SOME T₂—CLASS OF ESTIMATORS BETTER THAN H-T ESTIMATOR

PULAKESH MAITI AND T.P. TRIPATHI

The T_2 -class of linear estimator [Horvitz and Thompson (1952), Koop (1963)] for Y, the population total of a character y, in case of general sampling designs, is revisited and a subclass of biased estimators from T_2 better than H-T estimator \hat{Y}_{H-T} is identified. It is found that, in case of a class of sampling designs, we may always generate estimators better (in the sense of having smaller mean square error)than \hat{Y}_{H-T} . We also study another biased subclass of estimator $T_2 = \lambda \sum_i y_i/p_i$ where $p_i = x_i/\sum_i x_i$, $i = 2, \ldots, N$, x being an auxiliary chaics racter, and λ is a suitably chosen constant. Some members from T_2 are shown to be better than \hat{Y}_{H-T} , under a super-population model.

1. Introduction—Let $U = \{1, 2, ..., N\}$ be a finite population of N (given) units and y be a variate under study which takes value y_i for the i-th unit of the population (i=1,2,...,N). Let

$$\overline{Y} = \sum_{i=1}^{N} y_i/N$$
, $\sigma_y^2 = \sum_{i=1}^{N} (y_i - \overline{Y})^2/N$ and $C_y = \sigma_y/\overline{Y}$ be the mean,

the variance and the coefficient of variation respectively of the character y in the population.

The T_2 -class of linear estimators [Horvitz and Thompson (1952); Koop (1963)] for population total $Y = N\overline{Y}$ based on any sampling design (not necessarily of fixed sample size) is defined by

$$T_2 = \sum_{i \in S} \beta_i y_i \tag{1.1}$$

where β_i (i=1,2, ...,N) is the coefficient attached with a specified unit i of the population. It may be shown that its mean square error is

given by

$$M(T_2) = Y^2 [\beta' A \beta - 2\beta' d + 1]$$
 (1.2)

where,

$$\beta = (\beta_1, \beta_2, \dots, \beta_N)', A = (a_{ij})_{N \times N}, d = (d_1, d_2, \dots, d_N)'$$

$$a_{ij} = (y_i/Y) (y_j/Y) \pi_{ij}, d_i = (y_i/Y) \pi_i, i, j = 1, 2, \dots, N$$

and π_{ij} for j=i is interpreted as π_i .

It is known, for general sampling designs, that the Hoivitz-Thompson (H-T) estimator,

$$\hat{\mathbf{Y}}_{\mathbf{H-T}} = \sum_{i=c} \mathbf{y}_i / \pi_i \tag{1.3}$$

with

$$V(\hat{Y}_{H-T}) = \sum_{i=1}^{N} \frac{(1-\pi_i)}{\pi_i} y_i^2 + \sum_{i=j=1}^{N} \frac{(\pi_{ij}-\pi_i\pi_j)}{\pi_i\pi_j} y_i y_j \qquad (1.4)$$

ts the best (in the sense of having smallest variance) estimator in the unbiased sub-class of T_2 where π_i and π_{ij} are the first and second order inclusion probabilities respectively.

Here in this paper, an effort is made to search for some estimators in T_2 better (in the sense of having smaller mean square error) than H-T estimator.

2. Existence of Estimators in T_2 better than \hat{Y}_{II-T} —From (1.2), it may be shown that optimum choice β_0 of β which minimises M (T_2) is a solution of

$$A \beta_0 = d \tag{2.1}$$

and (the resulting) optimum mean square error is found to be

$$M_0(T_2) = Y^3 [1 - d'A^{-1}d]$$
 (22)

Let $\nu(s)$ be the number of distinct units in a sample s (effective sample size) and $\nu = E\nu(s) = \sum_{s \in S} \nu(s) P_s$ be the average effective sample size.

It may be shown that a particular solution of (2.1) for a $\frac{c_0}{c_0}$ sign p, for which seS, $p(s) > 0 \Rightarrow \nu(s) = \nu$ is $\beta_0 = (\beta_{01}, \beta_{02}, \dots, \beta_{0N})$ where

$$\beta_{0i} = (Y/\nu y_i), i = 1, ..., N$$
 (2.3)

Clearly this optimum choice of β_i reduces T_2 to Y itself. We note that the UMMSE (uniformly minimum mean square error) estimator for Y does not exist at all in T_2 -class of linear estimators.

REMARK: It may be shown that for simple random sampling without replacement (SRSWOR), optimum choice of β_i is unique and is found to be

 $\beta_{oi} = (Y/ny_i) \tag{2.4}$

where n is the sample size.

Since the best (UMMSE) estimator in T_2 -class does not exist at all we look for some other estimators which may be better than \hat{Y}_{H-T} .

Let the weights β_i in T_2 be chosen such that $\beta_i = \alpha/\pi_i$ which reduces T_2 into

$$\mathbf{T}_{2}' = \alpha \sum_{i \in S} y_{i} / \pi_{i} \tag{2.5}$$

where of is a constant.

Let

$$D = \sum_{i=1}^{N} \sum_{j=1}^{N} (\pi_{ij}/\pi_{i}\pi_{j}) (y_{i}/y) (y_{j}/y)$$

$$a'_{1} = \min_{1 \leq i \leq N} \left\{ 1/\pi_{i} \right\}$$
and
$$a'_{2} = \min_{1 \leq i \leq i \leq N} \left\{ \pi_{ij}/\pi_{i}\pi_{j} \right\}$$

$$(2.6)$$

It may be noted that

$$D = \left[V \left(\hat{Y}_{\text{H-T}} \right) / Y^{2} \right] + 1 > 1$$
 (2.7)

Let

$$D_{1} = \left[\left(1 + C_{1}^{2} \right) / N \right] \left(a_{1}^{'} - a_{2}^{'} \right) + a_{2}^{'}$$

where C_1^2 is any known quantity such that

$$\left[N\left(1-a_{2}^{'}\right)/\left(a_{1}^{'}-a_{2}^{'}\right)\right]-1 < C_{1}^{2} < C_{y}^{2}$$
 (2.8)

where C_y^2 is the square of coefficient of variation of y.

Now we prove the following

THEOREM 1: The estimators in T_2 , with α satisfying $((2/D_1)-1)$ $\leq \alpha < 1$, will always be better than \hat{Y}_{H-T} .

PROOF: From (1.2) and (1.4), it may be shown that

$$M (T_2) \leqslant V (\hat{Y}_{H-T})$$
iff
$$\sum_{i=1}^{N} \sum_{j=1}^{N} (y_i/Y) (y_j/Y) \pi_{ij} \left(\beta_i \beta_j - \frac{1}{\pi_i \pi_j} \right) \leqslant 2 \sum_{i=1}^{N} (y_i/Y) (\beta_i - \frac{1}{\pi_i}) \pi_i.$$
(2.9)

Hence from (2.5) and (1.4)

$$M(T_2') \leqslant V(\hat{Y}_{H-T})$$
 iff
$$(1-\alpha) [2-(1+\alpha) D] \leqslant 0$$
 (2.10)

Noting that D > 1, (2.10) can never be satisfied for 0 < 1. Further observing that $1 < D_1 < D$, a sufficient condition that (2.10) is satisfied would be

$$[(2/D_1)-1] < \alpha < 1.$$

This proves the theorem.

REMARKS: (i) From (2.10), it may also be shown that T_2' will be better than \hat{Y}_{H-T} if α lies between (2/D)-1 and 1, the best choice of α being 1/D. Further none of the estimators in T_2' would be better than \hat{Y}_{H-T} if D=1.

- (ii) It may be shown that in case of SRSWOR, the best choice of α in T_2' would be $\alpha_0 = 1/[1+KC_\nu^2]$, where K = (N-n)/n(N-1). Thus, in this case, if C_ν^2 is known exactly, the estimator due to Searls (1964) would be the best in T_2' . As shown by Maiti and Tripathi [(1979), (1980)], estimators better than $\hat{Y} = N\bar{y}$ for Y, \bar{y} being the sample mean, may be generated even if C_ν is not known exactly.
- 3. Some other biased Estimators in T_2 better than H—T Estimator—Let x be an auxiliary character (which may be some suitable real valued function of some other variate, say z), closely associated with the main

character y. Getting motivation from (2.3), we set up $\beta_i = \lambda/p_i$, $p_i = x_i/X$ $X = \sum_{i=1}^{N} x_i \text{ giving a subclass of } T_2 \text{ as}$

$$T_2^* = \lambda \sum_{i \in S} y_i / p_i \tag{3.1}$$

where λ is a suitably chosen constant.

We shall study the performance of T_2^* compared to \hat{Y}_{H-T} . for fixed sample size designs (of size n) and under a super population model [Hanurav, (1966)] \hat{C} , specified by

$$G(y_i) = ax_i$$

$$V(y_i) = \sigma^2 x_i^g$$

$$Cov(y_i, y_j) = 0$$
(3.2)

where G, V and Cov denote the expected value, variance and covariance respectively for a given vector value of the auxiliary variable x, g is the super-population parameter and a and σ^2 are constants. It is pointed out that under (3.2), for g=2, and $Z\pi_i h_i \le 1$

$$\stackrel{\text{EM}}{(T_2^*)} \leq X^2 (\sigma^2 + na^2) \left(n\lambda^2 - 2\lambda \sum_{i=1}^N \pi_i p_i \right) + X^2 \left(\sigma^2 \sum_{i=1}^N p_i^2 + a^2 \right)$$
(3.3)

The value of λ which minimises $\mathcal{E}_{M}(T_{2}^{*})$ is given by

$$0 < \lambda_0 = \sum_{i=1}^{N} \pi_i \, p_i / n + \frac{(1 - 2 \overline{\lambda_i} \, \dot{P}_i)}{n + \sigma^2 / \alpha^2} < 1 \qquad (3.4)$$

and the (resulting) optimum expected mean square error would be

$$\stackrel{C}{\mathbb{C}} M_0 (T_2^*) \leq X^2 \left[- (\sigma^2 + na^2) \frac{1}{n} \left(\sum_{i=1}^{N} p_i \pi_i \right)^2 + \sigma^2 \sum_{i=1}^{N} p_i^2 + a^2 \right]$$
(3.5)

Further under (3.2), for g=2,

$$\hat{\mathcal{E}} V (\hat{Y}_{H-T}) = X^{2} \left[a^{2}. t + \sigma^{2} \sum_{i}^{N} p_{i}^{2} (1-\pi_{i})/\pi_{i} \right]$$
 (3.6)

where $t = \mathring{V}(\hat{X}_{H-T})/\mathring{X}^2$, $\mathring{V}(\hat{X}_{H-T})$ being given by (1.4) with y_i 's replaced by x_i 's.

Next, we prove the following:

and ZTiPi < 1

THEOREM 2. Under the model (3.2) with g=2, a sufficient condition for T_2^* to be \widehat{C} —better (in the sense of having smaller expected mean square error) than \widehat{Y}_{H-T} is $\pi_i \leq 1/2$ and $t \geq 1 - \left(\sum_{1}^{N} \pi_i p_i\right)^2$.

PROOF: From (3.5) and (3.6).

$$\stackrel{\text{C}}{\text{M}} (T_2^*) - V(\hat{Y}_{H-T}) \leq X^2 \left[- (\sigma^2 + na^2) \frac{1}{n} \left(\sum_{i=1}^{N} \pi_i p_i \right)^2 - \sigma^2 \sum_{i=1}^{N} p_i^2 (1 - 2\pi_i) / \pi_i + a^2 (1 - t) \right]$$

Thus
$$\hat{C}$$
, $M_0(T_2) \leqslant \hat{C} V(\hat{Y}_{H-T})$

iff $(\sigma^2/a^2) \geqslant \left[1 - t - \left(\sum_{i=1}^{N} \pi_i p_i\right)^2\right] / \left[\left(\sum_{i=1}^{N} p_i \pi_i\right)^2 / n\right] + \sum_{i=1}^{N} p_i^2 (1 - 2\pi_i) / \pi_i$

(3.8)

and the result follows.

REMARKS: (i) In case of SRSWOR, (3.8) reduces to

$$\sigma^{2}/a^{2} \geqslant \left[1 - KC_{x}^{2} - f^{2}\right] / \left[f'/n + \frac{(1 - 2f)}{f}\sum_{i}^{N} p_{i}^{2}\right]$$

where f = n/N is the sampling fraction and K = (N-n)/n (n-1). Obviously for $f \leq \frac{1}{2}$ and $C_x > (N-1)$ f(1+f), T_2^* would be better than $\hat{Y} = Ny$.

(ii) In case of π —P—S scheme where π_i =np_i, condition (3.8) reduces to

$$\sigma^2/a^2 \geqslant \left[n \left(1 + n \sum_{i=1}^{N} p_i^2 \right) \left(1 - n \sum_{i=1}^{N} p_i^2 \right) \right] / \left(n \sum_{i=1}^{N} p_i^2 - 1 \right)^2$$

which always holds in case

$$n > 1/\sum_{i=1}^{N} p_i^2$$
.

REFERENCES

- Hanurav, T.V. (1966). Some aspects of unified sampling theory, Sankhya, Ser. A, 175-204.
- Horvitz, D.G. and Thompson D J. (1952). A generalisation of sampling without replacement from a finite universe, J. Amer. Statist Assoc. 47, 663-685.
- Koop, J.C. (1963). On the axioms of sample formation and their bearing on the construction of linear estimators in sampling theory for finite universes-I and II, Metrika, 7, 81-114, 165-204.
- Maiti, P. and Tripathi, T.P. (1979), Use of prior information on some parameters in estimating population mean. Tech Report No. 23/79, Stat-Math. Division, I.S.I., Calcutta.
- Maiti, P. and Tripathi, T.P. (1980) Some results on T1-class of linear estimators. Tech. Report No. 25/80, Stat-Math. Division, I.S.I., Calcutta.
- Searls, D.T. (1964). The utilisation of a known co-efficient of variation in the estimation procedure. J. Amer. Statist. Assoc. 59, 1225-1226.