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SUMMARY, Rao and Mitra (1671a,b) and Sibuyan (1070) havo showm that the conju-
gato D of a minimium nora g-i of o matrix is & Jeaat squarcs g-inverss of il8 conju-

gote transposo undor tho dual norm. In this paper this duality relation is oxamined for the
minimum sorminorm and scmileost squares invorses.

1. IxTRODUCTION

We use &7 to denoto the vector space of complex n-tuples. For integers
m and n let the sominorm of ze&n and ye&™ bo defined by

el = (2 Nx), yllm = (y*My)} e (L)

where M and N arc nonnegative definite matrices. As in Rao and Mitra
(19712, b) and Mitra and Rao (1974), we define the following.

(a) Gisag-inverse of A if 2 = Gy is a solution of the consistent equa-
tion Ax = y, \pyesl(A), the column space of A. We represent such
an inverse by A-, the entire class by {A4-}, and the subclass smisl'y-'
ing AAA-= A~ by {47}

(b) G isa minimum N-seminorm g-inverso of /1 if yryesl(A), x = Gy
is a solution of the equation Ax =y, and if u is any other solu-
tion then [Giyll, < llll,.  Wa represent G by Apy) and the class
by {Ama)-

(¢) G isa BI-semileast squares inverse of A4 if yye@™, @ = Gy provides
s minimum of |ly— Az, for all zegn. We represent G by gy,
and the class by {Ay,;p). Noto that there is n subelass of (A“.\Il}
C {A-) which wo donoto by {Aj,)-

* This rosonrch was partly supparted by the National Scionco Foundation grant no. QP32522
when both tho authors woro nt the Indiana University.
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Rno and Mitra (1971a,b) and Sibuya (1970) established the following dua-
lity relationship between minimum norm and lenst squares g-inverses and indi-
cated the key role it plays in the Gauss-Markoff Theory of linear estimation,
If M and A are positive definite matrices such that AIA = J, then

{Amon} = ([Aiim)°)- e (L2)

In this paper we examine the nature of the duality refationship when M andfor
A are possibly positive semidefinite.

2. SOME LEMMAS

We reproduce here (without proof) from Rao and Mitra (1971a,b) two
basic results we need in our present study.

Lemma 1: A matrix G is ANy if and only if
AGA = A and (GA)'N = NGA. . (20)
1f G, is a pariicular solution of (2.1), a general solulion is given by
G = GyHW(I—AG)+(I- G, AV o (2.2)
where YV 18 arbitrary and V is an arbitrary solution of the equation
N(I—-G,A)V = 0. v (23)
The malriz (N+A*A)-A°[AN+A°A)~A*)" is one choice for G,.
Lemma 2: A malriz G is Ayyy, if and only if
MA = G'AMA e (2.4)
or equivalently
MAGA = MA and (AGY'M = MAG. .. (2.5)
If G, is a parlicular solution of (2.4), a general solution is given by
G = Go+[I—(A*MA)y-A'MA)U . (2.0)

where U is arbitrary. The matriz (A°MA)~A*JI is one choice for G,.
Lemma 3: Ay, exists. If G, is one choice of Agyy, @ general solution
to Ajiyy 18 given by
G = Gy+[I—(A*MA)-A*MAU . (am
where U is an arbilrary solution of

[A—A(A°MA)-A*MAUA = 0. e (28)
The matrix A=+(A*MAY-A*M(I—AA") is one choite for G,.
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Proof : The proof of Lemma 3 is eary and is thereforo omitted.

Lomma 4: {Azp} = {(Aiap} . (29)
if and only if

Rank (A*MA) = Rank (A). . (2.10)
If (2.10) holds, AG is unique for each Ge{Ayyp). The unique expression for AG
is A(A°MA)- A°M.

Proof : Let G, be n partioular choico for Ay, naturally of Ay, A
comparison of the exprersions (2.6) and (2.7) for tho respective general solutions
shows that (2.9) is true if and only if arbitrary matrices U satisfy (2.8) for
which it i3 necessary and sufficient that

A—A(A°MAYAMA = 0 & (2.10).
The uniqueness of AG under (2.10) is easily established.

3. MAIN THEOREMS

Theorem 1: Let A be a mXn matrix and M,A be positive semidefinite
malrices of order mxm each. Then,

(a) {[4itan)") C{(A%)7a2} - (3)
if and only if one of the following conditions (i) or (ii) is true
(i) Rank (A°MA) < Rank A . (32)
D) C AHA) v (3.3)
(ii) Rank (A°MA) = Rank A e (34)
AMAQ =0 . (3.5)

where Q is @ matriz such that Q) = 71(A°), the nullspace of A*.

(b) For a given M, if (3.4) is true a general gative definite soluli
A of (3.5) is

A = A+(I-H*)A(I-1) . {3.8)
where A, and A, arc arbilrary nonnegalive definite matrices of order mXm each
with

(D) C A(A) v (37)

H = MA(A*MAYA°. w (3.8)

and

(¢} For a given A, if (3.3) holds, (3.1) is true for arbilrary nonnegalive
‘definite matrices M. If (3.3) is untrue a general qgative definite soluti
D of (3.4) and (3.5) is

M<=E-[AQQ*AUAQQ A+ AA*U,AA"(E-)*+(I- E-E)U(I—-E-E)* (3.9)
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where E= AQQA+AA°, E- is an arbilrary g-inverse of E, U, and U, are
arbitrary nonnegative definile malrices and U, is arbitrary positive definite.

Proof of (3):  Consider tho general solution to Ajy, givon in Lemma 3.
If (3.1) holds, AGA is hermitian for every G determined by (2.7) and (2.8).
This implies that
[A—A(AMAy-A*MAIUA

is hermitian for every U satisfying (2.8).
[A —,l(.»l‘.\lxl)';l‘Mll]UAU'[;_I—A(A'MA)‘A'MA]'
= [A—=A(A°MAY A MAJU[A— A(A°MA)-A*MAJUA
= 0 for every U satisfying (2.8)
= [A—A(A*MA)-A*MA)UA = 0 e (3.10)
for every U satisfying (2.8). For which either (3.3) or (3.4) is necessary.

Also when (3.4) ia truc, by Lemma 4, AG is unique and equal to JI® for
every Ge(dyyn) = {diyp)-

Heneo (3.1) &=
II'A = A & (3.5). e (301)

This shows both the necessity and sufficiency of (3.5) under (3.4), Sufficiency
of (3.3) is easily established.

Proof of (b) : ‘To obtain a general nonnegative definite solution A of (3.5)
or equivalently of (3.11), obrerve that a nonnegativo definite matrix A can
always be expressed as A = CC* for some C. Also, sinco

S D SI-11*) = &7,
C=II'U+(I-11°)U,
for some U, and U,. Henco
A = IPUUIILE I U UM - N4 (I-TD U UHT(I- T U, U (1-1T).

However,
IA(I-II) = H*'UUYI-1T) = 0 =

A = I*U,UH+(I- I U,U LI IT)

which is of the required form (3.6). Conversely, if A is expressiblo as in (3.6)
IPA = I°Ay = A(A°MAY-AMA, = A,

in view of (3.7). Henco A satisfies (3.11).
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Proofof (8):  Tho first part of (¢) is casy. To show that (3.9) is the general
golution to a nonnegative definito M satisfyng (3.4) and (3.5), check first by
direct multiplication that since (AQ) and AL(A) aro virtually disjoint, for
& matrix B dctermined by (3.9), A°MAQ =0. Alo AMA = A*U,A
is of samo rank as A. Conversely if M, satisfies (3.4) and (3.5), M = M, is
a nonnegativo definite solution of

EME* =F o (3.12)
where E=AQQ°A+AA* and F = AQQ°AMMAQO°A+-AA*DMAA* =
AQOADAQO A+ AA (D4 QQ*)AA®.  Tho expression (3.9) therefore fol-
lows from Lemma 2.1 of Khatri and Mitra (1976) where we identify M, with
U, and Mo+ QQ° with U;.  That Mo+ QQ° is positive definito is scen na
follows. Wo note first that (M) and A(Q) are virtually disjoint.  Also
sinco M, satisfies (3.4)

SUMA : Q) = SMADAO) = Em,
Further, AUMA: QYCALMy: Q) = A(DMy+ Q0 YT &m. Henco My+Q0*
which is clearly nonnegative definite is also of full rank., This concludes tho
proof of Theorem 1.

Nole 1: An alternative éxpression for a general solution to (3.4) and
(3.5) was given by Rao (1971, 1973) as follows :

M=(A+AUA)+K o (3.13)
whero U and I{ are nrbitrary Hermitian matrices subject to the conditions that
M is nonnegative definite,

AMAF+AUA®) = AA: A), A’KA =0 and AKA = 0.
Theorem 2 : Let A be @ mxn malriz, Q be defined as in Theorem 1 and
M,A be positive semidefinite malrices of order mxm each. Then

0} (A0} C{(Aiap)?} - (314)
if and only if !
A+AA® is positive definite e (3.15)
or equivalently
Rank (Q*AQ) = Rank Q . (3.16)
and A'DIAQ_ =0. . (3.5)

(b) For a given A, if (3.15) is true, a general nonnegative definite solution
M of (3.6) is given by
M = I*AH+(I—-I)*A(I—-1T)
where A, and A, arc arbitrary nonnegative definite malrices and

H* = (A+AA ) A[A A+ A4 4)A° e (317)
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(c) For a given M, a general nonnegalive definile solution A of (3.5) and
(3.16) is given by
A = B-[MAAMU,MAAM+QQ'U,00°)(B-)
+(I—- B-B)U\(I-B-B)* e (3.18)
where B = MAA*M+QQ°, B~ is an arbitrary g-inverse of B, U, and U, are
arbilrary nonnegative definite malrices and U, is arbilrary posilive definile.

Proof of (8): For arbitrary choico of (A+AA°)~
(A+AA Y A[A(A+AAY-A) {(A%)7 00}
Hence if (3.14) is truo
A*MA[A(A+AA*)-A]ANA+AA%)- = A°M. . (3.19)

The left hand side of (3.19) is therefore invariant under choice of (A+AA°)~
which ean hold iff (3.15) is true (sce in Rao, Mitra and Bhimasankaram (1072)).

Also (3.10) = A*MA[A(A+AA°)-A]-A* = A°M(A{AA4°)

=3 (3.5).

Theso show the necessity of (3.5) and (3.15).

For the sufficiency part assume now that (3.5) and (3.15) hold and let G

satisfy the conditions
AGA = 4, AGA = AG*A* o (3.20)

that is, let G6{(A°)za)- (3.20) and (3.5) =
A*MAGA = A*MAG*A* = A°DIA
= A°MAG(A+AA*) = A°M(A+AA*), which on account of (3.15)
= A'MAG = A°M = Ge{Ajyy).

Hence (3.5) and (3.15) == (3.14).

Proofs of (b) and (c) : Proofs of (b) and (o) are similar to that of the cor-
responding results in Theorem 1 and aro therefore omitted. The following two
corollaries aro easily established.

Corollary 1: Let A be a mXn matriz and MA be nonnegative definite
malrices salisfying (3.4), (3.5) and (3.16). Then

{(A*p) = {[Aitan*}. o (L2)

Conversely if Rank A.< m, thon (1.2) == (3.4), (3.5) and (3.16).

Corollary 2: Let A be & mxn malriz, M. A be positive semidefinite
malrices of order mx m each and Q be defined as in Theorem 1. Then

(A%} C ()" == {{Qia)"} @ 5an) - (3.14)
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