best linear
unbiased estimator of a contrast among direct effects is uncorrelated with
the best linear unbiased estimator of a contrast among carry over effects,
this orthogonality does not hold under a model with interactions.

Remark 3.3. To evaluate the performance of d; for the separate estimation
of direct effects, we compute the relative efficiency of estimation of the direct
effects relative to the carry-over effects, based on the A-efficiency or the
average variance criterion. Clearly, the upper bound of these efficiencies is
unity. Table 1 lists the A-efficiencies of d; for some small values of £. From
this table it is seen that the efficiency of d, for the estimation of direct
effects is quite high. It follows then that the design d; is useful in the sense
that, using this design, one can estimate the carry-over effects optimally
and also estimate the direct effects with high efficiency, even in the presence
of interactions.

Remark 3.4. The optimality result in Theorem 3.1 is quite general since
the competing class, €; , ,, is the class of all designs with ¢ treatments, n
units and p periods. As stated earlier, d; is also optimal under the weaker
and more commonly used A-, D- and E- optimality criteria.

Table 1. Relative A-efficiencies of direct effects

No. of treatments 3 4 5 6
A-efficiency of direct effects 0.8136 0.9259 0.8771 0.9625

No. of treatments 7 8 9 10
A-efficiency of direct effects 0.9058 0.9783 0.9232 0.9847

4. Existence of optimal designs and some examples

For any t, the minimum values of n and p for which a design d; may exist
are t and ¢ + 1 respectively. This is because, for a balanced uniform design
to exist, it is necssary that

(i) p = 0(mod t); (ii) n = 0(mod ¢) and (iii) n(p — 1) = pi(t — 1),

where u is a positive integer. The question of constructing uniform balanced
designs in €; ., is completely settled for ¢ even, and is given by the £ X ¢
Williams’ square [22]. Thus, repeating the last row of a Williams’ square
once, one can construct a design d; in €2, ¢ +1+1, whenever ¢ is an even integer.

When t is odd, no general result on the existence of a balanced uniform
design in ;¢ ¢ is known. No such design exists for ¢ = 3,5, 7. Such designs
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for t = 9,15,21 and 27 were presented by Archdeacon et al. [1], who
called these squares row complete Latin squares (now sometimes called
Roman squares). Such squares can be constructed for ¢ = 39, 55,57 by
methods described in Mendelsohn [14], Dénes and Keedwell [3] and Wang
[21]. However, for all odd ¢, it has long been known that a uniform balanced
design exists in 2t units and ¢ periods (Williams [22]). It is now known that,
for odd t, such uniform balanced designs exist in 3¢ units (and therefore in
kt units for k = 2,3,4,...); see Prescott {18]. It follows that, for all odd
t, a dEBigIl dl exists in Qt,kt,t+1: k= 2,3, 4,. .. and for some speciﬁc odd
values of ¢, a design d; exists in ;::4+1. In Example 4.1, designs d; for
some values of ¢ are shown. The periods are given by the rows and the
subjects by the columns.

Example 4.1.
t =3 t=4 t=25H
1 2 3453465 1 2
12312 3 iigg 5 12 3 44512 3
312231 , ,,35 2345123435]1
231312 ;57 4512351234
231312 5 ,,, 3451212345
3 4512123¢4°5

5. Robustness of the results under a random-subject-
effect model

In analyzing data from cross-over experiments used in clinical trials, it
is often desirable to assume the subject or patient effect to be a random
variable. Under such an assumption, the non-additive random-subject-
effect model is:

Yo; = p+ap + B + 1400,5) + error, forj=1,...,n,

andfori=1,...,p~-1,9=1,...,n

Yij = p+ a; + B + T4(i,5) + Pa(i~1,5) + Vd(i,5).d(-1,5) + error,  (11)

where u, a;, 8, Ta(i,j)» Pd(i—1,5)» Yd(i,5),d(i-1,5) are as in (1); and the vector of
subject effects 8 = (8, Bz,. .., fn)’ has the normal distribution, N(0,0%1,),
the error vector has the N(0,0°l,,) distribution, 8 being independent of
the error vector.

In consideration of Lemma 3.1, after some routine but lengthy algebra,
the following result can be proved.

Lemma 5.1. Under model (11), for any design d in € o, ,,
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(a) the matriz Cy is given by
Ci = ZHVi- ZuNg,1 N, + S5 N1,1, H ~ aMyM!, — Ly NN

+ SNgH}+ 3 Hal,1, Ny~ S5 Hl,1, Yy + 2H,N,

'
- S-HaH,,
(12)
where a 3 a constant involving the design parameters, o and o,
Hy = [Nglp,---,Ngl, | 18 a t X p matriz and V3, Mg, N; are as in (6)
and (7).

(b)
PO My My =0, PNy, =0, PP'Hy, =0.

It follows from (12) that P®'C;, = mP%V,; where m is a constant.
Now, using steps similar to the proof of Theorem 3.1, the following result
may be proved.

Theorem 5.1. Under model (11), d; is unsversally optimal for the separate
estimation of carry-over effects in the class of all designs in € ., ,.

Thus the results of Theorem 3.1 remain robust under the random-
subject-effect model.

Remark 5.1. Theorems 3.1 and 5.1 show that the result of Cheng and
Wu [2] mentioned in Remark 3.2 remains robust for carry-over effects under
a model with random subject effects and with direct-vs-carryover interac-
tions.
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Appendix

Proof of Lemma 3.1. From (6), (7) and Definitions 3.1 and 3.2, one can

show that
Vi, = nt's(It X ltlt’) + n(p — l)t-zft, ® 1, (A.1)

where for a positive integer s, I, stands for the identity matrix of order s.
Furthermore, we have

Ng,1n = (npt™2)(1 ® 14). (A.2)

Recalling the definition of P® from (9) and using (A.1) and (A.2), the
following statements can be proved after some algebra:

POy, (P™Y = n(p— 1)t~2L,_y, PV, (PY) =0, POV, (P') =0,

P Ng, =0,
P (Ng, 1,)(Ng, 1, }(P"') =0,
PP (Ng, 1,)(Ng, 1) (P'?) = P% (N4, 1,)(Ng, 1,)(P'1) = 0,

and
P* M4 M) =0.

By (10), we have Ath = pul Cd1 (Pm )’ = pPY le (Pm )' = n(p—l)t"'zlt_l.
Thus A4, is completely symmetric and the Lemma is proved.

Proof of Lemma 3.2. From (10) it is clear that P Cy(P°') — A4 is nonneg-
ative definite for all d in €, ,. Again, as V3 — Cy is nonnegative definite
for all d in Q¢ p, , PO V4(P) — P Cy(P%) is nonnegative definite for all
such d. Hence,

Trace(Ay) < Trace(P® Vi (P®Y) = Trace(P» Cy4, (P°')') = Trace(Aq, )

for all d in €1, p- This completes the proof.
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