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Abstract: Postulating a linear regression of a variable of interest on an auxiliary variable with 
values of the latter known for all units of a survey population, we consider appropriate ways of 
choosing a sample and estimating the regression parameters. Recalling Thomsen’s (1978) results 
on non-existence of ‘design-cum-model’ based minimum variance unbiased estimators of regres­
sion coefficients we apply Brewer’s (1979) ‘asymptotic’ analysis to derive ‘asymptotic-design-cum- 
model’ based optimal estimators assuming large population and sample sizes. A variance estima­
tion procedure is also proposed.
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1 Introduction

Thomsen (1978) considered a survey population with a variable of interest and 
an auxiliary variable defined on it with values of the former unknown but 
those of the latter as known. Postulating a super-population linear regression 
model connecting them he showed that “minimum ‘design-cum-model’ vari­
ance” linear unbiased estimators do not exist for the regression coefficients. 
Assuming large sizes for the population and samples we apply Brewer’s (1979) 
asymptotic analytical approach to show that among linear ‘asymptotic-design- 
cum model unbiased’ estimators of the regression coefficients it is possible to 
find those for which ‘asymptotic-design-cum-model’ mean square errors are 
the minimal. Introducing certain approximations variance estimators are also 
proposed.

2 Asymptotic Design-Cum-Model Based Optimal Estimators

Let V  =  (1 ,.. .,  i , . . . ,  N) denote a survey population of a known size N  which 
is large. Let y  be a real variable defined on it with unknown values y t with a



total Y  and x  be a positive valued auxiliary variable with known values x t and 
a total X.  We postulate a linear super-population regression model M  so as to 
write

y t =  a +  f a  +  e; , i e U  . (1)

Here a and P are unknown regression coefficients and e/s are ‘random ’ vari­
ables with model-based means, variances and covariances as

Em{Si) =  0 , Km(e;) =  of  and C J e t, Sj) =  0 for i .

Thomsen (1978) considered choosing an appropriate design p with p(s) as the 
probability of choosing a sample s of a given size n from U and basing on s 
and values of yt for i in s linear estimators a and p, say, for a and fi with the 
following properties. We shall write £  for sum over i in U, ]T' for sum over i in 
s, Ep for the operator of design-based expectation and assume Ep to commute 
with Em, denote by nt the inclusion probability of i in a sample and note that 
£ > ;  =  n.

Among 4 =  5]' ft =  £ '  bi(s)yi with a;(s), b^s) as constants free of Y =
{ y u . . . , y i , . . . , y N), subject to

EmEp(&) =  a and EmEp(f}) =  (i 

his aim was to find a0, (i0 respectively of the forms dc, (i such that

EmEp(& -  a)2 >  EmEp(ot0 -  a)2 and

EmEp(P -  f})2 > EmEp0 o -  P f  .

Thomsen (1978) showed that such &0, fl0 do not exist. So, we adopt the follow­
ing asymptotic approach introduced by Brewer (1979). The population U along 
with Y  and X  =  (xl5 . . . ,  . . . ,  x N) is supposed to hypothetically re-appear 
T(>  1) times. Every time it re-appears a sample of size n of the type s is chosen 
from it employing the same design p ‘independently’ across re-appearances. 
The samples so drawn are amalgamated into a pooled sample sT, say. The new 
design giving the selection probability for sT is denoted by pT and sum over 
units in sT by £ 'r . if for a linear parametric function 0 (J )  of J  there exists an 
estimator e based on s, say e(s), then when based on sT, it i.e., e(sT) should 
estimate T9(Y). Just as for any given s and y t for i in s, one defines a real 
number e(s) as the value of a function e taken as a point estimator for 0( Y), so 
is e(sT) defined as the value of the same function e when sT and ys for j  in sT



are given and purported to be taken as a point estimator for T0( Y). So, it is 
desirable, allowing T  to increase indefinitely that

lim E*r U ^ ) )  ,

written as lim Ep(e), in brief, should ‘equal’ or ‘be close to’ 0(Y). So, revising 
Thomsen’s (1978) above-noted requirements we require that d, p above should 
be subject respectively to

lim EpE Ja )  =  a (2)

lim EpEm{P) = p (3)

and among such A, ft we need d0, such that

lim EpE J a  -  a)2 >  lim EpEm(d0 -  a)2 and (4)

lim EPE J j§ -  p)2 >  lim EpEm(p0 -  p)2 . (5)

The requirement (2) leads to

I 1 =  ^  Ept EV ai(sT)J =  lim Ep ( j ] '  and

I I  °  =  7l i n ^ ,  E p t ( t  ai ^ x ‘j  =  l i m  E p ( ^ L ' a ‘(s)x ^ j  • 

Similarly, (3) leads to

r ° =  EpT (t bî T ĵ =  lim E p and

U 1 =  r™  Ept T!t bi(sT)x^j =  lim Ep b ^ x ^ j  .

Just as a,(s) is a real number free of y ?s defined uniquely for combination of a 
given s and i in s, so is a;(sT) for a given sT in place of s and i in sT. Similarly 
for bi(s) and fc;(sr ).



The main advantage of Brewer’s (1979) approach is that we may achieve 
convenient simplifications by applying Slutzky’s (vide Cramer (1946)) limit the­
orem on sequences of functions, some of which are illustrated below. Thus,

lim EpEm{& -  a)2 =  lim EpEm(&)2 +  a2 -  2a lim EpEm(d)

=  lim EpVJd) + (lim EpE Jd))2 -  oc2 , 

using (2) and Slutzky’s theorem

=  lim EpVm(6t) =  lim Ep[ af(s)af 

1
lim Ep \ - - Y ' T a?(sT)o?

T  -+oo \  *

= F , say . (6)

So, to find d0, we need to minimize F in (6) subject to /  and II. Introducing 
Lagrangian multipliers 2X1 and 2a2 we need to solve, writing £  for sum over

S T

samples sr , the equation:

°  =  Sa^j f  pr(sr)^C Z 'r a?(sTW  ~ 2/l1fli(sr ) -  2A2ai(sr )xi]

2pT(sT) r x 2

This yields

. + l 2x i 
a i(S T) =  ------ 2----- > 1 6  S T

For this choice of a,(sr ), for every fixed T, the value of

'1
j  E 'r  ai(sTW

is minimized. By Slutzky’s theorem, for the same choice, its limit, as T  ->■ oo, 
that is F itself is also minimized. Then by I  and II  we get, noting Brewer’s



(1979) and Chaudhuri and Stenger’s (1992) works,

1 = lim E„
r-*oo

^ I ^  +  ^ I ^ a n d (8)

0 = lim E„
r-> oo

i v '  (Ai +  AixJXj 
T  L t of

_  1 V  ^ ‘X i i 1 V  ^ ' X ‘-  A1 L  ~ 2  + A2 L  ~2T  a, a,
(9)

Now writing

(10)

from (7)-(9) we derive the optimal choice of a ;(s), say, ai0 as

i
UiXf n:X:

fl.T) —
Dof

which involves only i no matter the sample it belongs to. So, the optimal choice 
of dt0 is

V yi V '
^  ^2  2-r ~ l2  ~  2 -i ~ J 1  - 2

$ V • i i i i /1 1 \ $o = X, ai0yt = -------------------- ------------------- . (11)

By a similar analysis, minimizing lim EpEm(j} — fS)2 subject to / ' and II' we 
derive the optimal choice of b^s) as, say, bi0 given by



no m atter the sample containing i, the resulting optimal choice of /? is fi0 given 
by

So, we state the following

Theorem: Under model M, we have

(i) for & =  ai(s)yj subject to lim EpEm(d) =  a, lim £ p£ m(a — a)2 > 
lim EpEm(<%0 — a)2 with d0 given by (11) and

(ii) for  $ =  bi(s)yi subject to lim EpE J f i )  =  j8, lim EpEm(P -  /J)2 > 
lim EpEm{j?0 -  j?)2 with P0 given by (12).

Remark I: If (yh x ;), i e U are available, the usual least squares estimators for j? 
and a are respectively

If (_V;> *;) were available only for i e s, then the estimators would respectively be

Since is available for i e U and _y; only for i e  s in the present case, fls may 
reasonably be replaced by

p* =  Z  wini I '  V‘x ‘wi ~  E ' JW  I  x iwiXj .

similarly for ds. This p* matches p0; so for ds.



We shall take as a measure of error of p0 the following quantity denoted by
V and get an estimator for V and treat that estimator of V, say, v as the vari­
ance estimator for /50. Let us write V =  lim EpEm{p0 — /?)2. Then we get

V = lim Ep bf0af

: lim E r V ' J_ 
a?

D2

Remark II: Thomsen (1978) in his model considered the special case, namely, 

of = a2 , ct( >  0, unknown) , (14)

for every i in U. Restricting to (14), we get

<T2

writing

\2

Remark III: Assuming model M  with restriction (14), the optimum design 
is one for which “7c,’s are such that B is the maximum for a given X  — 
(x1;... ,  x h . . . ,  x N)'\ recalling that 7t; =  n”. Since B is known, we need to 
estimate a2 in order to estimate V. For this we proceed as follows. Let us write 
h  = $o + fi0x h take as a predictor for y f and Y  =  £  % — N&0 +  p0X  as a 
predictor for Y. Let

e: = y t -  Pi =  y t - & o -  fro ,

the residual in predicting yh i e U. Let us also note that the following simplified 
forms under (14), for d0, ft0, namely,



writing z; =  x ty it z, y, x, e for the sample means of zh yh x h e,’s and

It is then easy to check that

*o = y - f r o ^ X l - (19)

So, we may write

- y ) ~  h  (*i  -  ) • (20)

Using Brewer’s (1979) approach and Slutzky’s theorem let us observe, omitting 
the easy proofs, the following

Lemma:

(i) lim ntXi , (ii) lim Ep £ '  x f  = n tx f  and

(iii) lim Ep £ '  (x; -  x)2 = £  ni ( x, -

So, assuming a large sample size, we may approximate 

(/)' I  £  nix i by x , (ii)' £  nt ( x; -  by (*; -  x)2

(iii)' &  by A  -  • (21)

the usual ‘ordinary least squares’ (OLS) estimator of /? for simple random 
sampling,



(it;) a0 by d'0 =  y -  using (19) and
(n -  I K

(v) et by <2i =  (y; -  y) -  /^(x, -  x), using (20) , 

Then using (1) we get

So,

Y ' e ?C ^  1 =  /r2
^"h - 1  * ■

(22)

So, finally we propose the quantity

I ' e . 2
n — 1

as an estimator of a2 and hence

T nix i
(23)

as an estimator for K 
Similarly, we may take as a measure of error of a0 as an estimator of a the 

quantity

W = lim EpEm(&0 — a)2

which simplifies, using Slutzky’s theorem, to

W  =  lim Ep

= L
JZ:Xl
<?r

^
O: <7:

D2



Using restriction (14) it reduces to

2

»Z n ix f  -  Z n tx i

(24)

So, we propose the estimator w for W  i.e., w as a variance estimator for a0 
given by

Using these it is possible to work out formulae for variance estimators of these 
dc0, p0 following the above approach, with or without approximations indi­
cated above. But as the formulae look more cumbersome we do not present 
them for the sake of simplicity.
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(25)

If we retained the form of =  a2f ,  then we would get
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