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The exact multidimensional Sagdeev potential is derived in a multicomponent plasma consisting of
negative ions wherein a fraction of electrons is trapped in the potential well developed in the plasma,
More precisely, the Sagdeev potential equation revisits the results stemming from the Kadomtaev-
Petviashvili (K-P) equation deduceable by applying the reductive perturbation technique in
plasma-acoustic wave dynamics. In the study we show that the multidimensional Sagdeey potential
derived here yields the formation and propagation of solitons, as well as double layers in plasma, by
using a new approach known as the tanh-method to solve out the soliton phenomena. It is seen that
different ordering in ¢, the electrical potential, yields different solitary wave solutions that agree

with earlier observations.

LINTRODUCTION

The theoretical observations on soliton dynamics derived
trragh the augmentation of the Korteweg-deVries (K-dV)
Yition was probably first achieved by using the reductive
ktarbation technique in fluid dynamics. Later, in the same
kude, it was extended to plasma dynamics1 and took its
tzee with the other approaches for studying the nonlinear
e phenomena such as through the Sagdeev potential
éution,> Nonlinear Schrodinger (NLS) equation, sine-
Gudon equation,® and Burger equation."' However, a new
Milstone was reached when the study was extended to a
miicomponent plasma, especially plasma with negative
s, and became a boon to bridging the theoretical and ex-
Mirental observations in plasmas (see Ref. 5 and refer-
"es therein). The study of ion-acoustic soliton dynamics in
Nlicomponent plasma with negative ions by Das® and the
%k by Das and Tagare,” who extended the earlier study to
¥reralized multicomponent plasmas, have had considerable
Mpct in laboratory plasmas.* However, these observations
bayg dealt mainly with the unidirectional soliton phenomena,
" such a study on the soliton dynamics has been ex-
“Med to space plasmas through the derivation of the

“mtsev-Petviashvili (K—P) equation,® classified as

img(l) dp P
Vg ) T T }
a2¢(1) (924,(1)
*D[7772*+ ‘ng_}=0, (1)

"re (1 is the first order perturbed potential and F( V)
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recognizes the contribution of the nonlincar cffect ansang
from the plasma configuration. Later, the configuration was
extended to a plasma with some clectrons trapped i the
potential well. However, the general form of plasma de-
scribes the similar soliton phenomena from the solution of
the Sagdeev potential equation,” garnering the formation and
propagation of the solitons and double layers tsee Refs. 8- 10
and also the references therein). But, previously. the Sagdeey
potential was derived mostly for the unidircctional soliton
propagation in the plasma. Our present aim is to dernive a
multimensional Sagdecv potential equation in the form ol an
energy integral equation analogous to the nature of umdiec-
tional particle motion obscrved first by Davis of al ' while
studying the nonlincar phenomena in plasmas. In the course
of this study, the nonlincar wave cquation has been derived,
under certain conditions, in a space coordinate system. Af-
terwards, the simple wave solution technique’™ M ic modi-
fied to the so-called tanh-method."™'" which is applicd to
recover the earlier results on unidirectional soliton propag-
tion, as well as to obtain some new findings.

Il. BASIC EQUATIONS AND FORMULATION
OF THE SAGDEEV POTENTIAL EQUATION

To study the nonlinear ion-acoustic wave phenomena,
we have considered an unmagnetized plasma condcting of
negative ions. The electrons are of a frec nature. but a frac-
tion of them moves into the potential well, loding encrgy
continuously, and as a result of which, clectrons bounce bach
and forth within the potential well and ultimately are trapped
therein. The trapped electrons are found to change the fea-
tures of plasma-acoustic waves experimentally.’™ " 4 fact
supported by many theoretical observations.” *' ¢ well
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The distribution of the trapped electrons, following
Schamel,m‘20 is given by the form of the electron density,
which is as follows:

1
n.()=exp(p)erfe(\/¢) + N [exp(B)erf] B[],

where
erf(x)= i fxe_’zdt,
Jmr Jo
and
erfc(x)=1—erf(x); 2)

where f indicates the temperature ratio between free and
trapped electrons, respectively. Expanding Eq. (2) as a Tay-
lor series in ¢, we get the electron density n,(¢) as a linear
combination of free and trapped electron effects, as shown
below,

4 1 8 1
()

where the potential ¢ and density »,(¢) are normalized to
kT /e (defined later on) and unperturbed density ng, re-
spectively. Other constants are defined as

2
bIZI——B—v b2:1 B 5
Vr Vm
correspond to the plasmas having the Maxwellian and flat
topped distribution, respectively. In the isothermal plasma
B=1, implying ;=0 and b,=0, while for the nonisother-
mal plasma we have the following relations: viz., 0<<b,
<17 and 0<b,<1/{mr.
The basic equations governing the plasma, under the
fluid descriptions, include the equation of continuity and the

equation of motion, in the following nondimensional
form:?>%

where B=1,0

Meyy =0 4
ot '(navoz)_ s ( )
ov,

7+(VQ'V)VQ+QaMaV¢:0' (5)

These equations are closed and linked to the charged
particles through the Poisson equation, given as

V2¢=ne—§ Qe ©6)

where a=i,j represent, respectively, positive and negative
ions with w,=m;/m,. v, is the normalized velocity of the
a particle normalized to the ion-acoustic speed c;
= (kT 5;/m)', and n,, is the density with g,= * 1, respec-
tively, for =1 and j. Space and time are normalized to the
Debye length, Ap= (kT /4mn4e?)"? and ion plasma fre-
quency, {;=(4mnge?/m;)'?, respectively, where T
=TT /n Ty +tmT,), T,,T, being the temperatures of the
nonidentical electrons whose initial densities are ny,n,, 1€-
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spectively, satisfying n,+n.= 1. To derive the multidimen.
sional Sagdeev potential wave equation, we introduce the
usual linear transformation as

= 7[(1,”1,”)()5,}’,2)_‘/1‘], (7)

where (I,m,n) is the direction cosine of the plasma-acousti
wave propagation. Now, using Eq. (7) along with the appro-
priate boundary conditions: na—>nflo), vff)—+0, and ¢—1
Eq. (4) reduces to

vy d + d (NaVg)+ d (navq)=0
- N -5 R 5 nava = ?
dn dﬂ(nava) md77 RaUg nd77 (

§

from which the density n,, is obtained as follows:

VnEIO)

:-—————-. (9'
V-L-v,

Ny

Again from Eq. (5), the following set of differential
equations are obtained:

dv ax l dv ax + dv ax + dv ax
-V a7 + UMW MU 4y an Vo
d¢
tqaktal E=O, (10
dv oy dv 4y dv oy dv 4,
-V 4 v, an +m ayﬁ HU o, a7
d¢
T 11)
Hdattam G 0, (11
dv.,, duaz+ dv,, dv,,
-V a7 +1v 4, p mv gy nVaz =
deo R
+Gattan 7 =0. (121

From Eq. (10) and Eq. (12), we have, after some algebra
(V=L-v,)2=V?=2q,m,L*¢, (13)

where L=(I,m,n).
Again from Eq. (13),

L-v,=V—\V?=2q,u,L*¢. (14)

Using the transformation Eq. (7), the Poisson equation
(6) reduces to

d*¢ 1 dy ,
2 - _ = 15)
Y an LZ (ne % qana) d¢ > (

where
1 1
b=-1 f n($)dp+ 1> f 2 ganadd

=¢e+§ Yol D), (16}
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1 1
l//,(qS):——[ (1—erf\p)— 1+ —=eP?
7| e?(1-erfVe) PN

Xerf(\Bd)+ \/_cj)'/z(,B 1)} (17)

Expanding ¢,(¢) in powers of ¢, we have

1 #* 8b, 1
P O SRR L. S My,
(18)
wd also
V SOV VZ=2L% )
AL $)=13 p (19)

Expanding, we get

(0) L2 2 242
Logopqd
Elrla g L2 Maqa¢+_TV2__
L4 3#a¢3
Ty (20)

Now, in order to relate to the earlier observations, we

;ssume V=IN+U, where U is small compared to \, and we
e

L 1(2(])

W—(l)\_*_ U)Z:IZ)\Z _K (21)

Now, assuming U<\ and the quasineutrality condition,
e coefficient of % derives the phase velocity of the
tsma-acoustic wave as

M= pn'®, (22)

Wich is exactly the same as that derived by Das and Sen,?
shile studying the soliton dynamics through the augmenta-

IOI}I) of the K-P equation by using the reductive perturbation
fec] quC

I\QW balancing the coefficient of ¢? from the Sagdeev
Potentia] equation, one gets the U dependent part as

—Ea#aqinaU = U
)3 Y- TE

) A
with B= 5 (23)

Similarly, the coefficients of ¢° give

IS 12623

aa

612 INTE

A A [23(gouin?)
‘W with A—_—E('*)\T*— 1]. (24)

So whatever the power in ¢ is taken to be, the term
ould be simplified to take into account the effect of nonlin-
iy in g manner similar to the earlier derivation of the K—P
ation. ”2-23 [t can be shown, up to the third order, that it is
Me a5 what was exactly derived earlier and could be con-
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tinued to any number of terms. Now the potential equation
could be reduceable to the followmg form (assummg y'to be

1):

1[dp\? 1 : ,
2 (_(ﬁ) =5 PlAg+A 1+ A P+ A3+ ],

dn
(25)
where
DI*+UI-D 8
Ag=——p@ > A= 5
o LA A_s.'c.’,
2773 BIP T35 BIR

etc. Here D=B=\/2, C=\(1-B)/\/m, and C'=2x(1
~ 3.

Here we have considered the efféct of different ordering
in ¢. While doing so, we neglect other small effects, like
Landau damping, viscosity, colhslon etc. Wthh might also
play important roles, since our mterest was to see only the
ordering effect in ¢ in isolation, We may’ consider the same
elsewhere to show the totality with other possible interac-
tions in plasma-acoustic waves. HoWever,“ our present aim is
to derive soliton phenomena  from the multidimensional
Sagdeev potential wave equation, employing a new approach
known as the tanh-method, and th_ence"highlight the ‘earlier
results along with the present new. findings; as well.

Ill. SOLUTION OF THE SAGDEEV POTENTIAL
EQUATION

Now we will proceed step by step to solve’the Sagdeev
equation with approximated ¢ and, -accordingly, take the
number of the nonlinear terms to show the features of:soli-
tons. First, we assume | | < 1' and neglect the square and the
higher order terms from the nonlinear coefficient and the
Sagdeev potential equation [using (18) and (20)] is written as

2¢ '
e L P 26)

where A;= VLY 1-2n,q%u,/V?] and A,=4b,/3L%

subjected to the boundary condition given as ¢(0)= o' (O)
=0, ¥"<0, and Y(pg)=0 for arbltranly chosen ‘bo along
with () <0 for 0<|d|<| |, Where | ¢bg| is the ampliZ
tude of the soliton profile. To find the soliton solution from
Eqg. (26), we use a hyperbolic transformation; z= tanh(n) and
W(z)= ¢(7n). Equation (26) then transforms as "

d*w aw ,
20t .2 T a2 LAy S W =),
Y (1—-2z%) 77 2y z(1=2%) 0 A W+A,W=0

27)
It is obvious that Eq. (27) is 'a Fuchsian- like nonlinear

ordinary differential equation and thus could bc assumed to
have a Frobenius series solution; as follows PREANC
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W(z)=rz0 a,2?*". (28)

Here p determines the number and nature of the soluti(?n.
But following Das et al. 5 the series is truncated to a finite
one, viz., W(z)=Z"_a,z". Thereafter, if one substitutes the
series in Eq. (27), the leading order of nonlinear terms bal-
ancing the order of the differential equation yields N=4, i.e.,
the series W(z) should have five terms. Again, the nature of
the differential equation enables one to take the series with
even order terms, only whence W(z) is found to be of the
form

W(z)=ag—2a,22+asz*, (29)

where the relations among ag, d,, and a4 are used to ex-
press all the parameters in terms of . Consider the recur-
rence relation,

4y2522—1)— A, +Aa)}(1-28)=0. (30)

From this recurrence relation, the unknowns ag and 7y
are determined as ag=(5A/4A,)? and y=(A/16)"2.
Correspondingly, the solution is obtained as

5A;\? 5
(/):(4/\;) scch“(g), with 8= \é, 31)

which yields a compressive solitary wave feature derived
from the Sagdeev potential wave equation under the condi-
tion | < 1. From the Sagdeev potential equation, it is clear
that the nonisothermality is introduced through the term A,,
and the soliton solution for an isothermal plasma is not pos-
sible directly from the solution, as the case A,— 0 breaks the
solution. The case for an isothermal plasma has to be derived
fr‘om the basic equations governing the plasma along with
different stretching co-ordinates and the perturbation
scheme, a_s well. So the lowest order in ¢ evaluates only the
compressive soliton profile. If one includes the next higher
order term, the Sagdeev potential equation reduces to

5 (Iz(f) d
2 = A2 . dY
Y (177’5_ A]d> A2(}') +A3¢ —*E (32)

After integrating Eq. (32), we get

I( dg\?

—_— —_— + =
5 \yu,”’ Wl p)=0, (33)
where g d)=—(A,12)¢* +(2A,/5) ¢

- s - 3
situting & =2, Eq. (33) transforms as (43/3)¢°. Sub-

(1"’)2 A'l

Y2
.'yldr]

To get the double | | o
. ¢ layer solutig i
pntcm?al function yAd) must satisfyn;h‘:iorlrllsdl’ﬁed Sagdeaequ
conditions: HPYy=dd/dn=0 4 d=0 ( vcvimg ?;und
—V land at d=¢ )
m

and dld =0 at h=g (
.. b N - and =
Sition [ g AP=d,) and also the con-

4

= 2(l) -
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From the above two relations, Aj,A; arZe evaluated 5
A,=3A3D,, A;=2A,®2, and 25AA3=6A). Insetting s
values of A;,A,, Eq. (34) could be modified as

® A3 n
YE:k(D(q)m_q)); with k=i(—6’) . (%

Now we again apply the tanh-method to Eq. (35), whig
now reduces to

2 W 2
y(l—z2 )—E—k<1)mW+kW =0. {3
The process of the tanh-method, as described earlir, e
rives N=1, and we get the series as
W(z)=ag+a;z. ki

Using Eq. (36) we get from Eq. (37) the following r-

currerice relations:
- ya1+ka%= —kaP,,+2kaga,=— 'y——kCDmaO+ka§=0,
(8

from which the unknowns are determined as a; =3,
=1, and y=k®,,. Correspondingly, the soliton o
tion is found to be

X
+ jhd
1x tanh( 5)

with y=Ix+my+nz—Vt and S=(kd,) "
()

2

1
Cb(ﬂ)zz‘bm

]

which represents the profile of double layers in the plasm
acoustic wave.
To study further the solitary wave solution from B
(35), we write Eq.(34),
d*® 6 4
4’)’2d—777=A1(I)“"5‘A2q)2+§A3(D3. (0

Using a linear transformation of the form ®=pf*
with u=1; v=75(A,/A3), Eq. (40) reduces to the fom

, d*F 4
4‘)/ —2——MF_§

dny
where the relations M=A,— 24,v+4A450> and 4
= 55(A %/A%) are used. Now, employing the tanh-method
viz., z=tanh(z), W(z)=F(7), Eq. (41) reduces ©*
Fuchsian-like nonlinear ordinary differential equation &

A;F?=0, 4l

2

aw aw 4
4Y2 (1~ 222 =~ 892 (1=2%)z ——— MW— 3 A; W=
dZ dz 3 (47)

Now the Frobenius series solution method, as desciite
earlier, finds the number of the terms in the series, N equi
1, failing to evaluate the proper soliton solution as such. I.“
this case, an infinite series of the form F (z)=29;=oﬂr~’r §
desirable. This series reduces, after some algebra, to the o
lowing:

F(Z)=k(l _Z2)1/2’ (43)

k and y can be obtained from the the recurrence relatio?



W21 =M= £ Ak2(1-22)=0, (44

o fnally, the soliton solution is found to be

3A2(3M“2 Y\ 12 'hg—’\/f i’
q;-S-A—} 2A_3 sech—g ,  wit N

i

0(5)= % ? sechz(% 77), (47)
iich represents the rarefactive soliton because of the as-
umption Ay <€A 3. The case A3 =0 leads to the explosion or
ulipse of the solitary waves depending on the conservation
ke energy therein. Until now it has been shown that the
mlifimensional Sagdeev potential yields, under drfferent
fioximations, features of soliton phenomena the same as
boe derived earlier”? by the augmentation of the K- P
fuion. But since the Sagdeev potential derived here is
e, we can expand it to any order in ¢. The wave equatron
frthe next order in ¢ can be written as

d'¢ .
72F=A1¢“A2¢3/2+A3¢2 4¢5/2——3T$

'('48)‘:

Now, the integration of Eq. (48) with a transformatron
=0, a5 well as the boundary conditions d®/d 17~—>O o}
“ta 70, leads to .

LIRS 2 1 2 *
qu =54, ®? -——A2<I> +3 Ayd ——A4<I>5 (49)
;hlch s again simplified by differentiating it with respect to
& R

. d’d 6 4 , 10 e
72a,2—A(I) 5 A PP+ T A0 - 4,0% (5o)
To yse the tanh-method, we, as before, transform Eq'
Wo astandard form for which we use the linear transfor-
auonq)“,u,F + v with u=1 and v=£(A3/A,). Equatlon

Y then reduces to

10
T \—PF—!— = A F*=0,

7 (51)

*Herem the following relations are derived: A,
‘%/A) Ay=2(AYAD), and P=A,—2A,v+4450°
4. Now, to use the tanh-method, we take the trans-
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ﬁomvshrch we get k and y as k=\—3M/4A;, y= \/_/2

- @s) |
- and, consequently, the Frobenius series - solutron method

However, Eq. (36) derives the solution as
24 (443 240" (4 (]
N54, (25 A2734,) oMT7 (“6)

The solution yields the possible coexistence of a shock-
we structure of the Sagdeev potential equation and when';
) 4A,3/A 1)<<0, otherwise, the case 25(A2/A )
-“3/A )=0 derives the solrton phenomena. As a degen- Equatron (54) determines the unknowns k and ag. Fmally,
ake case, we can derive two limiting cases: viz., A;<€Az

ai4,>A;. The former case reads the soliton profile given -
- 7P 1/3"
Sy el D n28 sy

: F(n) —(4A4) seph (77), ‘

and reduces in the orlglnal coordlnates as

ERS B 2725

- formation W(z)=F(7) with z=tanh(7) and Eq. (51) is then
~ reduced to the Fuchsian-like ordmary differential equation as
follows

2

4w aw " .10
4172(1—#) —————8y22(1 22) -——PW+——A w*=0,

7
= v a(52)

similar to the earlier procedure, derives the solutron as o

W)=k(1-2)" 1r(53)
o I e

Substituting Eq. (53) in Eq (52) we. get

2 (52 -3)~P+ ‘°A4k3(1 z ) 0.5 (54)

- r\,~ _[.

the solution of Eq. (51) i 1s grven by el 5o

Pl

' TR
7 A3 7 P) SN
#xy.20= 304, \44, S
Ix+my+nz—Vr\
><sech2’3(———-y———,— ;
T da-
j where the wrdth
- op\-i2 .
5a—( 16) i._ ‘ o -

Equatlon (48) and Eq (49) for some other modes could
be studled by transformmg the equatrons as

'(I)’ 2 R bl T e
&) —a1¢2<¢0 oy 67

$ 5 ...‘. L_,H

where al—A4/7 o= (A, JA3); aiid Ay= ,3058(A2/A4) and
A[A,=75A,A5 are used.: Equation:(57) can be solved for
the soliton profile, and the solution: ¢s(7): can:be obtained
only as an 1mp11c1t function of 17 in the followmg way: *

Y

h4 _
st 9 e [( N E]

i.z:l\/n_arfﬁg(ﬂ_ 70) =~ C1

, (58)

where* C;= (o /(o= Vi) 2= sech ' (V,/ o) %, and

¢,;-is the optimal amplitude of the acoustic mode. Note that
(1) occurs on both left and right hand sides of Eq. (58)
The ‘solution [Eq. (58)] gives a profile of a spiky solitary
wave defined in the region 0<<¢( ,7)<\/¢Tor While for the
other region defined as ¢<<0, the soliton solution can bx
obtained in a similar manner, and is given by
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ARWT,)

L. :H‘; 1 ’:“”", | n QSO we
=3 2 h4 sy
de(m) =95 coseen do— bp(7)

vy

L ,,,."i'—’-\/alséé(n— 770)_C2 . (59)

where . cz—(¢0/(¢0 Jé ))Ilz—cosech_l(\/ o),
‘and this is to be recognized as the exploswe solitary wave in
the plasma—acoustrc dynamics. Again, from the same equa-

j]ayer solution is of the form '
=y tanh?(c7), e 8 (60)

wh1ch when expressed in the orrgmal coordinate system,
:looks like 7 w

b= qsotanh“ H 1¢0¢"2(ﬁ'>5
x(F \/¢D(77)?7] , (61)

Thus one can’ proceed taking the nonllnear term to any
order in ¢, and could derive drfferent natures of the solitary
waves under different approxrmatlons Here it may be men-
tioned that during the ordering in ¢ espemally in the case of
higher order nonhnearlty, some other effects such as Landau
damping, the collisional effect, and v1scos1ty may play vital
-roles as well; but since we are presently interested in finding
-only the ordermg effect of ¢ in isolation on the existence and
-the behaviors- of the sohtary acoustlc waves in the plasma
munder cons1derat10n ‘we did not take 1nto account other ef-
fects, as mentioned above. e

' IV CONCLUSION

The exact form of the Sagdeev pseudopotential is de-
‘rlved for a multlcomponent plasma’ cons1stmg of negative
ions, wherein a fraction of electrons is trapped in the poten-
tial well. A simplified wave solutlon technrque known as the
tanh- method, is apphed to find the formation and character-
Jstic behav10r of the soliton dynamlcs in plasma. It is found
‘that the rarefactive solitons derived from the pseudopotential
are the same as:those obtained earlier by the argumentation
of the K~P equation using the reductive: ‘perturbation tech-
nique. The tanh-method transforms the equation of motion
“‘obtained for ¢, thé electric potent1a1 to"a:Fuchsian-like or-
' dlnary differential equation, and, ﬁnally, the Frobenius series
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solution is employed to find the different soliton solution
like compressive and rarefactive solitary waves and doubk
layers, etc.

In the case of higher order nonlinearity, both explosix
solitary waves, where the energy in the soliton is conserve,
and the collapse of the soliton, where the energy is not cap.
served in the wave profile, were found. Moreover, as te
exact Sagdeev’s potential is obtained, one can expand ity
to any order in ¢. To obtain solitary waves with arbitray
amplitude, without any approximations, one has to have r-
course to numerical analysis to solve Eq. (15), taking im
account Eq. (17) and Eq. (19).
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It has become common to formulate theories and computatrons of magnetohydrodynamic turbulentt

effects in rectangular periodic boundary conditions, proceeding by analogy with what is seen asa

useful framework for Navier—Stokes fluid turbulence. It is shown here that because of certain’”

features of Maxwell’s equations for electrodynamlcs it is inconsistent to invoke three-dimensional,

rectangular, periodic boundary conditions and symmetry at the same time that the drsplacement E

current is neglected. The difficulty does not arise in the two-dimensional case. In three dimensions,’
the difficulty can be remedied by a reformulation in'cylindrical geometry, 1mpos1ng symmetry in the

azimuthal and axial directions, but not in. the radial one; a geometry that is closer to laboratory ‘
possibilities than the wholly three-dimensional periodic assumption. The reformulation’ seems:

particularly necessary in cases with a net flux of magnetic field and/or electric currents through the
system. These cases no longer seem discontinuous from those without net magnetic fluxes or
currents. The price paid is a loss of some poss1b111t1es for dimensional analysis and 1dentrﬁcatron of

|INTRODUCTION

This article offers a reconsideration of the mathematical
fmework in which magnetohydrodynamic (MHD) turbus
ke is approached. Heretofore, the most widely-used set-
ing has been the now classical “homogeneous turbulence”’
tmulation of Kolmogorov,!™ Batchelor,” and others>® for
Ywier-Stokes (NS) fluids. It has seemed partlcularly conve-
tiet to assume rectangular periodic boundary cond1t10ns in
face, wherein the system is imagined as repeating 1tself an
fnite number of times in all directions.”7!? .For'some the-
wtical purposes, the volume is then allowed to' become 1n-
hite, for others (and for computational ones) it remains
‘lrge,” but finite. This has several advantages. The Fourier
twsformation immediately converts spatial derivatives into
Itultiplications by wave number components.and also pro-
iides a simple way of classifying excitations (*‘eddies’’) by
*oe number in order of their spatial scales. Dimensional
Wyses (in the case of isotropy) become transparent Fi-
;3“}, recurrently troubling problems'* associated with en-
ing realistic mechanical boundary conditions at material
d walls are apparently avoided.

ltwill be argued here that certain features of electromag-
¢ theory,'® ones which have no analogs for ‘NS. fluids,
"der spatially periodic boundary conditions for some MHD
“&s less than satisfactory, and can lead to basic inconsis-
e, There seems to be no problem assoc1ated with what
]as tome to be called two-dimensional (2D) MHD turbu:
e theory.!5~22 There also seems to be no problem W1th
pPTO?lchmg three-dimensional (3D) MHD turbulence by in-
Okmg spatial periodicity in two out of three drmens1ons in

Preseny address: Hydrodynamic Methods Group (X-HM), Apphed Theo-
glcal and Computational Physics Division, MS D4l3 Los® Alamos Na-
"l Laboratory, Los Alamos, New Mexico 87545.

similarity variables. © 1999 Amertcan Instztute of Physics. [$1070-664X(99)02907-9]

cyhndrrcal geometry. The dlfﬁculty arises in attemptmg pe-

-riodic symmetry.on-all three (Cartes1an) reetangular spatial

‘coordinates. It becomes conspicuous when a mean dc mag-

‘netic field is pre‘sent 23 The difficulties may be resolved in a

natural way by considering the case of an infinite straight
cylrnder with matenal walls at a finite radius, .a situation
closer by far'to situations’ in ‘which MHD turbulence .may

-appear in the laboratory; the resolution may seem to be more

than a fortunate coincidence.

In Sec I, an example 1ntroduces the essential difficulties
’and shows Why the complete neglect of the displacement
‘current leads to difficulties with 3D MHD turbulence when
subJected to-a 3D periodic symmetry ‘requirement.In Sec.
101, it-is shown why ‘the " drfﬁculty is' unimportant for 2D
MHD. In Sec IV, the:3D case is’ agaln considered and it is

,:shown how to by-pass the drfﬁculty by’ going to” cyhndrrcal
geometry "and’ giving up any periodicity in the radial direc-

tion. Sectron V. summarizes the results and speculates ona
possrble generahzatron of MHD that includes the displace-

’ment current.
The followmg assumptions will be’ made throughout: (1)

When the full set of Maxwell’s equatrons can be shown to

,d1sagree s1gn1ﬁcantly wrth an approxrmatlon to ‘them, they
must _take - precedence over the approximation. (2) In any
: "electromagnetlc appllcatron an “1nﬁmte” system must be at
least imaginable and Vrsuahzable as a limit of some bounded
_System,.as in the useful elementary ﬁctrons of an

e

infinite
parallel plate capacrtor or an’ 1nﬁn1tely -long, current-
carryrng, stra1ght wire.) (3) The valrdrty ‘will be taken for
granted- of several. other standard approxrmatlons of incom-
pressrble MHD. wh1ch are not berng scrutinized here, such as
local charge neutrahty, uniform. mass. density and transport
coefficients, nonrelativistic mechanical responses, Ohm’s
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