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OPTIMAL INVERSE OF A MATRIX!

By SUJIT KUMAR MITRA
Indian Statistical Institute

SUMMARY. An optimal approximate eolution () of tho possibly inconsistent equation
Az—
Az = y minimizes the norm of| ( = y) considored a voctor in the appropriste product space.

Such a solution is computed as £ = Gy through sn optimal inverse G of A. Thia definition
gonoralizos tho oarlier work of Foator (1001), Proportios of optimal inverss are studiod for the
first timo and somo applications are discussed,

1. BEST APPROXIMATE SOLUTION
For (column) vectors y, » in @™ (the veotor space of complex m-tuples)
let tho inner product ho defined by
(y, O)m = ©°My . (L)

where M is o given positive definite (p.d.) matrix of order mXm and » on s
vector or & matrix indicates complex conjugate transpose?. Let tho inner
product in &7 denoted by (, ), bo similarly defined through a p.d. matrix N
of order nXn. The corresponding vector norms induced by these inner
products are denoted by [lllm and |jll, respectively. Let A bo & comple.i
matrix of order m X#n. A matrix G is called minimum N-norm g-inverso of A
and donoted by Ay, if for every y e A(A) the column span of 4,z = Gy
i o solution of tho equation Az = y, with the least N-norm. For some ye&m,
if the equation Ax = y is inconsistent no xe&” oxists such that Ax =y.
In such a caso the most that can be achieved is o choice of & that makes Ax
as closo a3 possiblo to y in somo acceptable senso. . An approximate solution
in the senso of minimizing || Az—ylin requires the orthogonal projection of
y onto JA). Accordingly a matrix G is called & M-least squares g-inverse
of A and denoted by the symbol Ay, if P = AG is tho orthogonal projector
onto #(A). In such a caso & = Gy is also referred to as a Ml-least squares
solution of the inconsistent cquation Az = y. The best approximate solution
of Penroso (1955) (also called extremal virtual solution by Tseng (1049) )is the
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DM-least &quares solution of Ax = y with tho lenst Nonorm |||l,. A matrix G
of order nxXm i3 called tho minimum N-norm D-least squares inverso of A
and denoted by Aj, if for cach ye&m, 2 = Gy is the best approximate
solution of Az = y. The suffixes M and N in tho notation A}, are generally
suppressed when both B and N aro idontity matrices.

2. ANOTHER FORMULATION OF THE BEST : OPTDIAL APPROXIMATE SOLUTION

If the intention is to makoe both Az—y and z small in some sonso an
A‘;—y a vector in the product
space &mx &" and minimize a suitablo norm of this vector not necessarily
a product norm. If tho inner product in this product space and tho corres-
ponding vector norm ere induced by the p.d. matrix A of order (m-n) x (m+n)
the optimal approximate solution in this sense would require the orthogonal

projection (under this inner product) of the veotor ( g ) in &mx &" onto a

alternative approach would be to consider

subspaco & of & x &» where & consists of all vec!,ors( : )with a arbitrary and

b = Aa. Using the explicit representation of the orthogonal projector given
in Rao and Mitra [(1071), p. 111] the unique OAS is seon to be given by

x=Ay e (201)

where
AL = (A°AgA+AA -+ AL A+ AN AA+AT) . (2.2)

( Ay A )
A:’ Al?
is the relevant partitioned form of A.

With a product norm on &mx &7, Ais given by the direct sum of Af
and N. In symbols, A = M@®N. Hero the OAS minimizes

(Ax—y)* M(Azx—y)+x Nz . (23)

and

and is given by @ = AJ’H@N y where

Ay = (A'MA+NAML . (24)
Minimization of a criterion as in (2.3) was considered eerlior in smoothing
procedures for solving an ill-conditioned aystem of linear equations

Ar=b e (25)
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where both the cocficient matrix A and tho vector b aro corrupted by random
noiso (Tikhonov, 1965). A eloscly related problem is tho numerical solution
of tho Fredholm integral equation of tho first kind

J (s, t)x(t)dt = b(s) (2.8)

with a singular or ill-conditioned kernel IK(s, t) and somo disturbances in tho
right hand sido b(s) (Phillips, 1962). This type of equations appears in many
branches of physical scicnces, typically in the oxperimental sciencos whero
physical data aro measured by indirect’ sensing devices. For an excellent
bibliography on smoothing procedures the reader is referred to Tanabo (1974).
The ridgo regression cstimates of tho regression parameters (Hoerl and
Kennard, 1970a and b) in a lincar regression model are obtained through a
modification of tho usual method of least squares of the same typo as envisaged
in tho minimization of (2.3). ’

Foster (1961) uses the matrix (4°) in arriving at an optimal estimato

t
A’@.‘l
of tho signal & from the observed random vector y assumed related toz
through a linear structural equation of the type

y = Ax+te. e (27

Consider & Jinear estimat

& = By+b . (28)
and the optimality criterion
$(B, by = trdA . (29)

whero @ is & given nonnegativo definite (n.n.d.) matrix and A is the expected
error square and product matrix

A = Ez—3)x—3)". o (2.10)

Under the assumption that the signal and noise vectors x and ¢ aro uncorro-
lated with mean valucs @ and 0 and dispersion matrices N and DI respec-
tively, it is shown that the optimal estimato of @ in the sense of minimizing
$(B, b) is independent of & and is given by

B = {4},

.@,,]’. b = (I-BAla. . (211)

In Theorem 2.1 we shall establish a similar optimality property of the moro
general matrix functions of the type (2.2).

Consider tho partitioned form of A used in tho derivation of (2.2). For
any such matrix A defino

A = K°AK e (212)
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0 l,,.)
K= ° . .
( 1 o (2.13)

Theorem 2.1: Let B°=[(A.);'\]" by = (I—-ByAa. If the noise and

whero

signal veclors e and x are correlated and A is the dispersion matriz D ( ¢ ) of
T
e and z, then
(B, by ) = inf $(B, b). e (214)

Proof : Obscrve that
x— = (I-BA)(x—a)—Be—[b—(I—DBA}a)
Hence
A = (I-BA)A,(I—-BA)*+4-BA,B*

—DBA,,(I-BA)*—(I—BA)A},B*

+(b—(I—-BA)a)(b— (I—DBA)a]". .. {(2.15)
Since the enly term in A involving b is nonnegative definite, it is clear that
for any given B an optimel choice is to fix b = (I—BA)a. Observe that

since ® is n.n.d. it can bo represented in the form @ = Zym;}. Hence with
this choice of b we have

#(B, b) = tr A = InlAn

A*B*y=m \ L /ARy —wy
=z A . (2.18)
By B

Following the argument which led to tho derivation of (2.2) it is scon that
tho minimum of this expression is attained at B = B, whero B, is given by
B = (A°).

A

The matrix [(A‘);_@" J* is designated by Foster (1961) the optimum
inverse of A. Chipman (1969) gives an interesting use of tho same matrix in
the Bayesien analysis of a linear regression modol. Seo elso tho section on best
linear cstimation in Rao (1971) in this connection. Wo shall howover tako
tho liberty of cnlling A;”®N tho optimal inverso of A and in fact propose
to oxtend the terminology to cover the more gencral form A}\ (honcoforth to
ba referred to ns the A-optimal inverse of A). One reason for this ia that the

13
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optimal inverse in this senso is indeed o natural generalizetion of tho Mooro-
Penroso inverse A}y, 0s was noticed in tho introductory discussions in the
M.

presont section and does in fact havo many properties which are strikingly
similar to that of tho Mooro-Penroso inverso. Theorom 3.1 which is the
first of soveral thcoroms wo shall prove in this dircction shows that there are
no basio conflicts in our terminology and the ono introduced earlier by Fostor,
sinco

(A gr)' = A . (217)

3. OPTDIAL INVERSE VERSUS MOORE-PENROSE INVERSE

Wo shall now establish Lemmas 3.1 and 3.2 which we nced in the proof
of Theorom 3.1.

Lerama 3.1 : Let B be a complex matrix of order txXn and rank r and P
be the orthogonal projector onlo AL(B) under the inner product

(@, Yy =y'Tz. .o (30

Then I—P* ig the orthogonal projector onto 7i(B*) the null space of B*, under
the dual inner product

(@ y) = y'T-1z. . (32)

Proof : Lemma 3.1 follows from wellknown propertics of the orthogonal
projector (sce e.g. Theorom 5.2.1. in Rao and Mitra (1071)) once it is noted
that

A(I-P*) = 7n(B*).
We leavo the details to the reader.

Lemma 3.2: For a scalar X 0

where QA = A=Ay . (33)
AN, A,

A= . . .. (34)
AAH A:z

Proof : Lemma 3.2 is a simple consequonco of the definition of the
optimal inverso.

Theorem 3.1 :
(A;‘)' =(,4')(1_ . (3.8)

- . Aogm
whers A is as defined in (2.12).
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Proof : Observo thet the subspace 8 of &mx &» could be identified
with JA(B), whero B* = (A*: I). If P is the orthogonal projector onto A B)
under tho jnner product induced by A, by Lemma 3.1, (I—P*) is the orthogonal
projector onto #(C) under the dunal inner product whero (C) = (D).
Hero one choice of € is given by

e=( )
=\ _u/) . (38)

If
PH Pli
P= e (37)
Pﬁl Pn
is the relovant partitioned form of P
-r,  -P,
I-P* = . . (3.8)
- 1-P

The OAS of the equation (—A®)y = & undor the norm induced by

( o I, ) ( 0o I,
Q= A ) . (3.9)
1 0 I, o

is thereforo obtained by applying the projector (I—P*) on (g) The roquired
OAS is

y=(-A" =Py .. (310
Since Py, = AY, Theorom 3.1 follows by a straightforward application of
Lemma 3.2 with A = —1.

Of special interest ia the caso where A = M@N. A;“ O is not a gene-
ralized inverso of A since A—AA;"®N A = A(A*MAN- 411 £ 0 unless
A=0. Aboif B= AI'”®N, B;v@‘"

(B°NB+DM)A = B'N
= MA(A*MA+ N N(AMA4- N A MA+MA
= MA(A*MA+N)'N
= A"MA(A*MA+N)"'N(A°*MA4+-N)AMA
= —A°MA(A°*MA4-N)A'MA
= A" MA(A'MA+N)"AMA =0
=B =0.

3 A, sinco equality hore would imply
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Theorem 3.2 and 3.3 show that almost in every other respect the properties

of A:u@.v aro similar to that of A},\. Sco for examplo tho propertics of
Az, listed in Chapter 3 of Rao and Mitra (1971). Tho uniqueness of
At was noted carlier in Section 2.
MON
g 2: '
Theorem 3. If G be AM@N' then

(i) Rank G = Rank A
(i) (NGA) = NGA
(i) (MAG)® = MAG.

(iv) AG and GA are semisimple matrices with rank equal to rank of A
and spectrum wholly contained in the half open inlerval (0, 1).

(v) The sow and column spans of G are same as that of A*.A* the adjoint
of A is defined by the equation

(A2, Y)m = (x, A%Y),. . (31))
Proof : (i), (iii) and (iv) aro almost immediate from the representation
of A"\l@.v given in (2.4). NG is tho parallel sum of IV and A*MA as defined

by Anderson and Duffin (1969). (ii) follows from tho corresponding property
of the parallel sum established by theso authors.

Sinco A* = N-2A°JM tho claim made in (v) about the rowspan ofAl'"®N
follows from (2.4). Tho claim about tho column span is casily established
using (2.17).

Theorem 3.3: (i) If U and V are 1sometrics tn &™ and &», that is

1O¥Im = [Ylm, V2\ = 2l VTe&® yelm,

then
VA V))",®NU = A;u@N' (3.12)
(i) If A is square and normal, that is A°MA = AMA®, then
[Afu@,u,] A= [A')fu@.u.]"‘. e (313)

where M, is a posilive definite malriz of order mxm possibly different from BI.

Proof : (i) follows from tho definition of tho optiral inverso, (ii) from (2.4).
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4. OPTDIAL INVERSE UNDER A SEMINORM

The theory wo havo presented carlier for the case whero A is p.d. extends
jtself with only minor modification to the positive semidefinite (p.s.d.) case.
Perhaps the only chengo needed is that ono considers here a projector under

tho A-scminorm in placo of tho orthogonal projector onto o [ .- | . Such

projectors however need not bo unique (Mitra end Rao, 1974) o.nﬂ this could
result in nonuniqueness of & A-optimal inverse. Wo rccall hero the definition
of a projector under o seminorm and present in Lemma 4.1 some of the known
propertics of such a projector.  For & proof of Lemma 4.1 the reader is referred
to Mitra and Reo (1974).

Definition: Lot B be a complex matrix of order ¢xz and T a ps.d.
matrix of order ¢x¢. A matrix P is a projector into /(B) under the semi-
norm induced by T if A(P) C A(B) and

(y—Py)* T(y—Py) < (y—DBx)*T(y—DBx)

for every ye &t and xe&h.

Lemma 4.1: (i) For P lo be a projector into f((B) under the seminorm
induced by T it is necessary and sufficient that the following holds :

() AUPYCAB)
() P*TP = TP
() TPB = TB.

(i) The matriz TP is unique with respect to the choice of a projector P and is
positive semidefinile.

a4
Let a projector Pinto A ( ) under tho A servinorm bo partitioned as
1
( Pﬂ Pn )
P=
P?l P!:
whero Py, is of order m xm. Then Py = G is ono choico of A} a A-optimal

inverso of A. Tt is nlso not difficult to sco that tho entiro class {A}} of A-
optimal inverses of A is determined by this process from the class of all matrices

A
P which are projectors into s ( )undcr tho A-seminorm. Tho following
4

theorom is easily deduced from Lomma 4.1.
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Theorem 4.1: If Ge{d}), then
(8) ApAG+A,LG s unique and nand.
) A}, AG+A.G is unique
(¢) Ay—BHAG—A,G is nnd.
d

For any ye&™
Az—y

-~

3
min = (A=A, AG-ALG)y . )

xe@" )
(0) Ap(AGA—A)+A,,GA is nnd. and also is

Ay—AypGA~A(AGA—A).

T

(f) For any ue&n
Az
min = wA(AGA—A)+A,,GA . ... (4.2)

x€e&”

z—u
The following theosom is elso casily established. We omit its proof.
Theorem 4.2: (a) For a matriz G to be a A-oplimal inverse of A it is
necessary and sufficient that
(AN A+ AN AL A+AL)G = A°Ay+AY. e (43)

(b) A parlicular solution to a A-oplimal inverse of A is
Gy = Ay(A°Ay+AL) o (44)

where Ay is any g-inverse of
Bpp = (A*D A+ AR A A +0). . (48)

(¢) A general solution i8
G = Gy +(I-030,)U . (46)

where U s arbilrary.

(d) A A-optimal inverse of A is unigue iff A,, is p.d.

Tho apecial caso A = M@N makes an interesting reading as it offers
an immediate opportunity of comparison with A, . a minimum N seminorm

M semileast rquare inverse of A.  The definition of such an inverse is similar
to thet of A}y in Section 1 except that the matricos M and N inducing

the seminorms are p.s.d. matrices. Tho inverses A, aro studied in dotails
3

in Mitrs and Rao (1974).
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Corollary 4.1 : t
orollary If G cMM@N)' then

(a) MAG is unique and n.nd. and so is M—DAG.

(b) For any ye@m

Az—y |?
nin

min =y (M-MAG)y. e (47)

MON

T

(¢) NG is unigue.
(d) NGA is unique and n.nd. and so is N—~NGA.

() For any us @n
Az |*
min
xean INERY
Corollary 4.2: (8) For a matrix G to belong lo {AK,@V} it 18 necessary
and sufficient that NyG = A°M, where

=u'NGAu. . (4.8)

r—u

Ny= A*"MA+N. . (4.9)
4 . . ' .
(b) A particular solution to AM N 8
G,= Ny A*M, . (4.10)
and a general solulion is
Gy+-(I-N; N U e (411)

where U 18 arbitrary.
(¢) IfeG (A""®N) then
M (MAG) = A(DMA) e (412)
SNGA) = AN) (Y A (A°DMA). e (413)

5. RELATIONS WITH TRE MINIMUM SEMINORM SEMILEAST SQUARES INVERSE

For a positive scalar A, consider (A*MA+AN)~A*M which is one choice
of A""®w. Theorem 5.1 shows that for each A thero is a dotormination
of (A*MA+AN)~ such that as A } 0 tho corresponding soquenco of optimal
inverses A:"l@x;v converges to A,/ & minimum N seminorm M somileast
squares inverse of A. (A*MA+AN)* is one such determination. Theorem 5.1
thus extends the corresponding result for A+ due to Don Brooder and
Charnes (1957). A moro accessiblo account of this work is given in Bon Tsraol
and Charnes (1063). Theso authors in their proof use Autoune’s Theorem
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(also known as singular valuo decomposition) which states that every com-
plex matrix A can always bo represonted as A = VDIV whero ¥ and 1V aro
unitery matricos and D js diagonal. Tho approach we take is somewhat
different.
Let A*MA4N bo of rank ¢ and S bo & matrix of order nxs and rank
g such that S*(A°MA+N)S is p.d. Observo that for eanch positive A,
S*A*MA+AN)S is also positive definite. By Theorem 2.1 of Mitra (1068)
therefore,
S {S*(A°MA+2AN)S} S* e (80)

is a g-inverso of A*MA4AN with its column span contained in that of S,
in fact tho wniquo Hermitian g-inverso with this property.

Theorem 6.1 For the choice of (A*MA+AN)~ as in (5.1) with S fized
tndependently of A, im (A°MA4-AN)-A*M exisls and is one choice for A N
240

Proof : Without any loss of generality one may assume that
SY(A°MA+N)S =1 ... (6.2a)
and
S*(A*MA)S = D} ... (5.2b)
where D, is diagonal, for if it bo not so, & matrix S for which S*(A*MA+N)S
is p.d. could always bo replaced by SL so that SL satisfies (5.2a and b). This
only requires o cogredient transformation L which will simultencously reduce
the p.d. matrix S*(A°MA4N)S to I and tho n.n.d. matrix S A*MAS to
a diagonal matrix Dg.

Observo that L/(S) = A SL). Henco ono arrives at the samo g-inverse
for A*MA4AN irrespective of whether ono considers S or SL in the formula
(5.1). Let U bea matrix such that A(U) = 7(A°MA+N). If S satisfies
(5.20 and b) for a g-inverso of A°MA+4AN determined as in (5.1) we have
(A*MA+AN)- A*MAS = S[Da+A(I—Dg)]"! D, which as A }, 0 converges to
o matrix SD where tho diagonal matrix D is same ns Dg excopt that in those
diagonal positions where D, hes a nonnull entry tho corresponding entry in
D is strietly equal to 1. Sineo A*MAU = 0 it follows that ]i{r:) (A*MA4AN)

x

A*MA(S : U) exists and so docs lim (A°MA+AN)- A°M.
240

1 Note that thoe diazonal ontries in D, are the propor oigon values of A*MA “mh mpccr.
to A*MA+N ond tho col of § i ono dotormination for tho corrosp g ot
of propor aigon voctors (Mitra and Rao, 1008).




OPTIMAL INVERSE OF A MATRIX 561
The rest of Theorom 5.1 follows from n variational technique outlined
in Lemma 5.1

Lemma 6.1: For A > Oand p.s.d. malrices Mand N, let x, = A‘!‘l®k~y

denole an oplimal approximale solution of the equation Az = y. Ij]iin T, =
Ag0
exists, then & is @ minimum N seminorm M semileast squares solution of Ax = y.

Proof : By definition
(Az,—y)"M(Ax,— y)+ 223Nz, < (Az—y)' MAz—y)+Az'Nz ... (5.3)

Letting A | 0 on both sides we establish the semileast squares property of &.

To completo the proof of Lemma 6.1 consider ° another M semileast squares

solution of the equation Ax =y. Sinco

(Az,—y)* M(Az,—y) > (Ax'—y)* M(Ax’—y), (5.3) == )Nz, < (z°)°Nz".
(5.4)

Letting A | 0 in (5.4) we cstablish tho minimum seminorm semileast squares

property of z. This concludes the proofs of Lemma 5.1 and Theorem 5.1.
Corollary 5.1 : IiIn (A*BIA+AN)* A°M exisls and one is choice for Ay,
ado
Proof : One takes S to be the matrix formed by ¢ independent columns

of A°MA4N. With this choice of S, the g-inverse determined by (5.1)
is easily scen to be (A°MA+AN)*.

In Theorem 5.2 we have a generalization of another similar result also
due to Den Broeder and Charnes (1957) for the Moore Penrose inverse A+
of & complex matrix A.

Theorem 5.2: For a g-inverse of (A*MA-+N) delermined as in (5.1),

?
lim I (N(A*MA+NYJEAM ezisls and
P k=1
NAyy = £ (N(AMA+N)PAM . (5.5)
k=1

(where A*M may not be removed as a factor from the series).
Proof :  As before without any loss of generality wo assume that S satis-
fies (6.2¢ and b). Then
{N(A*MA+N)J* = (NSS*)*
= NS(I—Dg)-1S*,
13
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Hence,
T {N(A*MA+N)JFA*MAS
=1
= NSD

whero D is defined as in the proof of Theorem 6.1. This in turn was shown
to bo cqual to lim N(A*MA+AN)- A*MAS = NAyxAS in the samo proof,
Alo

Also since AMAU =0

I (VAMA+NYPAMAS : U) = Ny A(S: U)

£ (NAMALNSJAMA = NA
=2 ™ +3))EA°] Nyl

= (5.5).
The uniqueness of NAy, . is shown in Mitra and Rao (1874). Theorem 5.3

resembles the Neumann type series expansion for A+ given by Ben Tsracl and
Chnrnes (1063).

Let d bo the maximum of the diagonnl elements of D,{(f—D,)t)}(I1—D,)
where D, is as defined in (5.2a and b) or in other worda et & be the maximum
proper cigen valuo of A*JLA with respect to N (Mitra and Rao, 1968). Dut
N- = S(I—-Dy)*S".

Theorem 6.3 For a real number a with,
0<a<%
the series
¢fo ((N—aA*MAW-}EAM
converges and
NAyy = aéﬁ {(N—aA*MAN-JA*M e (5)

(schere A*M may not be vemoved as a faclor from the series).

Proof : Theorem 5.3 can bo proved on the same lines as in Theorem 5.2,
We omit the proof,
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