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SUMMARY. We consider the problem of ecstimating population mean ¥, of a
character y, using information on some other parameters of §. A class of estimators,
which are linear function of § and a suitably choson statistic ¢, is presented ; general
properties of the class are studied and the optimum weights and the resulting optimum
mean square error are found. A general technique of generating estimators better than
sample mean § and Searls’ estimator (1964) is given snd a member of such biased
estimators are identified, for some choices of #, under very moderate conditions depending
on the prior knowledge of the quantities which aro smaller or greater than the actual
values of some population parameters.

1. INTRODUCTION

Let y be a variate (real) with population mean ¥, variance ¢2 and
coefficient of variation Cy(=0,/Y). Searls (1964) considered an estimator

T, = Ag e (L1)

for Y where § is the sample mean based on a simple random sample of size
n and A, is a suitably chosen constant. In case Oy is known exactly, the so
called Searls’ estimator

Ty = [n)(n+C)lg
with v (L2)
M(T,) = Y*Cj[(n+C3)

is the best (in the sense of having smallest MSE) in the class of estimators 7.
Hirano (1972) considered an estimator
Ty = [n/(n+-C3)7 | . (1.3)

in case a good guessed value of C%, say Cf, is known.
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In this paper, we have considered a class of estimators, for Y, defined by

C,,=1{d:d=12n"v} o (L4)
where
v =(7,t) and A = (A A,)

t, being a suitably chosen statistics such that its variance o} exist; and A, and
A, being suitably chosen constants. Our main object is to present estimators
better (in the sense of having smaller MSE) than those in 7'; (and hence better
than ¢, T, and T'; also).

Let g, denote the r-th central moment.of the. character y and

Br= i3, Br= % Yy = 0% e (LB).

Depending upon the situation, we shall assume the knowledge of Oy, 552

which are such that

0<C <G,
and ... (1.6)

B2 < BP.

2. PROPERTIES OF THE PROPOSED OLASS OF' ESTIMATORS

The estimators in the proposed class C,, are, in general, biased and their
biases and mean square errors are given by

B(d) = AN'¥—-Y . (2.1)
and
M(d) = NGA—27XN¥Y? e (2:2)

respectively, where-

( B¢ Eg) ) ( Y )
G= [ i w .
Eg)  Be Et

It may be shown that the optimum . choice. A, of X, which: minimizes: M(d),
is:a solution. of
Gr= YY¥ : v (2.3)

which is a consistent equation, i.e., always yields a solution for A, and hence

A= TG e (2.4)

where G is a g-inverse of the matrix' G..
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The resulting (optimum) MSE of d would be given by -

Myd) = TH1—¥(G)¥] . (2.5)
and the resultmg biag would be
Byd) = —Md)| 7. . (26)
It ﬁxa.y be noted that 4
Md) = Y{1—-AP[Y]. .. (2.7

It may be noted that the matrix G, in general, is non-negative and would
be non singular, if we exclude the trivial cases § = 0 a.s. and ¢ = bj, where b
is a constant. In case G is a positive definite matrix, Ay = (Ay, Apy)’ and
M(d) would be given by '

An = Y(EGNEE)—(E)(Eeg)][DG, ©) oo (28)

Aoz = Y(E)NEF)—(EF(EFH]D(T, t)
and
M(d) = YH1—-N(G, t)[D(g, )] we (2.9)
where o
D(g,e) = (EF)NB®)—(Egt)*
= YE)H(1—pY)0}0;+ 03407 —2p0;C1]
N(g, t) = YAEt)(C;—2pCy5C,+CF)

Oy and C; being the coefficients of variation of 7 and ¢ respectively and p being
the correlation coefficient between # and &.

It may be noted, from (2.9), that for any fixed p the M (d) is an increasing
function of 0;. Hence if #' and ¢” are two choices of ¢, both having the same
correlation with 7, then the use of ¢ in d would be preferrable over that ¢ iff
Cype << Oy,

- From (2.9) and (1.2) it is found that if A, = (A, Ay,)’ is known exactly,
the optimum estimator dy= Ayg+A,t would always be better than the
Searls’ estimator 7', and hence than 7 and T, = A,;j also. However, if ¢ is
such that p = Cg/Cy, T, and dy would be equally efficient.

In practice A, would not be known, as it depends upoh a number of
parameters. The following technique would help, in that case, to generate
estimators from d better than 7, 7, and 7',. .
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From (2.2), we may write

M(d) = M(T)+XEe—2A{V(Et)—AE(t)}. . (2.10)

For a specified A,, the estimator d = T,+A,¢ would be better than
Ty=M\g ‘
iff A, lies between 0 and 2235, .. (2.11)

where
Aop = [(A—=2) Y (B)— Ay cov(g, )} E(?)
is the optimum choice of A,, for fixed A;. in d.

For a specific choice of the statistic £ and specified A;, we shall find, as
in (2.11), that, the estimator d would be better than 7 or T, iff A, lies between
0 and 223, say. Obviously, A; would be a function of some unknown popula-
tion parameters, say ¥ and the vector @ can be decomposed into component
vectors say, ®,, ®,, ®, such that |Aj| is non-decreasing in each component of
@, and non-increasing in each component of ®,. If ®], ®;, ®; are known
quantities such that &, > &}, ®, < ¥, ®;=&; hold and moreover
sgn[A3(@)] is known then p* = sgn{Ay($)]|Ay(¢*)| is a known quantity and
then it is obvious that, for agiven A,, we shall have M(d) < V() or
BM(d) < M(T,) for all u such that either 0 < 2 < 2u* or 2u* < g2 < 0 holds.

Let A} = n/[n+C3], where Ci < Of so that the estimator 7] = Alj is
better than the sample mean 7.

Let
d* = TiA L. . (212)

We shall make use of the notation (1.6) and
A = fyHn*—2n+3)/n—1)
Ay = P4 (n*—2n4-3)[/(n—1) e (2.13)
+1 for positively skewed distributions
a = ? 0 for symmetrical distributions
L —1 for negatively skewed distribution.

Uging (2.10), (2.11) it may be shown that
di = Ti+2y(s%/§)
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would be better than T} (and hence § too) iff A, lies betweon

An(CE+C))+ C}0%—av/B,0y(CR+n)] . (2.14)

0 and (- CHCEA"

and a set of sufficient condition for d} to be better than 7'} and 7, in case of
symmetrical distributions, would be

2[n(C3+Cf))+C8CH
(n+C)C%(A 9 +3C)

0<A, < (2.15)

The sufficient condition in case of positively and negatively skewed distributions
may be obtained likewise by using the appropriate bounds of involved para-
meters.
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