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Abstract

The conditions under which the nearest proportional to size. sampling
design introduced by Gabler (1987) turns out to be non-negative are identified
and these conditions are utilized in getting a rejective IPPS sampling plan.

1. Introduction
Consider a finite population U of size N and let y;(z = 15...;N) be the
Yilues of a variate y under enquiry. Our problem is to estimate the population
N
tota] ¥ = Zyi on the basis of a sample s of fixed 'size n drawn from the

i=1
Population with a probability po(s).
.Gabler (1987) has introduced the nearest proportional to size sampling
lesign p"(s) defined as '

p(s) = (3 M)pals) (11

Where Xis(i = 1,..., N} are all positive and are given by
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T A =77 (12)
~% N ~
r ] 0 [
KB 7r12 oo TN
0 0 0
a1 g v Topn

where m =

B THE s TR 5
N o= (A,..., n) and 7~r" = (m*,...,75"), 7:°(7*) s being the first crder
inclusion probabilities for the sampling design po(s)(p*(s)) and m;;°'s being
the second order inclusion probabilities for the pair of units for the design
po(s).

Gabler (1987) has also discussed how to realize p*(s) starting from an

arbitrary fixed sample size (n) design p,(s) and he has called such a design
N

a 7°ps design which satisfies Y ;" = n.

i=1
The conditions under which the system of non-homogeneous linear equa
tions (1.2) is consistent and admits of a non-negative solution for ) are cor

sidered in this paper. These conditions are utilized in getting z:rejective
IPPS sampling plan.

2. Conditions for non-negativity of p*(s)

First of all we note that the system of non-homogeneous linear equations
To A = 7" is consistent if and only if Rank (7,) = Rank (7,77).

In case 7 is non-singular, the system possesses a unique solution
~o
A =7 tx". (21)
27T R0 2

As a necessary and sufficient condition for non-negativity of ) we male

use of the Farkas’ Lemma which states that if

7~roy§0=>(7~r',y)§0 for any ¥

then 7, A = 7~ admits of a non-negative solution for ). Here (7*,y) denotes

~

the inner product of the vectors 7* and ¥ .
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Example 1
n n(n—1 . n n;i[ ’
N N(N-1) N(N-1)
Let 7y = : : ;
~ n{n—1 n(n-1 n
N(N-1) N(N-1) N
T o= (m...7R) where
n-1 N-n . o~ .
;o= =1,...,N:
7rl N —1 + N lp', i b b
n n(n —
N < —_— v
oW, T ¥ <0 = N N(N = )gy,<0 )
n  n(n—1) - n(n -
——4 —_ i i < 0 V
Vot N(N Zy ‘
n N-— n n(n — .
- A ov
NNV N(N )_lef’ < ovi
N - n n—
= N l Zy, < 0V
1\ -n Y

= Z yipi + Z yi'< 0

This is true for any Y. Hence by Farkas’ Lemma 7o A = 7* admits of a

lon-negative solution for A viz., A; = % pii=1,... ',';N_r
Brample 2
Letn:?andp; 20,%1);: 1. For s = {4, j}=
1
%e define po(s) = pip; L3

Where 17! is the normalization factor. Ther. we have for'i = I...,N

7r? = 2 p!(l ‘P;) ] —p:+P:Z pjé :
m‘l_PJ‘;i



1760 ADHIKARY
and 7.'?1- = L7'pip;.
n(l-p) pp - PPN

Now 7o = L' : N : so that

pipv - pepn - p(l — pw)

0¥<0 = yipi(1 —pi) +pi p_psy; S0V 1
i#
bi -
= ypi 7o Py S 0V3
i
i & L
= yipit T ‘Zp,'y{—lx_;)_ < 0 Vi
N, plui
= Zyxpx+z Zply: _—li-péo
=1 1
= (~’ )SO

This is true for any Y. Hence by Farkas’ Lemma 7o )\ = 7° admits of

non-negative solution for A viz. Ay = Lyt p ——t=1,---, N.
1
In case mo A=7* does not possess a non-negative solution for ) # @

check it by means of the Theorem of Alternatives or the Duality Theoret
which states that one of the following two assertions is true

(1) mg A = 7" has a positive solution

(i1) To¥ > 0 has a solution satisfying (77, ¥) < 0.

3. Rejective IPPS Sampling Plan

Let S and S denote respectively the set of all possible samples and thi
set of arbitrary samples. We may define a sampling plan py(s) which ”Slgs
zero probability of selection to each of the arbitrary samples belonginé to
just by restricting our plan to § — S; as follows:

—%L— for seS — 5,
pols) = 1- = p(s)
0 otherwise

where p(s) is an IPPS sampling plan.
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Obviously po(s) is no longer an IPPS design. So we are now looking for
the nearest proportional to size sampling design p*(s) introduced by Gabler
(1987) in the sense that p*(s) minimizes the directed distance D(po,p*) from
the design po(s) to p~(s) defined as -

D(Po,p') — Epa [p‘(s) _ 1] _ ¥ p.7(s) _1

Po(s) <’ pols)
subject to the constraints Z p(s) = x] = =1 = 1,...,.V where njs (as-

3312
sumed positive for each i) are the first order inclusion probabilities for the
IPPS sampling plan p(s). So the idea is as follows:

We are trying to get rid of the arbitrary samples Sy just by confining
ourselves to § — S and introducing a new design po(s). As a consequence
Pols) deviates from the original IPPS design p(s) so far as the inclusion
PrObabiiities are concerned. So we are now searching for a design p™(s) which
18 as near as possible to po(s) and at the same time achieves the same set of
first order inclusion probabilities, m;, for the original IPPS sampling plan.

) According to Gabler (1987), a solution of the above minimization problem
1S given by

p°(s) = (Z )\;) .po(s)
Provided p*(s) is non-negative for all seS — Sy especially when all Ms are
"o0-negative which hold in practice when all the units of the population are
evenly distributed over the set of arbitrary samples. This is established in
:"® Theorem 3.3 to follow and is also illustrated with a numerical example
€ last section. k

T . .
:}Ieorw. If ¢+ ¢ So, then 7, A =7 does not possess a non-negative
S0 ution for A ’

%‘ First we assume that

Rank 7o = Rank (IO E-)

<
$Q . .
that Ty A = =~ 1s consistent.
SNAT D

. 1
Consldery’= [—-—1‘,---7’—_1 ;c;a"la"',—l
~ n n n
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Then (7°,) —(7ry)—c7r 1 Zn‘-
~'2 "~’~_n| n]-;“J
= fnp; — 1 3 np;
J#
N
where p; = (X = > z;) and zls(i =1,...,N) are known size measures.
1
= cpi = 2 P
J#i
= cpi — (1-p)
1
= (c+1)pi—1§0ifc§z—n7—1 (1)
r -1 ]
o (e-1)
7r;1) 7!'%2 ﬂzN O
T m T n
Consider 7 y = | 2 z 2,N £
T T ™ En (N —1)
~1

Consider the product of the ith row vector of 7o and y.

c 1
Sr- Ly
n n =

J#i

— 1)7?
€ o _ =D
n n

(c+ 1)7f —nx?

(3

[ﬁ_(”n;l)]"? S 0ife> (n—1)

Consider the product of the jth row vector of 7y and ¥(j # i).

0
T 1
0 j
"’Tu‘”‘n—“;z Tk
k#ji
0 0
¢ £ 1
0 i 0 ij
= =Wy — = — = T + —=
n" n nZ ik
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n n n
1 0 R n7rQ : .
= LEUN s gites By (33)
n i -
Thus Ty >0 if we choose
0
n—l<%—l<c (3.4)
i
Again (77,9) < 0if ¢ < ;:—— .
S0 combining (3.1) and (3.4) we get
)
7 1
n—1<n{0—1~1<c5p——1 (3.5)
nl-j t

Thus ToY > 0 has a solution satisfying (7°,¥) < 0. Soif 7 ¢ S, the’
second asser'{ion Ts true. Hence by the Theorem of Alternatives To 5 =7
@nnot admit of a non-negative solution for ). o
Remark 3.1: The bounds of ¢ are consistent.

I n—1<';—§i—l=>7r?j<7f?vj?éi
1 n—1<pl‘—1:>np,-<1\/i
”I%?-._]<_1__1

0 P

= np;, 71'? < 71'?1-
N N
0
:npizﬂj < Z”u
i=1 1=1
= np;.n < nﬂ?
= < 70,
w y - pa—
bich is trye because =Y f{% where = 3 p(s)
83ils€S~Sp 2€5
Tl Masig¢So=>mas(1-2)< 1.

Silses

Theore\mw : If all the units are evenly distributed over

SQ(S‘SO), then Rank 7o = N.

Brogf,
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L0 .0 0

m T 7’(1)N
0
. T ™ ox

Consider 7 = | 700 0 =@ aw), say.

0 0 . .0
) TN TNz 0t TN )
We will show that ai,..., oy are linearly independent column vectors so

that the rank of the column space of 7y is N. Consider a linear combination
of ay,...,ay
Ciay + Cyo24 -+ Cnay

= Ci[mer + 7 ea - +aRen] 4 +COn[riyer + 13y e + -1y
where €} = (100 ---0), €5 =1(010---0),--,
€y =(000---1) are N linearly independent vectors

= (CyrY+ -+ Cyaldy)er+ -+ (Cimiy + -+ + Oy en. (38

If possible, let a1, 0y,--+,a y form a linearly dependent set of vectors
Then

Cra1+Craz+ -+ Cnvan =0
== At least one of C,,Cj,...,Cy is non-zero.
Suppose C) is non-zero and Cy =---=Cy =0 (37)

Now from (3.6)

Clgl+...+CN¢~1V:0:>Cl7rf+...+CN7r§’N:0

as ey, -, ey are linearly independent.

Now from (3.7) and (3.8) we have
Cl”r? = O’ R} Clﬂ-?\ll =0 (39J
From (3.9) we get Cy(x + -+ +7%,) =0

= nCizd =0
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But if all the units are evenly distributed over So(S — Sp), then 7 £ 0, i =
Lo, V.

So Cyn?=0=C, =0. (3.11)
Thus we arrive at a contradiction. So a,,---,a v are linearlv independent.

Herce rank (7o) = N.

Remark 3.2 If all the units are evenly distributed over Sp(S — Sp) then
TA = 7* has a unique solution for \ viz \ = 7o' 7* where 75! is the
inverse of mg.

Theorem 3.3 If all the units are evenly distributed over So, then o A = 7*
admits of a non-negative solution for X.
Proof, Now To A = 7* will be consistent if and only if

Rank 7o = Rank (mo7*).

Now by Theorem 3.2, if all the units are evenly distributed over 55(5—5'0)
then Rank (mo) = N.

So To A = 7* admits of a solution if and only if

Rank (7o 7*)=N

i.e. Rank (ajay---,ay7*) = N.
Buz @y, are linearly independent. So 7* can be expressed as a linear
tompound of aq,---,a N.
Let z* :Clgl'*‘""f'CNgN

Where ¢y, -+, cy are non-zero scalars.

N

Thus 7} = Y ¢;7;. (3.12)
i=1

Consider the inequality 7q ¥ >

wg 7rg2 ceeomdy Hh
0
= | T2a Ty o TN ?2 >0
0
TN TN v Ty YN
Wf;yl + Wgzyz + -+ WgNyN >0
= Tt b omum b T > 0 (313)

Ty + Y2 + 0 + 7wy > 0.
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N N N
Now (7*,¥) = Yortyi =Y wi(d o))
i=1 =1  j=1
N N
= )¢y,
1=1 =1
N N
= > (o um) (31
j=1 =1

Thus from (3.13) and (3.14) we find that the inequality ToY > ,Q does nof
have a solution satisfying (7 *,¥) < 0. Hence by the Theorem of Alternative
the first assertion is true i.e. 7o) = 7* admits of a non-negative solutior
for ).

Remark 3.3 If A = (c;c;+- - ¢y)’ be a non-negative solution for ) theniti

easy to check that
To¥ <0=(r*y) <0 for any y.
Thus Farkas’ Lemma holds here.

4. A numerical example

Suppose the population consists of N=7 villages numbered 1 to 7. Ther
are 35 possible samples, each of size n=3, out of which the 14 samples cor
stitute the set Sy of arbitrary samples:

1 23 2 4 5
1 2 4 2 5 6
1 3 6 2 6 7
1 3 7 3 4 5
1 4 6 3 5 1
1 4 7 4 6 7
2 35 5 6 7

Suppose that the following p; values are associated with the seven villages:
0.12, 0.14, 0.15, 0.15, 0.14, 0.17, 0.13.
Since the p; values satisfy the condition

Lonol <ty
n N-1"— P = n
we apply modified Midzuno - Sen (1952, 1953) scheme to get an IPPS
scheme with the revised normed size measures 6;’s given by




NEAREST PROPORTIONAL TO SIZE SAMPLING DESIGN 1767

Table 4.1

Rejective IPPS sampling plan corresponding
to Modified Midzuno - Sen Scheme

s pi(s) s p(s)
12 5 0.037025 23 7 0.0435515
12 6 0.0487859 24 6 0.0619369
12 7 0.0304937 24 7 0.0452762
13 4 0.037441 25 7 0.0451112
13 5 0.0381801 34 6 0.0589856
14 5 0.0397059 34 7 0.0449543
15 6 0.0515426 356 0.0630282
15 7 0.0321097 36 7 0.0560379
16 7 0.0447155 45 6 0.065549
23 4 0.048403 45 7 0.0477477
23 6 0.0594161

oizx_i[npi_;_ll]’izla aN'

Applying the method described in Section 3, we obtain the rejective IPPS
smpling plan p*(s) given in Table 4.1, that matches the original =; values
ad makes the probability of selecting a sample belonging to the arbitrary
set Sp of samples exactly equal to zero.

R

Remark 4.1 In the above example, all the units are evenly distributed over,
the arbitrary set Sp of samples which ensures a non-negative solution for
Aand this enables us to construct a nearest proportional to size sampling

design p*(s) retaining the same IPPS property of the original design p(s).
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