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1. I n t r o d u c t io n

Consider a finite population of N  units, £/,, U2, ..., UN and let y be 
the study variate taking values Yi on Ut, i = 1,2, N. One of the 
problems encountered in practice is the estimation of population total Y

N

= .Z] Yj. When a sample u = (wh u2, ..., un) of size n is selected by 

Simple Random Sampling With Replacement (SRSWR), an unbiased 

estimator of Y is given by

(1.1)

with variance

(1.2)
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In most of the survey situations, some additional information on Ui 
called auxiliary information is available. Hansen and Hurwitz (1943) were 
the first to popularize the use of this additional information which takes 
values X- on Ui in selecting the units with unequal probabilities. They 
recommended that units in the sample u be selected with Probability 
Proportional to Size i. e. X, and With Replacement (PPSWR) sampling 
scheme. An unbiased estimator of Y is given by

1> = .1  y Z i
p p s

n i=i p {
(1.3)

with variance

' N v 2

Y,—
t t  P i

(1.4)

wherep t = X iJ X  andX = ' ^ lX i.
i=i

Raj (1954) made a direct comparison of YPPS with YSRS and obtained
a condition in favour of YPPS as

X(x,-x)y,2/x,>o (1.5)
1 =  1

where X  is the population mean of the auxiliary variable, which is difficult 
to verify in practice. Since the exact comparison between the two sampling 
strategies is not possible, recourse was taken to compare the expected 
variances under an assumed Super Population Model (SPM). In the literature, 
an often used SPM, which also takes into account the intercept, is

y i = a  + Pp,. + e. , i = 1 ,2 ,..., N , 

E ( e : \ Pi; ) = 0 , E ( e f  \p.  ) = <J2 p f  ] 

£ (e ,. e. | p i ,Pj ) = 0 , a 2 > 0 , g > 0

( 1.6)



where E  (•) denotes the average over all finite populations that can be 
drawn from the super population. Henceforth this SPM  will be denoted 
by model Ml and when a  = 0 we shall call it as model M2.

Under the above model M l, it is known (Murthy (1967)) that PPSWR 
scheme will be more efficient than SRSWR scheme if

a2 cov(Xf-\ AT,) > a
' x ~ x '

X
- p y (1.7)

Where X  and a] are the harmonic mean and variance of the auxiliary 
variable respectively. This condition is also very difficult to verify in 
practice. Earlier, Raj (1958) considered the model M2 in which the 
condition (1.7) is simply

a2 cov (*>-', X,) > -p 2cJ ( 1.8)

which will be automatically satisfied if g > 1 since o2x > 0 and 
cov (A7_l, Xj) > 0. However, for 0 < g  < 1 the condition (1.8) needs to 
be satisfied.
Ray (1954) also considered a deterministic model Y, -  a  + (iX, and then 
the expression (1.7) reduces in this situation to

£ .  (..9)
X o; a

This condition is likely to be satisfied when regression line is close to the 
origin. Also the form of YPPS supports this argument as exact proportionality 
between y and x  makes its variance zero. However, in view of the condition 
(1.9) it can be said that the estimator YSRS will be better than the estimator 
Ypps' if the line of regression is far away from the origin. Thus linearity 
between y  and x  is not a sufficient condition for PPSWR scheme to be 
better than SRSWR scheme. So in practice it is very difficult to have an 
idea whether PPSWR sampling scheme can be preferred over SRSWR 
scheme, unless the other conditions as mentioned above hold.

In order to overcome this problem, Reddy and Rao (1977) suggested



that the sample be selected by a probability proportional to revised sizes 
scheme and with replacement. The revised sizes are obtained through a 
location shift in auxiliary variable as X- = X, + (1 -  L) X  / L, where 0 < 
L < 1. This can also be treated as a compromise selection probability between 
PPX and SRS leading to new

(1.10)

which gives the above transformation (Rao (1993)). The unbiased 
estimator of Y in this case is

1
= - X —  ( i n )

n ,=i ’

with variance

i t  p'
(1.12)

Reddy and Rao (1977) proved that the estimator Y will be better than 
the worse of the estimators YSRS and YPPS in 0 < L < 1. They further 
recommended the value of L = k, which is the value of the optimum 
transformation parameter for ratio estimator with SRSWOR scheme (c.f. 
Reddy (1974)), where k = p/fl; P is the regression coefficient of y on x  
and R = Y/X. Therefore, the estimator Y and V (Y) reduce to

1  n

Y ' = -  I yi
n kp t + ( l - k ) / N

(1.13)

and

Yf

t i  kp i + ( \ - k ) / N
-  Y (1.14)



respectively. Singh et al. (1983) suggested the construction of a condensed 
variable Q as a linear function of several auxiliary variables obtained by 
simultaneously maximizing the correlation coefficient between y  and Q 
and minimizing the intercept of line of regression y  on Q with the 
restriction that V (Q) is unity. Further, under the modified super population 
model obtained from model M2 by replacing p  by Q they compare the 
efficiency of the estimator based on the condensed variable in the PPSWR 
scheme with that of the corresponding conventional estimator based on 
auxiliary variable having maximum correlation with >>. In case of one 
auxiliary variable, the condensed variable Q reduces to the transformed 
auxiliary variable X- with L = k and thus we have the estimator Y  through 
a different interpretation.
Reddy and Rao (1977) and Rao (1993) studied the modified PPSWR 
scheme with 0 < L < 1 whereas its application in practice requires that 
p- > 0 which gives a wider range for L as

-U{.NPm, - l ) < L < l / { l - N P ^ )  0-15)

where pmia and pmax are the minimum and maximum initial probabilities 
of selection.

Therefore, an attempt has been made, without any restriction on 
the value of L or k, to obtain some results regarding the comparison of 
the estimators Y or Y' with that of estimators YSRS and YPPS in section 2 
on the basis of expected variances of the estimators obtained firstly 
under the super population model M2 and secondly under the modified 
super population model M3 considered by Singh et al. (1983). Near -  
optimum value of L which minimizes V (Y) is derived in section 3. The 
last section gives an empirical illustration to observe the gain in 
efficiency by using the near -  optimum value of L or k and for deviations 
from it.

2. M o d e l  b a se d  c o m pa r iso n  o f  est im a t o r s

In this section, we first give two lemmas which will be useful for 
comparison of the estimators Y, YSRS and YPPS under models M2 and 
model M3 considered by Singh et al. (1983).



Lemma 2.1 (Royall (1970)): Let 0 < b l < b 1 <, . . . ,< bm and cx < c2m m
< , . . . , <  cm s a t i s f y i n g c , >  0. Then ^  bt c, > 0.i = 1

Lemma 2.2: Let bl > b2 > , . . . , >  bm > 0 and cx>c2, ■ ■., ^  cm satisfying
Z c, > 0. Then X h c. > 0.i = l 1 i = 1 ' 1

The expected variances of the estimators YSRS, YPPS and Y under the 
super population model M2 are

" S p ? - i
;=i

+ o 2 ( N -  1) ^ p f
f = l

n E V ( Y p p s )  = <*2 ' Z P f~l { l - P i )

and n £ v ( F )  = p ;

1=1 
N p 2

«=1 Pi
+

1=1 p;
respectively. Now, we compare the estimator Y with YSRS under the super 
population model M2 in the following theorem:

THEOREM 2.1: Under the super population model M2 the sufficient 
condition that the estimator Y has smaller expected variance than the 
estimator YSRS for 0 < L < 2 / (2 -  NpmJ  is g >  (Lpmm) / p\mx.

Proof: The difference between the expected variance of the estimators
A A

YSRS and Y can be written as

E v { Y SRS) - E v { Y ) ]  = ^ b . , c , + ^ Y t b ' ^  (2.1)
1=1 1=1

where c, = Np\ -  1, bt = p f  / p \  and b) = p f  / p\. Now, because Sc, =
0 and c, is an increasing function of pt for L > 0 and so is bt as long as 
0 < L < 2 / ( 2 -  A'Pmi,,). The sufficient condition that b\ should also be 
an increasing function of p, is

g > LPi / p \

Thus, in view of Roayall’s lemma 2.1 both parts of the expression (2.1) 
are positive with highest of the upper limit of g being for suffix i = max 
for some i and hence the theorem.



Remark 2.1: For the choice of -  2 / (Npmm -  2) < L  < 0 the p) 
remains positive and the same is true with the first term of (2.1) by using 
lemma 2.2 but the condition of positivity of second term comes out to 
be g < Lpi / p )  which rarely happens in practice as 0 < g < 2. Thus the 
comparison between Y and YSRS is inconclusive for the choice of L < 0.

Now, we will compare the estimator Y with YPPS under the super 
population model M2 in the following theorem:

THEOREM 2.2: Under the super population model M2 the estimator 
YPPS has smaller expected variance than the estimator Y for g = 2. When 

2, the superiority of YPPS over Y still holds for values of g > 1 + 
(Lpmjtp'mm when L < 1 but for L > 1 it holds for g < 1 + (Lpmm)/p'min.

Proof: The difference between the expected variances o the estimator

where c\ = p, -  p) and dl = pf~l / p\.  Now because Ec) = 0 and c)  is 
an increasing function of /?, as long as L < 1. One can show Xd, c'(- > 0 
by using lemma 2.1 provided dt is also an increasing function of pt. A 
sufficient condition for this is that first derivative of di with respect to pt 
is greater than zero which gives g > 1 + Lpt /  p \  with the highest of upper 
limit for suffix i = max for some i.

We further observe that c', is decreasing function of p, for L > 1. In 
view of lemma 2.2 we can have > 0 provided dt is also decreasing 
function of p,. A sufficient condition for this is g < 1 + Lpt /  p \  with 
lowest of the upper limit for suffix / = min for some i.

At g = 2 the expression (2.2) reduces to

YPPS and Y can be written as

N

(2.2)
i=i

which is always positive and hence the theorem.



Remark 2.2: The results of theorems 2.1 and 2.2 are also applicable 
to the estimator T  if we replace L by k.

Now, the super population model M3, considered by Singh et al. 
(1983) is reproduced below for ready reference in the case of one auxiliary 
variable, viz.,

y ,.=p<2, +  e, , i =  i , 2,

E { e i \Ql)  = Q , E ( e ) \  

E ( e i ej \Qi , QJ) = 0 , g 2 > 0 , g > 0

where <2, = kpl + (1 -  k) / N  with X<2, = 1. Under this model the expected 
variances of the estimators YSRS, 'YPPS and Y’ are

» £ v ( y SB) = p i

n E V ( ? m ) = p !

1
i=l

+<t2 (w - i ) £ e ;

N n 2
y S j — i
i=i Pi i=i

i=i

f l - . l
\ P i

and

n E V l Y ^ o ^ Q r ' i l - Q , )
1=1

respectively. Next we compare the estimaor Y’ with YPPS in the following 
theorem:

THEOREM 2.3: Under the model specified by (2.3) the estimator Y’ 
has always smaller expected variance then the estimator YPPS at g = 2. 
When g *  2 the superiority of Y  over YPPS still holds for values of g > 1 
+ <2max 1 /’max when k > 1 but for k < 1 it holds for g < 1 +

Proof: The difference between the expected variances of the 
estimator Y' and YPPS can be written as



+  a

4F,
t d " c 7 (2.4)
/=1

where d" = Qf~l / p, and c," = <2, -  /?,. Now, because Zc," = 0 and c," is 
an increasing (decreasing) function of p t for k greater (less) than 1, to 
show J 4 "  c," > 0 in view of lemma 2.1 a sufficient condition is that d," 
is also an increasing function of p i giving g > 1 + <2, / p k with highest of 
the upper limit at suffix i = max for some i.
To have I//," c," > 0 in view of lemma 2.2 when k < 1, a sufficient 
condition that d"  is also decreasing function of /?, yields g < 1 + Qt / p, 
which is lowest when suffix i = min for some i.

When g = 2 the expression (2.4) reduces to

( = 1  V  \ P i

which is always positive and hence the theorem.
Now, we will compare the estimator F  with estimator YSRS in the 

following theorem:

THEOREM 2.4: Under the model M3 specified by (2.3) the estimator 
Y' has smaller expected variance than the estimator ?SRS for g > 1 and for 
g < 1 if

a 2 cov (Q /-\  p,) > -  (32 Gq.

Proof: The difference between the ex.pected variance of the estimator
l SRS and Y' is

E  V ( Y sss) -  E  V  ( Y ')] = /5! ( n £ Q] - 1) +  a 12 e r ’ ( N p , ~ !)
V 1=1 J 1=1

which can be rewritten as



« [£  v'(^ * s ) ■-E  v  (?'')]=N" al  + ° ! N2 cov(e;-' ,/>,) (2.»

where Oq is the variance of transformed variable Q. For g > 1 Q,g~l is 
an increasing function of p, and so cov p t) > 0 and thus the right 
hand side of (2.5) will be positive, whereas for g < 1, it is so if

c 2 conv <QF\ Pi) > -  P2 <?<2 

and hence the theorem.

3. N e a r -o p t im u m  v a lu e o f  t r a n s fo r m a t io n  pa r a m eter

In this section, we obtain a near-optimum value of L which 
minimizes the variance of the estimator Y in the following theorem:

THEOREM 3.1: Under the assumption that IL {Npt -  1) I < 1, the 
value of L upto the first order of approximation which minimizes the 
variance of the estimator Y, is

t , r W p , - 1)

i=l

(3.1)

and the resulting optimum variance is

N
1 = 1 (3.2)

1 = 1

Proof: The variance of the estimator Y in expression (1.12) can be 
written as

v ( * ) = - [ * £ ■ y > +  l (n P ‘ -  o r 1 -  r ‘n  L  ( = i
(3.3)



Making the assumption I L (Npt -  1) I < 1 and retaining the terms up to 
the order of L2, (3.3) reduces to

v, (i>) = i U x  - 1 ) - 1)2} -  r 2
^ L i=i

(3.4)

The optimum value of L say L, which minimizes V, (Y) can be obtained 
by differentiating Vx (Y) with respect to L and equating to zero. We have

L \  — N

1 =1 1=1

It is also noted that the second derivative of V, (Y) is always positive. So 
the minimum value of Vl (Y) is

N ZK’fa.-i)
1 = 1

4 n % Y > ( N P l - t f
1=1

and hence the theorem.

Remark 3.1: An assumption in the theorem 3.1 requires that I LI < 
Min. {(1 -  Npmin)~\ (Npmax -  l)-1} and so together with (1.15) we can 
easily have an idea of the upper limit of L. However, for the sign of L 
we require a prior knowledge about Cov (Y2, pt).

Remark 3.2: We can rewrite the expression (3.4) of (?) as

V\ Y )  = v ( Y s t s ) - — L ( 1 L ,  - i ) X l ' , 2(A,P i - l ) 2' (3.5) 
n  1 = 1

So the estimator Y will be better than the estimator YSRS as long as 0 <
I L I < 2 I L, I.



Remark 3.3: The difference between V (YPPS) and Vx (T) is

v (y , k ) -  V, (?) = - v ( ? s»s )] + ^ t ( 2 L ,  - L) 

’Z Y f ( N p , - l f .
i=1

For 0 < ILI < 2 IL,I the estimator Y will always be superior than estimator 
YPPS if the estimator YSRS is more efficient than the estimator YPPS. When 
the estimator YPP̂  is more efficient than the estimator YSKS then still there 
is a scope that Y will be better than YPPS but it can not be verified in 
practice easily.

4 . E m p ir ic a l  il l u s t r a t io n

To study the behaviour of the estimators YSRS, YPPS and Y empirically, 
we consider the well known populations of Yates and Grundy (1953), 
Cochran (1977) and Amahia et al. (1989). For the sake of ready reference 
these populations are given in the table 4.1. The percentage efficiency of 
the estimator Y which respect to YSRS for the true value of k equal to P/R 
and Lj, the optimum choice of L given by (3.1) as well as deviations from 
it is given in the table 4.2. As we know that exact proportionality between 
y and p makes the estimator YPPS the best; in table 4.3, the percentage 
efficiencies of the estimator Y with respect to the estimator YPPS are given 
for only those populations in which y is not nearly proportional to p.

It is clear from the table 4.2 that estimator Y is better than the 
estimator YSRS when 0 < L < 2L1 (as exhibited in the tables) and also robust 
for small departure from the true value of Ll whose corresponding entries 
in the tables are denoted by ". Table 4.3 shows that the estimator Y will 
be better than the estimator YPPS as well, if L is near k in which case the 
estimator Y has also maximum gain over the estimator YSRS. Therefore a 
good guess of Lj in practice can be taken to be the value of k.

It is also observed from the Table 4.3 that when the intercept of line 
of regression of y on x  is negative as the case for populations A and E 
we require L > 1 whereas for populations B, F, G and H  the intercept is 
positive and therefore L < 1 to achieve gain over PPSWR scheme.



T able 4.1

Po pulations

Population
Unit A B C D E F G H
number X y y y X y y y X y X y

1 0.1 0.5 0.8 0.2 0.1 0.3 0.3 0.7 25 11 41 36
2 0.2 1.2 1.4 0.6 0.1 0.5 0.3 0.6 32 7 34 47
3 0.3 2.1 1.8 0.9 0.2 0.8 0.8 0.4 14 5 54 41
4 0.4 3.2 2 0.8 0.3 0.9 1.5 0.9 70 27 39 47
5 0.3 1.5 1.5 0.6 24 30 49 49
6 20 6 45 45
7 32 13 41 32
8 44 9 33 37
9 50 14 37 40

10 44 18 41 41
11 47 37
12 39 48

T able 4 .2

P ercentage efficiency  o f K over Ysrs

L A B C
Population

D E F G H
0 100 100 100 100 100 100 100 100

0.04 106.71 111.69 106.49 106.74 106.20 104.42 102.90 100.2"
0.045 107.59 113.28 107.34 107.62 107.01 104.91 103.24 100.2'
0.1 117.89 133.14 117.20 117.94 116.47 109.07 106.77
0.156 129.74 158.84 128.38 129.75 127.28 110.7' 109.81
0.158 130.19 159.88 128.80 130.20 127.69 110.7" 109.91
0.2 140.19 184.31 138.06 140.09 136.74 109.92 111.79
0.29 165.46 258.43 160.76 164.65 159.35 103.13 114.7"
0.3 168.65 269.20 163.55 167.70 162.18 102.01 114.88
0.4 205.98 423.50 194.82 202.40 194.88 115.95
0.5 328.80 734 233.14 246.09 238.15 115.07
0.6 328.80 1370' 279.41 300.47 297.52 112.41
0.639 365.58 1700 299.59 324.70 326.94 110.9'
0.667 396.06 1904" 314.73 343.08 350.91 109.76
0.7 437.36 2022.8 333.13 365.62 382.80 108.22
0.77 514.13 1680.6 373.2" 415.36 467.42 104.55
0.8 614.39 1402.1 390.08 436.6" 512.95 102.82
0.82 663.4" 1220.7 401.01 450.44 547.29 101.62
0.84 718.80 1054.7 411.5' 463.73 585.38 100.39
0.9 937.61 673.54 438.89 498.43 728.65
0.923 1050.4 569.50 447.01 508.71 798.7"
1 1636 336 460 525' 1131.2
1.1 3560.3 182.39 434.53 494.84 2032.9
1.2 8604.3 104.58 362.27 414.81 4747.5
1.2857 5777' 279.89 329.93 13007
1.3636 2025.7 204.03 256.10 15426'
1.4 1266.1 170.98 225 9615.6
1.5 375.6 153.12 2436.5
1.6 100 861.90

' and " denote the percentage efficiency for the true population value of k (= j5IR) and L, the opti­
mum choice of L respectively.



T able 4.3 

Percentage efficiency  of 7  ovERym

L A B
Population

E F G H

0 448.48 111.62 214.88
0.04 468.33 114.85 215.3"
0.045 470.52 115.24 215.3'
0.1 489.17 119.17 214.33
0.156 496.4' 122.57 211.69
0.158 496.4" 122.68 211.56
0.2 493.00 124.79 208.54
0.29 462.55 128" 199.55
0.3 457.53 128.23 198.38
0.4 126.04 395.99 129.43 185.13
0.5 218.45 326.47 128.44 170.16
0.6 407.8' 261.62 125.47 154.64
0.639 505.9 238.92 123.8' 148.63
0.667 566.57" 223.64 122.51 144.37
0.7 602.05 206.73 120.80 139.42
0.77 500.20 174.69 116.70 129.27
0.8 417.30 162.47 114.77 125.08
0.82 363.32 154.79 113.44 122.34
0.84 313.92 147.46 122.06 119.65
0.9 200.46 127.49 107.73 111.90
0.923 169.50 120.57 106.01 109.05
1 100.00 100.00 100.00 100.00 100.00 100.00
1.1 217.62 179.71
1.2 525.94 419.67
1.2857 353.1' 1149.8
1.3636 123.82 1363.6'
1.4 850.00
1.5 215.38

' and " denote the percentage efficiency for the true population value of * (= pIR) and Lx the opti­
mum choice of L respectively.
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Probability proportional to revised sizes 
with replacement scheme

S u m m a r y

An unbiased estimator based on a modified Probability Proportional to Size With Re­
placement (PPSWR) scheme is suggested by making use of a linear transformation on the 
auxiliary variable. The proposed estimator is compared with conventional SRS and PPS 
with replacement estimators under certain super population models. A near- optimum value 
of the transformation parameter which minimizes the variance of the estimator is also de­
rived. An empirical illustration is also given to find the efficiency of the proposed estima­
tor over the above cited estimators.

Probability proporzionali ad ampiezze rivedute nel campionamento 
con ripetizione

R ia s s u n t o

In questo lavoro si propone uno stimatore corretto basato su di una modifica dello 
schema di campionamento con probability proporzionali alia dimensione con ripetizione 
(PPSWR) e costruito facendo uso di una trasformazione lineare applicata alia variabile au-



siliaria. Lo stimatore proposto viene confrontato con gli usuali stimatori per il campiona­
mento semplice con ripetizione (SRS) e per lo schema con probability proporzionali all’am- 
piezza con ripetizione (PPS) in alcuni modelli di superpopolazioni. Inoltre si ottiene un va- 
lore quasi-ottimo del parametro da cui dipende la trasformazione utilizzata e che rende mi­
nima la varianza dello stimatore. L ’efficienza dello stimatore nella sua classe viene valu- 
tata empiricamente.

Key w ords

Probability proportional to modified size with replacement scheme; transformed aux­
iliary variable and superpopulation model.
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	y,.=p<2, + e, , i = i,2,

	E{ei\Ql) = Q,E(e)\ E(eiej\Qi,QJ) = 0 ,g2 >0, g>0

	nEVlY^o^Qr'il-Q,)



	4F,

	td"c7

	(=1 V \Pi

	a2 cov (Q/-\ p,) > - (32 Gq.



	t,rWp,-1)

	N


	v(*)=-[*£■y> + l(nP‘ - or1 - r‘

	v, (i>) = iUx	-1)-1)2} - r2

	4n%Y>(NPl-tf

	V\Y) = v(Ysts)-—L(1L, -i)Xl',2(A,Pi-l)2' (3.5) n 1 = 1

	v(y,k) - V, (?) = - v(?s»s)] + ^t(2L, - L) ’ZYf(Np,-lf.





