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1 Introduction

When two units (or systems) operate in a common environment they are often 
exposed to “identical” stress and strain. This may result in some pattern of 
dependence between them. The life times of the units are said to be positively 
dependent if long life of one unit is associated with long life of the other.

To formalize our discussion, we let X  and Y  be random variables denoting the 
lifelengths of two (possibly dependent) aging systems. Let H(x, y) be the joint 
distribution function of X  and Y  and H(x, y) =  P {X  > x, Y  >  y}. The marginal 
distribution function of X  (resp. y) is denoted by F(x)_(resp. G(y)) and the 
corresponding marginal survival function is defined as F(x) =  1 — F(x) (resp. 
G(y) =  1 — G(y)). The survival function, Hy( ), of the conditional distribution of 
X  given Y > y  is defined by

H,(x) =  H(x, y)/G(y) =  P {X  > x \Y  > y} . (1.1)
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In a landm ark paper, Lehmann (1966) gave several nonparametric notions of 
positive dependence between random variables in terms of their joint and mar­
ginal distributions. The most widely studied of them is the notion of positive 
quadrant dependence (PQD) which is defined below.

Definition 1.1: X  and Y are PQ D  if the following equivalent conditions hold

i) H {x,y)> F {x)G {y)V {x,y)

ii) H{x, y) > F(x)G(y) V(x, y) 

and

iii) Hy(x) > F(x) Vx and V_y , (1.2)

where Hy(-) is as in (1.1).
Let X y be a random variable associated with Hy( ) and let “ < ” denote the 

univariate stochastic ordering. By (1.2), X  and Y  are PQ D  if and only if

Xy >  X  Vy >  0 .

The concept of PQ D is symmetric in X and Y. In many practical situations 
asymmetric type of dependence is observed. In such cases the dependence of y 
on X  may not be the same as that of X  on Y. To express skewed dependence, 
Esary and Proschan (1972) introduced the concept of right tail increasing (RTI) 
which is defined below.

Definition 1.2: Y  is RTI in X  if

P{ Y  > y \X  > x} is increasing in x for all y > 0 , 

or equivalently if

Hy(x)/F(x) is increasing in x for all y  >  0 . (1.3)

By comparing (1.2) and (1.3) we see that if Y  is RTI in X , then X  and Y  are 
PQ D  and the converse is not necessarily true. This means that the notion of RTI 
is stronger than the notion of PQD. However, unlike the notion of PQD, the 
notion of RTI is not symmetric in X  and Y.



In the case when the appropriate densities exist, (1.3) is equivalent to 

rt (x| Y > y) ^  r t (x) Vx and Vy >  0 ,

where rj(x | Y > y) is the conditional hazard rate of X  given Y > y  and r t (x) is 
the hazard rate of the marginal distribution of X.

The Marshall-Olkin bivariate exponential (BVE) distribution is given by

H(x, y) = exp{ — AjX — A2y — 0 max(x, y)}, x, y  >  0 , (1.4)

where A^ A2 and 0 are nonnegative parameters. This distribution is not abso­
lutely continuous and has a singular part. It can be shown that if (X, Y) has the 
BVE distribution of (1.4), then Y  is RTI in X.

The absolutely continuous BVE (ACBVE) of Block and Basu (1974) is given
by

_ Jl + ff
H(x, y) =  —j — exp{ —AjX — A2y -  0 max(x, y)}

6
-  -  exp {—(A +  0) ■ max(x, y)}, x, y  ^  0 , (1.5)

where Aj, A2 and 0 are nonnegative parameters and A =  A, 4- A2. Assume now 
(A-, K) has the ACBVE of (1.5). It can be shown that

ri(x| Y >  y) =

( t — . ^  f o r x < y
\A, At(A +  0) /

which is nonincreasing in y  for each x. Hence Y  is RTI in X.
In this paper we consider the problem of testing the null hypothesis of inde­

pendence against the alternative of Y  is RTI in X . In Section 2 we propose two 
test statistics for this problem and derive their asymptotic null distributions. In 
Section 3 we compare our proposed tests to the tests of Kendall and Spearman 
in terms of asymptotic relative efficiency. We also conducted a M onte Carlo 
power comparison of our tests and Spearman’s test. The asymptotic theory of 
the tests of Section 2 is proved in Section 4.



2 The Proposed Tests

Consider the problem of testing the null hypothesis

H0 : X  and Y  are independent , (2.1)

against the alternative

H t : F  is RTI in X  . (2.2)

As seen in Section 1, the above problem is equivalent to the problem of testing 
the null hypothesis

t f . : H , ( - ) - F ( - ) V y * 0  (2.3)

against

H[ : Hy(x)/F(x) is increasing in x for each y >  0 . (2.4)

By (1.3), Hx, is also equivalent to

Y > y )<  r t(x) for all x, y  ^  0  . (2.5)

Assume, for the moment that y  >  0 is fixed. The problem of testing 

H0y .H y( )  = F { )  (2.6)

against

f f i . , : r 1( - | y > y ) £ r 1(-) (2-7)

is like the two-sample problem of testing the equality of two hazard rates (or two 
D F ’s) against ordered alternatives. Tests for the latter two-sample problem have 
been propsed by Kochar (1979,1981), Joe and Proschan (1984) and Aly (1988), 
among others. Loosely speaking, the problem of testing H0 of (2.1) (or (2.3)) 
against H l of (2.2) (equivalently against Hi of (2.4) or H f of (2.5)) is like “testing 
H „ of (2.6) against H l y of (2.7)” for each y. This remark motivated us to propose



tests for H0 against H t which are based on a family of two-sample tests each 
corresponging to a fixed value y.

As seen in Joe and Proschan (1984) and Aly (1988) H j(H i or H f)  holds if and 
only if

p, y) :*  p + p H y f- 'i t)  -  HyF ' 1(p + pi) >  0 , (2.8)

for all y  >  0 ,0  <, t, p < 1 with strict inequality for some (t, p, y), where p =  1 — p. 
Define J (t, p, s) =  (1 — p, G~l (s)) and note that (2.8) is equivalent to

A(t, p ,s ) > 0  for all 0 <  t, p, s ^  1

with strict inequality for some (t, p, s).
By (1.1), it can be shown that

A(t, p, s) =  H (F 'H p  +  pt), G 'Hs)) -  pH(F~l (t), G_1(s)) -  ps, 0 £  t, p, s £  1 .
(2.9)

Define

<5(s) =  j  j  A{t, p, s)dtdp 
0 0

"  ~*2 ~  I §  +  ln(1 ~  U)} H (F ’1(M)’ G~1{s))du • (110)

Note that d(s) =  0 under H„ and 5(s) S  0 under H t . Consequently, measures of 
the deviation from H0 in favor of ff x can be defined as appropriate functionals 
of <5( ■). The tests proposed in this article are based on the following two measures

K  as SUP 6 (S)
OSJS1

and

(2.11)

(2.12)

Let (J f„  y,), (X 2, Y2)........ (AT,, Yn) be a random  sample from H{-, •). The
empirical distribution functions Hn(-, •), F„( ) and G„(-) are defined by



t  H X t * x , Y t Z y )  
n 1=1

Fn(x) = ;  t  I(*t ^  *)n i=i

and

G„(y) = l i l ( Y l < y ) ,n (=1

where I{A) is the indicator function of the event A. Let X (1) <  X (2j <•••  <  XM
(resp. 1(d ^  <, !(„)) be the order statistics corresponding to X U X 2......
X n (resp. Ylt Y2....... YJ. Let ^j j ,  yj2]..........*[n] be the concomitant ordered Y’s
which are obtained by ordering the pairs {(X(, Y(), 1 ^  i <  n} based on the X 
variable only.

A natural estimator of S(-) of (2.10) is given by

Based on S„(-) of (2.13), K  of (2.11) and A of (2.12) we propose the following 
test statistics,

S„(s) =  - i  -  | | i  +  ln(l -  h ) } / / ^ " 1^), Gn~Hs))du .

It can be proved that

(2 .13)

K„ =  max

and

A h =  } Sn(s)ds + i  
o *»•



where Sj =  Rank(YU]) — nG„(yU]) and

Large values of K„ and A„ are significant for testing H0 of (2.1) against of 
(2.2). The asymptotic null distributions of K„ and A„ are consequences of the 
following Theorem which is proved in Section 4.

Theorem 2.1: Assume that H{-, •) is continuous and that Ha holds. Then, 

y/S4nSn( s ) B ( s )  , (2.14)

where B( ) is a Brownian Bridge.

Corollary 2.1: Under the conditions o f Theorem 2.1, we have

j5 4 n K n ^  sup B(s) 
os jsi

and

v /6 4 8 ^ M ,- i}  . (2.15)

It is well known that

p \  sup B(s) > x I =  e 2* \ x  ^  0 
(.osjsi J

Consequently, using the K n statistic, we reject H„ in favor of H t a t approximate 
(  |n  a  ̂1/2

level a if K .  >  •< — ——  > . A Monte Carlo study indicated that the convergence
I 108nJ

in (2.15) is faster when A„ is centered around its exact null mean. I t is easy to see 
fl — |  f* ~1

that, under H0, E(An) =  r  £  a,. Consequently, using the A„ statistic, we
2 n j=i

reject H0 in favor of H 1 at approximate level a if



where z 1_a is the (1 — a)"1 quantile of a N(0, 1) rv (i.e., P{N(0, 1) <  Zi_a} = 
1 -  a).

It can be shown that the above two testing procedures are consistent for 
testing independence against alternatives in .

3 Asymptotic Relative Efficiencies and Power Comparisons

In this section we compare the K n and A„ tests with the Spearman’s rank test 
statistic

=  1 -  6 I  (i -  S;)7"(»2 - 1 )  • 
i= 1

It is well known that (see for example, Weier and Basu (1980)) the Pitman 
asymptotic relative efficiency (ARE) of £fn with respect to the Kendall’s t  statistic 
is equal to one. Recall that y/n(Sfn — £ ( ^ ) )  -*■ a mean zero normal random 
variable. Under H0, E(£fn) =  0 and the variance of the limiting normal rv is 1.

First, we compare A„ to £fn in terms of Pitm an’s ARE using the following 
distributions:

a) H 1 (x, y) =  F(x)G(y) +  6F(x){1 -  F(x)(l -  In F(x))} ■ G{y)G(y), 0 <  9 < 1 

and

b) H 2 (x , y )  as the ACBVE distribution of (1.5) .

Note that both (■, ■) and H2( ■, •) belong to H i. The distribution H ^ - ,  •) is 
a Lehmann type alternative in the sense that the power of any rank test against 
i f ! (■, •) is independent of F( ■) and G( •).

The computation of the Pitman ARE is straightforward but rather quite 
lengthy and involved. For this reason we will give here the final results and refer 
the reader to Puri and Sen (1971) for more details. The Pitm an ARE of A„ w.r.t. 
5^ for ffiO, ) is equal to 2. In fact, by the results of Shirahata (1974), it can be 
shown that the A n test is locally most powerful rank test for testing independence 
(0 =  0) against 0 > 0 for the alternative H j(-, •).

The Pitm an ARE of A„ w.r.t. for the alternative i f2('> ') is given by

eAi,A2(^n> — eA,,A2 ’ (3.1)



w here e XuXj( A „) =  6 4 8 { a t +  a 2 +  a 3 +  a 4 } 2, e XlwXl{ y „ )  =  9 { b 1 +  b 2 +  b 3 } 2,

1 1 1 3 Ax Aj
+

1 2[2A 4Ai A2 A(A + AiJJ ’

5
a2 ~  Tca

1 Ax A2

16A 16At 16A2 2A(A +  Ai) 2A(A +  A2) 4A2(A + Ax)

Ai A2 A2 A? A2 Af

4A2(A +  A2) 4A3 16A2A2 4A3(A +  A2) ’

1 f  1 7  Ax A,
2 { A 8At A2 2(A + Aj)2J ’ 

1 J l  1 1 |  
a* ~ 2 \2X 4A2 A, +  A2J ’

At A2

8A 8A1A2 2A(A +  ^2) ^i)(^ ^2)

h = i | _ i ______ L _ l l
2 2 lA +  A, 4A, 2AJ ’

A

a n d  b 3 =  — a 4 .
Note that in the case At =  A2 =  A0, eAof io(A„, =  0.7812 independent of the 

value of k0. In Table 1 below we give eXuX2(An, £?„) of (3.1) for selected values of 
Aj and A2. Observe that eXuXi(A„, £fn) is not symmetric in Ax and A2.

Table 1 shows that for fixed A2, eXi jL2(An, £fn) increases in k t and eventually 
stabilizes around 1.12. O n the other hand, for fixed A1? eXi X2(A„, tends to 
zero as A2 increases.

The asymptotic distribution of the K„ statistic is not normal. For this reason 
its performance can not be compared to other tests in terms of Pitman ARE. We 
conducted a M onte Carlo simulation study to compare the powers of £?„, A n and

Table 1. ARE o f A„ w.r.t. S? for the ACBVE distribution o f (1.5)

el„ O.lMli •$») ^■2 e0.1.Aj(^»> t?*)

0.1 0.7812 0.1 0.7812
1 0.9408 1 0.07409

10 1.1108 10 0.00098
20 1.1131 20 0.00024
30 1.1151 30 0.00010
40 1.1165 40 0.00007



Table 2. M onte Carlo Estimates o f  Powers for the Marshall-Olkin Bivariate Exponential Distribu­
tion with X2 =  0.1, A, =  10, 20(20)100 and 0 =  0.2/1,

s„ A*

10 .1630 .1215 .1230
20 .1680 .1140 .1125

n =  10 40 .1565 .1285 .1185
60 .1525 .1195 .1090
80 .1550 .1230 .1085

100 .1635 .1170 .1140

10 .2250 .1835 .1845
20 .2340 .1925 .1885

3 It N> O 40 .2170 .1825 .1755
60 .2315 .1705 .1690
80 .2300 .1845 .1720

100 .2305 .1785 .1820

10 .4245 .4500 .4345
20 .4300 .4430 .4360

n =  50 40 .4520 .4675 .4705
60 .4420 .4655 .4525
80 .4435 .4735 .4690

100 .4280 .4570 .4490

10 .7945 .7290 .8565
20 .7345 .7880 .8645

n =  100 40 .7620 .8005 .8680
60 .7385 .8010 .8750
80 .7295 .7910 .8670

100 .7505 .8105 .8745

K„. In this study we employed 2,000 independent random samples of sizes 10, 
20, 50 and 100 from the BVE distribution of Marshall and Olkin of (1.4). The 
significance level used in this study is a =  0.05 and the critical values used were 
obtained by simulation. Part of this study is reported in Table 2 above in which 
A2 =  0.1, Ax =  10, 20(20)100 and 9 =  0.2A,,.

Table 2 suggests that for small samples, 5^ performs better than both A„ and 
K„. For large samples, K„ is distinctly much better than both Sfn and A„. For 
moderate samples (n ~  50), both A n and K n are slightly more powerful than

In addition to the power results discussed above we have also considered the 
case A2 =  0.1, X1 =  10, 20(20)100 and 9 =  0.1 A]. These results, which are not 
reported here, show that the powers of the three tests are more or less the same, 
but are significantly lower than their corresponding values of Table 2.

4 Asymptotic Theory

Let the empirical distribution functions //„(•, •), F„( ) and G„( ) be as defined 
following (2.12). Define



LB(t,s) = Hn{{F-1{t),G -1(s)) , 

a„(f, s) =  n1/2{L„(t, s) -  L(t, s)} ,

Un(y) =  FF~Hy), u„(y) =  nll2(Un(y) -  y) ,

V„(y) =  GG„~Hy), v„{y) =  n ^ (V n(y) -  y) , 

and

yn(t, p, s) =  n1/2{ J n(t, p, s) -  J ( t, p, s)j ,

where d(t, p, s) is as in (2.9) and

p, s) =  H„(F~1(p + pt), G„_1(s)) -  pHn{F~l (t), G„_1(s)) -  ps,

0 <  t, p, s ^  1 .

Next, we define two Gaussian processes which will be needed in the sequel (cf. 
Csorgo (1984) for more details). A Brownian bridge B{-, •) on [0 ,1 ] x [0 ,1 ] is 
a real valued mean zero separable Gaussian process with continuous sample 
paths and E B (xu  y t )B(x2, y 2) =  (xt a  x 2)(yt a  y 2) -  x ^ y ^ ,  0 ^  x „  x 2, 
yu y2 < 1. A Brownian Bridge B( ) on [0 ,1 ] is a  real valued mean zero separa­
ble Gaussian process with continuous sample paths and £B (x1)B(x2) =  
(*i a  x 2) — XiX2, 0 ^  x l5 x2 <, 1. N ote that

B(x, 1) =  B( 1, x) =  B(x), O ^ x ^ l  .

By the Theorem of Tusnady (1977), there exists a sequence of Brownian bridges 
{£„(■> )}“=i such that under H0,

sup |a„(t, s) — Bn(t, s)| =' 0 (« -1/2 log2 n) . (4.1)
O s t .s s l

Define,

« i„0  =  n ll2(FnF - \ t )  -  t)

and
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« * ( * )  =  » 1/2( G . G - 1(s)  -  s )  .

It follows from (4.1),

sup |a ln(t) -  Bn(t, 1)| =' 0 (n  1/2 log2 n) (4.2)
0 £ t 5Sl

and

sup |a 2„(s) -  Bn(l, s)| =' 0(n  1/2 log2 n) . (4.3)
O s s s l

By applying the Bahadur-Kiefer result (Bahadur (1966) and Kiefer (1970)) and 
by (4.2) and (4.3) we obtain

sup |w„(0 +  Bn(t, 1)| =  0(r(n)) , (4.4)

and

sup \vn(s) + Bn(l,s)\ = 0(r(n)) , (4.5)
OSSS1

where r(rt) = 1/4(log1/2 «)(log log ri)m .
The following Theorem is the main result of this section.

Theorem 4.1: Assume that H0 holds true and H(-, •) is continuous. Then, there 
exists a sequence o f Brownian bridges {B„(-, )}“=1 such that

sup |yB(f, p, s) -  r(t, p, s; Bn}\ = o ( l )  , (4.6)
0 < r ,p , s s l

where

r(t, p, s; B) = T1(p + pt, s ; B) -  p r t (t, s; B) 

and

/ \  (t, s; B) =  B(t, s) -  sB(t, 1) -  tB( 1, s) .



Proof: It is easy to see that 

y„(t, p, s) = yi„(p +  pt, s) -  pyln{t, s) , (4.8)

where

7u(t, s) = **(U M  VAs)) + n1/2{L(U„(t), K„(s)) -  L(t, s)} .

Consequently, (4.6) will follow from (4.8) if we show under the conditions of 
Theorem 4.1 that

sup IVi„(t, s ) - T i ( t ,  s ; B J | =  o(l) , (4.9)
O S I.s S l

where r t (t, s; B) is as in (4.7).
Assume the conditions of Theorem 4.1. To prove (4.9) we note first that

?u{t, s) =  a„(U„{t), K„(s)) +  su„(t) +  ^ ( s )  +  n -m u„(t)v„(s) (4.10)

It is well known that

sup | l/„(t) -  t\ =  0 (n _1/2(log log n)m ) (4.11)
os»si

and

sup 1 V̂ (s) — s| a=' 0(n~1/2(log log «)1/2) . (4.12)
Osssl

By (4.10)-(4.12) we obtain 

sup |}>!„(«, s) -  a„(C/n(t), K„(s)) -  suH{t) -  tt>„(s)| =  0 (n _1/2 log log n) .
O s i . s s l

(4.13)

Let {B„(-, •)}“=! be as in (4.1). By (4.1), we obtain 

sup M U M  V M  -  Bn(U M  K m  = ' 0 (n - l/2 log2 n) .
O S I .J S l



By (4.11) and (4.12) and the almost sure continuity of B#(-, •) fo r  each n, we 
obtain

sup |«„([/„({), V„(s)) -  Bn(t, s)11  o(l) . (4.14)
O Sf.sS l

By (4.4), (4.5), (4.13) and (4.14) we get (4.9). This com pletes th e  proof of 
Theorem 4.1.

Proof o f Theorem 2.1: Assume the conditions of Theorem 4.1. R eca ll that 

5n(s) =  J |  An(t, p, s)dtdp 

and, under H0, 

y/54ndn(s) =  ^ 5 4  |  j  y„(t, p, s)dtdp .

Consequently, by (4.6), we have 

y/54ndn(s) ® n/54 } j  f ( t ,  p, s; B)dtdp , (4.15)

where r (t, p, s; B) is as in (4.6) and B{-, •) is a Brownian bridge.
It can be shown that

\ /5 4  J J r ( t ,  p, s; B)dtdp =  - ^ 5 4 ^ 8 ( 1 ,  s) 
oo

+  } { i  +  log(l -  t ) j  {B(t, s) -  sB{t, 1 ) } d t j  

=  B(s) ,

where B( •) is a Brownian bridge. This result combined with (4.15) im plies (2.14

Acknowledgement: W e wish to thank a referee for his/her careful reading o f this p ap er.
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