Large-amplitude solitary waves in finite temperature dusty plasma
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Large-amplitude solitary waves in dusty plasma are investigated, taking into account the dusty
particle temperature. It is shown that finite dusty temperature restricts the region for the existence

of solitary waves.

Recently a lot of interest' 8 (for more references see Ref.
8) is being shown in the study of dusty plasmas. Dusty plas-
mas occur in nature in various forms. Some experimental
studies”™!? of dusty plasmas have been made recently. Very
recently Mamun ez al.'* showed that a dusty plasma with
inertial dust fluid and Boltzmann-distributed ions admits
only negative solitary potentials associated with nonlinear
dust acoustic waves. In this Brief Communication we study
large-amplitude solitary waves in a dusty plasma, taking into
account the temperature of dust particles that may not be
negligible. We consider a two-fluid model of dusty plasmas
with Boltzmann-distributed ions and extremely massive
negatively charged inertial dusty grains. The one-
dimensional equations governing the dynamics of dusty
plasma are
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where n, is the dusty particle density normalized by the un-
perturbed dust number density ng,, u, is the dusty particle
velocity normalized by the dust acoustic speed (cy)
=(T;/my)'?, and ¢ is the electrostatic wave potential nor-
malized by T;/e;,T; being the ion temperature. The time and
length are normalized by the dust plasma period,
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Z, being the dust charge, and the Debye length
A= (T /AT Zno.e?)"?,

respectively.
Also, 0=T,/T;, T, being the dust particle temperature.
We also take the equation of state as

p=n'py. ’ “)

To find the Sagdeev potential we make all the dependent
variables depend on a single variable £=x~ V¢, V being the
soliton velocity, normalized by ¢;. The equations (1)-(3)
written in terms of £ yield the following set of ordinary dif-
ferential equations:
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where we have used the relation (4) and taken pg=1. From
(5) we obtain

ng=VI(V—uy,)), (8)
(6) gives

¢=—vud+u§/2+y%"l(vfu)y l—y—’_"—l, ©)
for y#1 and

b= —Vuy+ (u3/2)+ In[V/(V—u,)], (10)
for y=1.

In general, (9) is an implicit equation for u#, in terms of
¢. However for y=3 the equation can be solved, and we
obtain

u,=V—(INV2)[V?+2¢+30

+Vw?+2¢+30) - 120V7]"2 (11)
The Sagdeev’s pseudopotential is defined by
d* ]
_(2’2 =— _"b (12)
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It is to be noted that to derive (8)~(11) we have used the
following boundary conditions: u,;—0, n;—1, ¢—0 when
&—sc0, Here i can be obtained from the set of Egs. (5)—(7)
and is given by

W P)=1+0c+Vu—e ¢—o[VI(V-uy)], (13)

where we have used the boundary conditions
$—0, ¥(H)—0. For the existence of soliton solutions the
following conditions must be satisfied:

d;lg <0; ' (14)
this gives

[1/(V—yo)—1<0] ' (15)
and

(b)) =0 (16)
and
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FIG. 1. Plot of the pseudepotentlal V(¢) against ¢ for various values of o
viz. ¢=0.01, 0.02, and.0.03; The sohd line is for 0=0.01,, the mlddle
broken line is for o=0.02, and the top broken line'is for o= 0 03."Here
Vis 1.04 and y=3 for all the cases.

Yy ,
Ers >0(<0), (17
o=o,
for a compressive (rarefactive) soliton, where ¢m is the am-
plitude of the.soliton. In Fig. 1 the pseudopotent1a1 V( qS)
=y is plotted” against ¢ for various values of o, viz; o
=0.01, 0.02, and 0. 03 when v, the soliton velocny, is taken
tobe 1.04. 4 NP L EED
It can be seen’ that for a'>0 02 the sohton solutxon does
not exist because though V(&) vamshes for a’positive value
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of ¢ (for >0.02) it remains positive between’¢p=0-and

¢= . where V(¢.)=0, ¢.#0. The dependence of soliton
amplitude ¢,,"on o is shown in Fig. 2, where &, is plotted
against o for V=1.1.. It is seen that the amplitude decreases
with the increase of o

Finally, we give the. small-amplitude  expansion ~of
V(¢) and the correspondlng analytlcal form of the soliton
solution.

If one neglects term of O(¢°), then V() is found to be

V($)=A(4°/2) = Ay($°16) ~ A5(7124), (18)
where
A=V = yo)—1, (19)
A =[(3V2+ ya)/ (V2= yo)*]—~1, (20)
aViy—1) 3Vi+aoy(y—2)
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The soliton solution of the differential equation (12) is given
by
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where: al—A 12, ay=A,/6, az=A3/24, and d=2/—A;. It
can be noted from the condition for exxstence of the soliton
that A 1s negative throughout the solution reglon Therefore
A < 0 glves compressive and A,>0 glves rarefactive soli-
tary waves However this holds only for small-amplitude
sohtary waves

TO concluue, WC HAVE SLUUWIL Uldl LT uust LClulJL,lal.ure
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f‘restrlcts the region of existence of solutions for solitary wave
“solutions. For example, even for =0.0001, soliton solu-

tions would not exist for V=1.5, whereas for =0 soliton
solutlons exist for V<1.58. Also, we found that compressive
sohton solutions do not exist for any value of o.
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