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SOME T,—CLASS OF ESTIMATORS BETTER THAN
H-T ESTIMATOR

PULAKESH MAITI AND T.P. TRIPATHI

The Te-class of linear estimator [Horvitz and Thompson (1952), Koop
(1963) ] for Y, the population total of a character y, in case of general sampling
designs, is revisited and a subclass of biased estimators from Tz better than H-T

estimator Yy _g is identified- It is found that, in case of a class of sampling
designs, we may always generate estimators better (in the sense of having smaller

mean square error)than Yy 4. We also study another biased subclass of estimator

* v .

T, = A 3 vi/p; where pi = x;/3 x; i= ,2..... N, x being an auxiliary cha-
ies - 1 *

racter, and A is a suitably chosen constant. Som: members from T, are shown

to be better than Yg-1, under a super-population model.

1. Introduction—Let U= {1,2...,N} be a finite population of N
(given) units and y be a variate under study which takes value y; for
the i-th unit of the population (i=1,2,... ,N). Let
N N )
Y = z yi/N, a:, = Z (y,-——?)"/N and Czl=0'y/Y— be the mean,
T

i=1

the variance and the coefficient of variation respectively of the character
y in the population,

The Ty—class of linear estimators [Horvitz and Thompson (1952);
Koop (1963,] for population total Y=NY based on any sampling design
(not necessarily of fixed sample size) is defined by

T2= z ﬁ" Yi (1.1)

ies
where B (i=1,2, , . . ,N) is the coeflicient attached with a specified unit
1 of the population, It may be shown that its mean square error is
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given by
M (To)=Y2 [f'AB—28"d+1] (1.2)
where,
Bz(ﬁl’ Bz, ve e ’BN)'! A=(aii)NXN s d—"—“—(dl, dz, ve s ,dN)/
a’ii=(yi/Y) (Y7/Y) Tijy d1=(y2/Y) Tiy i? j=1,2, LRI §N
and m;; for j=i is interpreted as ;.

It is known, for general sampling designs, that the Horvitz-
Thompson (H-T) estimator,

§II-T = z yifms (13)
with les
A% (gf'n-T) = ZM Y¢2 + z z (mfm;r’nr,) yiys - (1.4)
£=1 i=j=1

ts the best (in the sense of having smallest varianee) estimator in the
unbiased sub-class of T, where ; and ar;; are the first and second order

inclusion probabilities respectively.

Here in this paper, an effort is made to scarch for some estimators
in T, better (in the sense of - having smaller mean square error) than
H-T estimator,

2. Existence of Estimators in T, better than SA(HAT'—'-From (1.2), it may
be shown that optimum choice By of B which minimises M (Tp) isa
solution of

A Bo=d 2.1
and (the resulting) optimum mean square error is found to be
Mo (Ts) =Y3 [I—d'A " d] @2)

Let v(s) be the number of distinct units in a sample s (effective sample

size) and v=Ev(s) = z.v(s)l P, be the average -effective sample size,
seS
It may be shown that a particular solution of (2.1) for a &sign p, for
which seS, p(s) > 0 = v(s) =v is By= (Bo1, Boz - - . sPox) Where
Boi= (Y/vyy),i=1. ... ,N 2.3)
Clearly this optimum choice of g; reduces T, to Y itself. We note that

the UMMSE (uniformly minimum mean square error) estimator for Y
does not exist at all in Ty~class of linear estimators.
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REMARK : It may be shown that for simple random sampling without
rcplacement (SRSWOR), optimum choice of 8; is unique and is found

to be
Boi= (Y [ny3) (2.9)

where n is the sample size.
Since the best (UMMSE) estimartor in Te—class docs not exist at all

we look for some other estimators which may be better than Y.

Let the weights g8 in T, be chosen such that Bi=o{/#: which
educes T, into

T;:o(z yilms (2.5)
ies
where ¢ is a constant.
Let
N N
D=3 > (mulmm) (54/3) (y31y)
i=1 j=1
a;= min { 1/
ISiKN (2.6)
and a‘2= min i
1<ii<N |
It may be noted that
A 2

Let
pim [( 1) ](siel) +

2
where C; is any known quantity such that
1l 1 ] 2 2
-] -1<ci<d eo

2
where Cy is the square of coefficient of variation of y.
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Now we prove the following

THEOREM 1 ; The estimators in T, with ol satisfying ((2/Dy)—1)
<, will always bz better than S?H.T.

PROOF : From (1.2) and (1.4), it may be shown that

M (To) < V Vo)

N
GIY) 010 7 (Bi— ) <2 D 0/Y) (Be—) e

NGE

i=1

N
iﬁz

F=1 i=1
2.9
Hence from (2.5) anc (1.4)
M(T,) < V(Y1)
iff (I—o) [2—(1+c) D} <O (2.10)

Noting that D > 1, (2.10) can never be satisfied for of > 1.
Further observing that 1 < D; < D, a sufficient condition that (2.10)
is satisfied would be

[@/D) —lI<A <L

This proves the theorem.
REMARKS : (i) From (2.10), it may also be shown that T; will be
better than \A/H_T if of lies between (2/D)—1 and 1, the best choice of
ol being 1/D. Further none of the estimators in T’z would be better
than Yip if D=1. |

(ii) It may be shown that in case of SRSWOR, the best choice of
ol in le would be =1/ [I+KC2,, 1, where K=(N—n)/n(N-1).
Thus, in this case, if Cj, is known exactly, the estimator due to Searls
(1964) would be the best in T;. As shown by Maiti and Tripathi [(1979),

(1980)], estimators better than §’=N)7 for Y, y being the sample
mean, may be generated even if Cy is not known exactly.

3. Some other biased Estimators in T, better than H—T Estimator—
Let x be an auxiliary character (which may be some suitable real valued
function of some other variate, say z), closely associated with the main
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character y. Getting motivation from (2.3), we set up fi=7/pspi=xi/X

N
X= z x; giving a subclass of T, as
1
¥
T, =2 Z YD (3.1)
ics

where 7\ is a suitably chosen constant.

We shall study the performance of T: compared to Yar for fixed
sample size designs (of size n) and under a super population model
[ Hanurav, (1966) ] 8, specified by

& (y3) =ax;
V (ys) =02 x}
Cov (yuy) =0 (3.2)

where g, V and Cov denote the expected value, variance and covariance
respectively for a given vector value of the auxiliary variable x, g is the
super-population parameter and a and o2 are constants. It is pointed
out that under (3.2), for g=2, Omd 27k <1

N N
EM (1) £ X' (¢*+na?) (w-z A pi) +x (crz S+ az)
i=1 1

(3.3)
The value of A which minimises 8 M (T:) is given by

0< No= z e pifn ¢ 228k (3.9
pact M acYar

and the (resulting) optimum expected mean square error would be

N 2 N
8M° (T:) £x [— (6?+na?) _:1. (z pi 7 > +0® Z ’pf -+ a? ]
1 1

[

(3.5
Further under (3.2), for g=2,

A 9 N
Ev Yip) =X [ a% t & g z p? (1-—-11',')/'175] (3.6)

1
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A 2 A
where t = \*/(XH_T)/X R \’;(XH_T) being given by (1.4) with y;'s
replaced by x/’s.

Next, we prove the following ¢ 1

and 3TH S
THEOREM 2. Under the model (3.2) with g=2,[a suffic:ent condition

for T: to be g—better (in the sense of having smaller expected mean

N 2
square error) than Yn_T isw << 1)2 and t > 1— (z e p;) .
1

PROOF : From (3.5) and (3.6).

N 2
& M (Ty) — V(Yu-1) <x |:"" (“"*‘“az)’% (z i pi)
T

N
—a?$' p* (1—2m)/m, + (l—t)]
Thus &, M(Ty) < E V(¥ra)

s [ o ) (-

N
+ 2 Pt (1—2m)/m; ] 3 8)

REMARKS : (i) In case of SRSWOR, (3.8) reduces to

02/a2>[1—Kcz—f2} [f/ n + 2”2 ]

@here f = n/N is the sampling fraction and K= (N—n) /n (d—1).

and the result follows.

2
Obviously for f < } and C; > (N—1) f (14-f), T: would be g—better
than ?:N)-Z

(i) In case of #—P—S§ scheme where mi=np;, condition (3.8)
reduces to
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/(n i pi —1)2

e >. : n(l-{—nipﬁ)(l—nipj) /

i=1 i=]

which always holds in case

N
n>1/Zp2¢.
i=1
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