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DIFFUSIONS AND THE NEUMANN PROBLEM
IN THE HALF SPACE

By 8. RAMASUBRAMANIAN
Indian Statistical Institute

SUMMARY. The inhomogeneous Neumann problem for certain classes of second order
elliptic operators in the half space is investigated using the associated diffusions with normal
reflection.

1. INTRODUOTION

Consider the Neumann problem

@) = —f@), xeG |
J (L1)

ou
%(w) = —g(®) , Z € G

where G C R¢ is open, L is a second order elliptic operator and n is the
direction of the inward normal. If @ is a bounded domain, this problem has
been investigated using probabilistic methods by several authors. See Ikeda
(1961), Watanabe (1964), Brosamler (1976) where L is the generator of
a diffusion ; see Hsu (1985), Chung and Hsu (1986) for the homogeneous
Neumann problem for the Schrodinger operator ; Freidlin (1985) gives the
stochastic representation for the solutions.

In the case of the bounded domain and when L is the generator of a nonde-
generate reflecting diffusion in @, the concerned diffusion is ergodic ; and the
transition probability converges to the invariant probability measure g
exponentially fast. Consequently

t t
w@) = lim B_[ [ f(Xs)ds+ [ ¢(X(s) d&lo) | e (12)
t—yo [} [1] k.
is well defined, provided f, ¢ satisfy the compatibility condition
T fi) dutae) 5 | al@e@hu) = o e (13)
[

where ¢ denotes the local time at the boundary, and « is a suitable function
given in terms of the direction cosines of the normal and the diffusion coeffi-
cients. In such a case u is a solution (in a suitable sense) to (1.1) ; also « is the
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unique solation such that [ w(®) du(x) = 0 ; (the latter fact does not seem
to be explicitly mentioned in the literature). The compatibility condition
(1.3) is also a necessary condition.

The aim of this paper is tc investigate using probabilistic methods, the
inhomogeneous Neumann problem when ¢ = {xe R% 1z, > 0} is the half
space and L is the generator of a diffusion process. To our knowledge such
an investigation has not been carried out for any unbounded domain. (The
homogeneous problem for the Schrodinger-type operator L 4g in the half space
has been considered by the present author (1992) ; but the results do not apply
here as the concerned gamge is infinite). In the cases considered here the

(L, %—)-diffusion {X(#):t> 0} can be written as {(X,(f), X(t))) where
1

{X ()} is a reflecting diffusion in [0, c0) with generator L; and (X@)}is d—1)—
dimensional diffusion with generator L,, where the coefficients of Ly depend
only on z; and those of L, depend on (x,, ..., %a).

The main difficulty in extending the results to unbounded domains is the
lack of information about the rate of convergence of the transition probabilities
to the invariant measure.

In Section 2, preliminary results concerning the diffusions in G are
obtained. In Section 3, we consider stochastic solutions for the Neumann
problem when L, = Laplacian, L, has periodic coefficients and f, ¢ are
periodic in (z,, ..., xg). So our analysis is essentially over [0, 00)X T4 ; and
the invariant measure is Lebesgue measure on [0, 00) X @ probability measure
on Td-'. With the compatibility condition (B 3) which is similar to (1.3),
(and two technical conditions) we are able to show that u given by (1.2) is a
golution, and is unique in an appropriate class : also the condition (B3) is
a necessary condition.

In Section 4, we consider the case when L, is self adjoint, L, has periodic
coefficients and f, ¢ are periodic in (x, ..., zz). Once again the problem is
reduced to [0, 00) X Té-! with the same invariant measure as in Section 3.
But the compatibility condition (C3) is stronger, and perhaps it is not a nece-
ssary condition ; (see the remarks at the end of Section 4). However, for the
homogeneous problem, (C3) is the same as (B 3) and we get a complete picture.

In Section 5 we consider the case when L is the Laplacian ; here
the invariant measure is the Lebesgue measure. The data f, ¢ are bounded
functions having finite second moments and satisfying the compatibility condi-
tion (D 3), which again is similar to (1.3). In addition to analogous results
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as in the preceding sections, we also give, using the spectral representation,
a criterion to realise the solution as a continuous function va.msh,mg at mﬁmty

In the last section L is assumed to be the generator of the Ornstein—
Uhlenbeck process, which has a Gaussian invariant measure. Our analysis
hinges upon Propositions 2.4 and 2.5 which concern respectively the rate of

convergence of ¢(¢, @, y) to v(y), and that of a, (w )y) to . unity, where ¢ is

the transition probability density of O—U process and v is the invariant
density.

It may be noted that the existence of a stochastic solution depends on
well definedness of u(as given by (1.2)), which in turn depends on the com-
patibility condition ; and uniqueness depends on'lim E (u(X(t)) = 0. The

e 7

latter condition is a natural one from the probabilistic point of view. This
is ome main reason for investigating the problem using probabilistic methods.
though our arguments can be rephrased analytically. (Another reason is
that probabilistic method gives an elegant continuous solution for measurable
data). It-would be interesting if conditions without involving the time para-
meter ¢ can be put to ensure lim E (u(X(f))) =0; (see e.g. Theorems 4.2,
5.4, 6.1). o e |

Using the estimates given in the following sections, it is easy to establish
the continuous dependence of the solution on the given data. Also our results
readily extend to those diffusions which are diffeomorphic to any of the cases
considered here ; (such diffusions can be easily characterised using Lemma 3.5
of Ra.masubramaman (1988)). o D

 Before ending this section we show by an example that, in spite of our
(seemingly strong) conditions, the problem can not be reduced to a bounded
set or t0 a lower dimension. : :

1, 02 62
] Exa,mple.b Let d =2, @={x,, @): 2, >0}, L= ?( el + o )
f(.)=0, 9(0, x;) = cos® 2mmx,. Clearly ¢ is a periodic function on dG such
thatde“qa(:vz)dxz = 0. Suppose there exists a solution u(z,, z,) to (1.1) of

the form
u(zy, @) = (%) Ug(%,) * o (1.4)
Note that (1.4) and the boundary condition imply that u,(x,) = ;%0‘) o(2,)
1
and hence uy(0) 0. It now follows from the differential equation that

A 3-8
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uy(1)Q" (05) = —uy(2,)p(x,). Since uj(0) 7 0, there is an z, such that u,(2;) # O
Therefore —— [¢"(x2)] = constant, which is not possible. Thus there can not

()
be a solution of the form (1.4) to the problem (1.1).

2. DIFFUSIONS

In this section we put together certain results concerning reflected diffu-

sions in the half space @, which will be of use in the subsequent sections.

(i) Self-adjoint X Periodic case. Let G = {x ¢ R% : z, > 0} where d >
We have the diffusion coefficients a, b satisfying the following conditions.

(A1) : For each 2 ¢ @, a (®) = (ay(@))ici, < 4 I8 & (d%d) resl symmetric
positive definite matrix and b(a) = (b, (), ..., ba(®)) is & d-vector. The func-

tions ay (.), bi(.) eCE(Q) for 1 <4, j < d. There exist constants A;, A,

such that 0 < A, < A, < o and for any ® ¢ G, any eigenvalue of a(a) €Ay,
Az]-
(A2) : @y, b, are independent of z,, ..., zg; oy =an =0,j=2,...,d;

1 4

45, by are independent of 2, for 2 < 4, j < d. Also b, (z,) = 5 —Ex—l—an(xl), and
b, (0) = 0.

(A3): For i, j=2,..., d the functions ay (.). bs(.) are periodic in
%y, ..., g With period 1 in each variable.

Note that the functions a,,, b, can be extended to the whole of R by

G11(%y) = ay(—y), by () = —by(—2y), if #, <O. e (2.0)

These extensions are again denoted by a,;, b, respectively. For any
& = (2;, g, -.., Zqg) we shall denote T = (2, ..., 2g) and we shall often identify
G with Rd-1,

Define the elliptic operétors L,, L,, L respectively on C?(R), C* (R21),
C* (R%) by

1 d?h dh
Ly b (z)) = ?“u () 'd;? (2y)+by(2y) ’d—xl“(xl), .o (2.2)

~ a
Lo@ =5 2 o@ 500 @+ 0@ L@ .. @

=2

.

2

Lz#(w)-—;— >3 aﬁ()a ‘gx(w)+z b,(w)ai e (2.4)
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Let Q, = C([0, ) : R), Q, = ([0, ) : R%¥1),Q = C([0, ) : R%) and
Q= C([0, ©) : T4-") be endowed with the topology of uniform conver-
gence on compacta and the natural Borel structure. (Here Té-1 denotes
the (d—1)-dimensional torus). Let X () (sometimes written X;) denote the
¢-th coordinate map on Q; let f(t) = (X,(t), ..., Xa(t)) and X(t) = (X,(%)
mod 1, ..., X,{f) mod 1).

@

Let {Pz : « ¢ G} be the (L, 2 ) diffusion in G ; {P;,

. d~1
o, :xe R }bethe

L,-diffusion in R4-1 ;{PS}: > 0} be the (Ll, 5% )-difusion in [0, o). These
1

are the families of probability measures respectively on Q, Q,, €, solving
the appropriate martingale problems. (It may be mentioned that {P} and
{P,)} are diffusions with normal reflection atthe boundary) Because of our
assumptions (A1), (A2) note that L, and L, are generators of diffusions ; also
L, is self-adjoint.

Under the assumption (A1), there exists a continuous, nondecreasing,
ronanticipating process £(f) on Q such that

() &) = f} Te (X(s)) déls) ; ]

(b) for every ¢ ¢ C3 (R%), \ .. (2.5)

¢
IOy~ | Tpxends— | I (X)) deto)
1

is a continuous P,-martingale with respect to {8s}. ]
where £8: = o{X(s) : 0 < s < #. This process, called the local time at the
‘boundary, is uniquely determined. (see Stroock and Varadhan (1971)).

Proposition 2.1. Let (A1), (A2) hold. Then for any & == (%, Xy, ..., ¥a) in G,

Pp=PJ xP;” .. (2.6)

where & = (x,, ..., za). The processes {£(s)} and {X(6)} are independent. Also
for t>0,w,ye§,

o0, ®, y) = pylt, 2, 3) palt, . Y) o (27)
where D, p,, P, are respectively the transition probability density functions of
( L, ;-)-diffusion, ( L, 9 )—diffusion and Ly—diffusion processes ; in parti-

21 oz,

cular, the three diffusions are strong Feller.
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Proof. The first two assertions are immediately seen by writing down
the stochastic differential equations for the < L, —a%— )-—d.lffllSlOIl ; (see  Tkeda
1 : :

and Watanabe (1981)). To prove (2.7), extend the coefficients to R? using
(2.1). Consider the diffusion in R? with generator L ; let (¢, &, y) be the
transition probability density function of the L-diffusion R% Note that p
1s obtained from I' by the method of images. In view of our assumptions,
(2.7) is now immediate. [

Remark 2.2. Using Green’s formula it can be shown that, for any bounded

measurable function g on 0G(=~ Ré-Y), xe G, t > 0,
¢ 12
B | [ o) di)]= 5 | [ au@y)pis, =, y) doty) ds
0 0 oG

1

= —2‘5 &[ 1“11(O 9(?/)2’1(3: z1 0)pyfs, .’L‘, y) dy ds ... (2.8)

R

where E,, denotes expectation with respect to P, and do( . ) denotes the (d—1)
—dimensional Lebesgue measure on 9@ ; note that the second equality in
the above follows by the preceding lemma. (In what follows, the notation

da(y) or. dg; will be used according tc convenience).

Proposition 2.3. Define ¥ : Q, > Q by (¥ 13) () = (woft) mod 1, ...,
walt) mod 1) 5 put X(t) = (Xy(t) mod 1, ..., Xa(t) mod 1). For 26T let P,
= PP¥-1, Assume that (Al)—(A3) hold. Then ({X(f)} is @ T4 valued
continuous, strong Feller, sirong Markov process under {ﬁ.%}’ also

-

Dt &, Y) = T pyt, @, y+Fk) . (2.9)
keZi

i8 the transition probability density function of {f(t)}. Moreover, there exists
@ unique twice differentiable periodic function p on R such that

T£_1 py)dy =1, .. (2.10)
Lp(y) = 0, y e Ré-1, .. (2.11)

2. r u ” - ~egt
LT L IBGE D@ <o . @)



NEUMANN PROBLEM IN THE HALY SPACE 357

where ¢, ¢, are positive constants independent of t, Ly is the formal adjoint of
Ly ; in other words, under F,,( = 13;,( ) p(a‘,:)d:f the process {X(t)} is
Ta-1

ergodic.

Proof. The first assertion is elementary to prove. Since X (¢) is a Feller
continuous diffusion on the torus T4, by results in Bensoussan, Lions,
Papanicolaou (1978, Chapter 3, Section 3) it follows that there is a unique
invariant probability measure p(y)dy on Té-1 satisfying (2.10)-(2.12); (see
also Bhattacharya (1985)). The regularity of p follows by the regularity
theorems for solutions of second order elliptic equations. []

(ii) Ornstein-Uhlenbeck process. We now consider a version of the

Ornstein-Uhlenbeck process in G with normal reflection at the boundary.
In this case the diffusion coefficients are given by ay(®) = &y, bi(®) = —ax,
14, j<d. The generator is

_ 18 @ L @)
L’ﬁ(w) = '2' i§1 ‘a—x?*—"glxi ——a-x‘— . (213)

In this case the transition probability density function is given by

at, (21, @), (92, 9)) = @1t 70, ¥1) Gult, @, U) (2.14)
where
(2.15)
-1 . |
b T - R I

Note that q; is the transition probability density of the 0.U. process in [0, o)
with reflection at 0, and g, is the transition probability density of the (d—1)
~dimansional 0.U. process. Let {P, : @ ¢ G)} denote the corresponding family
of probability measures on Q. By writing down the stochastic differential
equations for the O.U. process it can be seen that there is a uniquely deter-
mined continuous, nondecreasing, nonanticipating process {£(f)} on Q satis-
fying (2.5). Note that all the assertions of Proposition 2.1 and analogue of

(2.8) hold also for the O.U. process {Py : ¢ G

the
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It is easy to check that there is a unique invariant probability measure

v(y)dy on @ for the 0.U. process with normal reflection ; in fact

WY) = »(y;) w(Y) . (207)
here vy = lim g, 21, 1) = 2 e-—y§ . (2.18)
t~» oo ’\/ﬁ
~ . PN 1 @-vre (] :
n(Y) = lim g0, @, y) = (; ) oxp (~ z y%) . (2.19)

for y, > 0, y € RIY,
Proposition 2.4. Let t; > 0. Then
lqt, @ y)—ry)| < K, e 2%4+-Ky|x|e? ... (2.20)

forall t>t, 2 y ¢ G, where the positive constants K, K, are independent of
L2t @ Y.
Proof. Tt is sufficient to prove.

( ) exp _(ﬁﬂ>]_e-,2

——" =) <KAo @2)

for t > ¢,, @, § ¢ R, where K,, K, are positive constants independent of ¢ > £,

o, p.

—Be\?
Put ¢ == et and set A (€) = (—1—»}625; exp [—%:_%%—] where &, § ¢ R are
arbitrary but fixed. It is easily verified that ‘
, O, ¢ G\
[K(e)| < (1_162)3,2 +(12_62|) . (2.22)

for all 0 < e <1, o, #cR where the constants O,, C, are independent of
¢, o, B. From (2.22) it is simple to obtain the inequality (2.21). This com-
pletes the proof. [

Proposition 2.5. Let £, > 0 and H C G be a compact set. Then
at, 2, y) < e thotby Y|+ +Raly|DBy) ... (223)
forallt > ty, xe H, ye G, where the positive constants kg, ky, ..., kq depend only
on by, H. ‘
Proof. It is sufficient to prove that for £, > 0, £, > 0,

l\ (Tl_—}——— )1/2 exp [_w]_e—ﬁ

—e %) (1—e %) < O(1+|a))etes® ... (2.24)
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for all ¢ > &5, |B] < By, @ €R, where the positive constant C depends only
o by B
Put € = ¢~*. 1t is simple to check that

. —a2 — f2e2
Lhs. of (2.24) < '(T-%Eﬁﬁi [l—exp[ _(ifﬂng” ; T i=an 62)1/2

—al

L ey p[ e ” _ exp[ —(a%e—2affe) ]f ... (2.25)

(1 —e2)12 ex 1- 6‘2) (1—e?)
Since the first two terms on the r.h.s. of (2.25) satisfy the required bound, it
is enough to prove that the third term also satisfies the required bound.

v 2 g2
Set g(a) = exp{ _(“_e(l_i}g{f_)_ .! It is not difficult to verify that

fr0<e<1, feR,

Lk ] ... (2.26)

sup {g(a) aeR} = exp[ e

sup {|a g(@)| : z e R}

- Elé [ﬂ+\/ﬂ2+2—-2e’] exp [ ﬁz*'ﬂ(ﬁ’;tf:;‘;z)l/z*l“z] .. (227)

Using (2.26), (2.27) and the mean value theorem, it is now easy to verify that

the third term on the r.h.s. of (2.25) also is dominated by the r.h.s. of (2.24)

for all ¢ > t,, |#| < By, xeR. This completes the proof.

3. NEUMANN PROBLEM : I, = LAPLACIAN, L, HAS PERIODIC COEFFICIENTS
We now consider the inhomogeneous Neumann problem for L in the

half space G. That is, for a measurable function f or @ and a measur-
able function ¢ on @, to find an appropriate function u such that

Lu@) = —f(x), ¢ e @ }

0
%?—'i-(m) = — o(®), ®edG 3.1)

A3 in Hsu (1985), Ramasubramanian (1992), a measurable function » on q
is called & sfochastic solution to (3.1), if for each z ¢ @ ’
¢ t
| Z(t) : = wuXO)—uXO)+ [fX(Nds+ [ oX()dE(&) - (32)

is a continuous P,-martingale with respect to &, where {P,} is the

[ L, ;5 ]—diffusion
1
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Remark 3.1. It can be shown using (2.5) that any classical solution
(with appropriate growth condition) is also a stochastic solution to (3.1)

Conversely, if f and ¢ are continuous and « e C%@) () C*.(G) s -a stochastic
solution, then it can be shown that « is a classical solution to (3.1).

In this section we assume that the conditions (Al);(A3) “hold and that
ay(.)=1 and b1( )=0; that is, {P‘l)} is the reflected Brownian motion

in [0, a0), Ly has periodic coefficients, and {P(I)} and {P‘2>} are independent
diffusions. Note that, in this case '

Py 2y, 4y) = (2-777 ) _lexp{-i@-%f_lf_}+exp{_i@‘§_z‘lf }] (3.3)

Lemma 3.2. For 0 <t <t <0, acR,
Zj‘l g—V2 [exp (——%;)-—l]d 7
= (g (=) 1] - [ (55) "
27 .

a%t L
-\/2 l&l I 12 et gy (34)

@ IZI2
o2
Proof. Putz = gy Use the fact that e—1 = j'e‘f dr the required

result is obtained by a routine computatlon |

In this section we shall make the following a.ssump’tlons on the prescribed
data f, o. '

(Bl): f, ¢ are bounded on comp’acb sets ; o(xg, ..., xg) i & ‘periodic
function with period 1 in each variable; f(x,, 2,, ..., %s) is periodic in z,, ..., %
with period 1.

B2): Hy= sup [ |z,]* |f(zy, ®)|day < o0, r=0,1, 2.
ZeTa-2 10,
(B3): [ofa) § f(xl, ) p(@)dd de, + 5 I <P(€L‘) p(&) dit = 0,

where p is the invariant probability measure for the L,-diffusion on 7¢*

For 0 <ty < #y < o0, & = (2, B) € G, put

¢ S 8, . : .
oot 21, ) = B, [ S @s{ 95 9
1 1 i
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where £-is the local time at the boundary as in (2.5).

Because of the periodi-
tity sssumption we may take 3 ¢ Td-1,

Now in view of (2.8), Proposition 2.8
fin-parsicular (2.9)), and condition (B3) we get

[1
i(.tl.' tﬂ ;‘?1: i) = J'z f f f(zv

2) Pa(s, %1, 21)Py (s, &, 8) 4R e, ds
£ {0,0) Td—l :

e 1 .
+I ’ I E cp(z)pl(si Zy, 0)52(83 x, z)dz ds:

5] Td-l
‘2 A Ll ~ A rS A
=3 L S, R)py (s, 2, 2,) (Bals, ®, £)—p(E)] dE iy ds
‘l [ogm)Td—l
+}2 f ) (@) | -2 ]dédz'ds
£ 10, w) Tg—l f(zh Z) p(z) L Px(&', Zy, zl) ,\/2"7;‘;‘ A 1
tB 1 - - A A A A d
+ w{—l 7 ¥R) 21 (5 21, 0) [pyfs, @, 2)—p(2)] 2 ds

V+}’ ) '[ x())—«—_g;]déd,
t, pi-1 2 ¢(2) p(2) | 2y (s, 21, 0 Ve

=4 (tl’ b ; Zy, a,;)“f‘la(tl, 5 %1)+Ia(t1, by ; s w)+I4(t1’ #2 i)
' (3.6)

Where p, is given by (3.3) and ;1; is the transition probability density function
of the L,-diffusion on the torus -1,

Lemma 3.3. Let (A1)-(A3) hold with ay(.)=1, by(.)=0. "Lei_;_f, S
“isfy conditions (B1)-(BS). Then for any 0 < 4 <t < 0, (%, #) €&,

« s - - . (87
11, (¢, by ; 2y, x)| K Hye, [ 672 ds w @)
31
.
- 1 [ T o (8.8)
11, (¢, ty s %y, @) < 5 el \/51’; ‘{ s e N ds o v

is as sn (B2). In
where the constants c,, ¢q are as in (2.12) and the constant H, +s as in (B2)
Particular 1, is bounded.

: ~ | S position 2.3.
Proof. Immediate from condition (B2) and Proposition @
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Lemma 3.4.. Let the hypotheses be.as in the preceding lemma, Ther
Jor z €[0, o), >0,

150, ¢ 5 2))| < 2H,+2H || +%\>/—~—“j‘ (Hs+Ho|%|®) (3:9)
12,0, 85 2) < nqnum{lxllﬂ'/’;‘"’t Vo (8:10)

where the constants Hy, Hy, Hy are as in (B2) Moreover for &> 0, ¢ >0 one
can choose T such that o

sup | Iy, 00; 2y)| <e . (311)
tz2T

sup [I1(t, 0 ;7)) <e _ o (312
2T
Jorall |z} < a.
r f(zli z)3 zl > O
Proof. Put F(zy, 2) = -i-
. f( zl:z)’z1<0
By Lemma 3.2, for 0 < t1 <ty < 0, 7 2 0, we get

oy Fzy, ) p(2) - 13
Ly, b5 @) = RITL Ve Tty tyy @) dR By e (313)

where

Ty, by, 21, %1) = 2/t {9XP (——(E%t:l)i)—l}

—24/t, { exp (__ (21;:‘1)2 )—1}

— /2 |2~ | f rV2erdr ... (3.14)

{&zl_“‘f)) (Zl—xg)]
2, ' 2%, .

Letting ¢, — 0 and taking ¢, = ¢ in the above, we get

AN L |7 (zl’j;lrp("’) {'zl‘;/“;'z +\/§71|z;—x1|}d% de,

from which (3.9) easily follows.

A similar argument gives
] =
IA (tla tg H xl) \/—- J(t]_s ta, xl’ 0) T};.—I ® (é)p(é)dé - (315)
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where J is given by (3.14). The inequality (3.10) is now immediate from
(3.15).

Now let & > 0, € > 0 be fixed. Choose 7y > 0 such that
*o 2.4 A AL oA 1
;] {(;—) (a2+]zll“)+(a—}-lzll)} | F(zy, 2) | p(R)]|dz dz, <-2— € ... (8.16)
~ry Td—__l )
Such a choice is possible because of (B2). Letting #,—» c0, putting ¢, = ¢
in (3.13) and using (3.16) we get for |2,| < «, and ¢ > 1,

toim)| < [ OO (500, 2, 06 iy

Ver
(2 (@tro) Hy _
< g ot (57) Holrbtad+ v/ (o +r§]8-* etds .. (3.17)

Clearly one can choose T' large enough that the right side of (3.17) < e for
all t > T. Thus (3.11) is proved.

Using (3.15) in the place of (3.13) and proceeding similarly, (3.12)
is proved. This completes the proof of the lemma. ]

.- We now prove the main theorem of this section.

" Theorem 3.5. Let (A1)-(A3) hold with ay(.) =1, by(.) =0.

Let f, o satisfy conditions (B1)-(B3). For x¢G define

T T
u(@®) = lim Bz [ [ fK@) st [oX@)dE@] .. (@19)

Then %8 a contmuous fum}twn on @ .swch that
(a) uis penoahc n Py, o.or Xg s '
' '(b) Julzy, w)] ' K(l+ |211), where K is a comtant independent ofz,,
C(e) w is a stociuwtw solution to (3. l) ;
(d) gﬂ: sup | B, 3) (u(XEN] = 0, for any z, > 0.
3 o
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Moreover, u is the unique stochastic solution to (3.1) in the class
= {v: GoR: (%) v 18 bounded on compacts ; (it) v is periodic in Ty, ..., %

(e52)  |o(ay, 5)] < K(14-|x,]), for some constant independent of @), ®; and
(tv) Um Ea [»(X(¢)] = o0}. . e - (329)
{~p w . .

Proof. Observe that u(x) = lim %0, f,; 2 53); consequently by the

ty— o o .
preceding two lemmas it follows that u(a) is well defined for each &, u is perio-

dic in @,, ..., 7 and that |u(x,, @)} < K(1+]x;|). To prove coutinuity,
note that for any ® = (x,, m)e G,

w(®) = W0, & ; 2, )L, T 2, ®)+ (T, o ; xl, )
where #% is defined by (3.5), and 0 < & < T are to be suitably chosen, For
fixed (x,, #)e @, ¢ > 0 by the preceding two lemmas, T > 0 can be chosen

80 that %(T, o0 ; yy, §) < ~1» ¢ for all (y, §) in a compact neighbourhood of
(#;, ®). Choose &> 0 such. that

3
(é%) CHytHolo) < 3 &

1
Then it is easily seen that sup ju(0, ¢ ; yl, 3] <3 e By the strong Feller
property, @W(e, T ; 2,, &) is contmuous in (2, x). Contmulty of « now follows.

To show that « is a stochastic solutior, we have to show that Z(¢)is 8
continuous Px~martingale, where Z(f) is given by (3.2). Because of assertion
(b) of the theorem and condition (B2), it follows that Z(t) is integrable ; con-
tinuity in ¢ is clear from continuity of u. For s, ¢ > 0, we Q pub

Velo) =€, w) = § JUXle, ) dot § 9(X(e, 0)) d5(e, ),

0 w(s) = w(t4s)

As /, ¢ are bounded on compacts note that i is well defined. Since § is an
additive functional

Vls, Oaw) = Yr(s-+t, w)—yY(t, w) .. (3:20)
For r <7, put Mj = E(r)| ),

By (3.20) and the Markov pi'operty,
for t >0, 8>0, ®¢G we have

Mi;“- = Y(O)+Exw, 00)), a.0.Px (3.21)
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Tﬁéréfqré by Lenimas 3.3 and 3.4 it follows that

] < )+ 150, 55 X, 0, XO)

< YOI +5+51 Xo0)| +531 X(0)|% a.5.Px - (3.22)

forall s > 1, ¢t > 0, x ¢ G where the constants B1» Bas By are independent of
sefl, 00), ¢, 2. '
Put N, = lim M!+t. By the definitions of u, yr, M7, Ny, Z(t) and (3.21)
Jm 219,

it \follows that for any ¢ > 0, e G

N = Z(t)+u(x), a.5.Px.
In view of (3.22) it is easily seen that for ¢, > ¢, > 0,
B, 6,) = lim BM"|8,)
= lim B(E(Y(s+t5)] 8,)| 6,;)
s> :

=N, as. Pa . (323)

Thus {Ng}, and hence {Z(f)} is a Pa;-mvartin‘gale- with réspecﬁ toﬁt fH@éé
u is a stochastic solution to (3.1).

Note that for ®eG, t > 0,

[0, =

Bofu(X(O)] = J | ults, palt, o0, y3) [2a ¢ @, y)—p(y)] A dyy
. -,

[0, =)

+ ] ulyn 9pt 90 PY) dY By . G20
-

By assertion (b) of the theorem and Proposition 2.3 it follows that for
any z; > 0,

lim sup |first term on the r.h.s. of (3.24)]

{=Ppw A :

x

< lim Ke, 3-4,‘ : J , [1+‘| v1l]1 240, '51» ) dy, = 0 (3.285)

e 0, ®
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Next, as the Lebesgue measure on [0, co) is the invariant measure for
the reflected Brownian motion and p is the invarnant measure for the
L,-diffusion, by the representation. (3.18) for u, we have for ¢ > 0, 2, 2> 0,

] uly ) pilt 7, ) p(Y) dY dy
{0, «) Td"

= li '
Jlim N I e Dpils, ¥ 2)
B €% ) B (0,5, ) o) 82 iy 0
1 A -~ I N A. A"*JWV‘.‘..
+ § 7 5 *@P1 (8 ¥1, 0) 21 (¢ 21, ¥1) Pal5, Y, 2) ply) dy dz dy, ]de
[0, ®) pd-1 pd-1 ‘

T 3 ~ A ~ . .
=Jim [ 5 1§ S 0@ ) o, 1 m) £ (o0 90) Ay -
T—eo 0 *{0,® [0,v)" pd-1

1 ~ A A\ ;‘}. : o
+ ( J ~2~<9(Z)p(z) dz)zu(s, Y1 0) oy (4, %y, %2) dyx]ds
{0, «) Td—'l

T+t

=: T}i-r'ﬁ’, i‘. [[0 Iu') TI f(zl’ z) D1 (5, 21, 29) P(z) dz dzy
ik % ?&) 71 (&, 2, 0) p(d) 2 | ds (3.26)

Now let F be the extension of f as given in the proof of Lemma 3.4.

Since f, ¢ satisfy the conditions (B2), (B3), from (3.26) we get for zy 2 0,
>0,

i oj; § 1 @(yl’ ?‘I)Zh(ts Zy ?)1) P(!}) d!} dy, }

“lm T Ly e e o (- B3 ) ) s

N 7:.,'_ l il oal ‘2 . . _xz . R '
1,39 e g e (F1) —1) a8 oo
: 1 141 U B
<\. Tll?. BV \/—t'—ﬁ-}] v (2Hy+-203H, 428 folle) - ... (3.27)

From (3.24), (3. 25) (3.27) the assertion (d) of the theorem is immediate. In
Mxoular wee .



NEUMANN PROBLEM IN THE HALF SPACE 367
Uniqueniess in the class @, follows from the following lemma.

" ‘Lemma 3.6, Let (A1)~(A3) kold and f, ¢ satisfy (B1), (B2). Let ve elbe
u slochastic solution to (3.1). Then v(x) = r.h.s. of (3.18).

Proof. As v is a stochastic solution,-
¢
@) = Balo(X(0) +Ba | [ fX(o)ds+ § oK)

and since lim E_(v(X(t))) = 0, the conclusion follows. []
¢t—) oo '

We will now prove the necessity of the condition (B3).

Theorem 3.7. Let (A1)~(A3) hold with a;y (.)=1,b(.)=0; let f, ¢
satisfy (B1), (B2). Suppose there is a stochastic solu_t'i(m in the class @,.to the
problem (3.1). Then f, ¢ satisfy the condition (B3).

Proof. Let ue @, be a stochastic solution to (3 1). Then by the pre-
ceding lemma o

T
ue) = lim B, | fﬂX(s)) dot | #X(6) 4 (o)

Observe that in the derivation of (3.26), the condition (B3)"ié go,twu;lédv.' There-
fore by (3.24) and (3.26) we have for any ¢ > 0, @ = (25, x),

By w@XO) = | [ ulys 9)malts 2 91) (palts @, y)—p(w)dy dy,

[0, o) Td“l
4T ' '
+ 1!_1_1)1; { [ [on) T‘j;_ f(zl: z) P(z) {Pl(s Ly, z:)"‘“\/ oms }d”dz
X oA 2 1 a
+ § 3 o) o) { 21 (5, w0 00—} i ] s
-
. BT g
+T1_1_)n; tf Vome [ 00w TI [z, 2) p(z) dz dzl
+ I qsz) ) dz] ds ©L) (3.28)

As ue @, 1.h.s. of (3.28) tends to 0 as t— . By '(3 25), the first térm on the
r.h.s, of (8.28) goes to zero as t— c0. Since f, ¢ satisfy (B2), note that the
second term on the r.h.s. of (3.28) is 0 (¢-2/2). The desired cone}us19n now

follows. This completes the proof.
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4, NEUMANN PROBLEM : SELF-ADJOINT X PERIODIC CASE

~ In this section we consider the case when L, is self-adjoint and L, has
periodic coefficients. We assume that (Al)—(A3) hold. As before, let p,

denote the transition probability density function of the (Ll, 3‘2—) —
1

diffusion in [0, 00). Since p, is obtained by the method of images from the
transition probability density function of the L,—diffusion in R and since L,

is self adjoint, by a theorem of Aronson (1967) we have
my 471 [ exp {—-ﬁf— (yl—x1)2}+ezq> {~ e (y1+x1)2}]
<plh 2oy
<k [oxp (K () oxp (2 gy 4e)]

where the constants my, my, k;, k, are independent of ¢, x;, y;.

4.1)

" In this section we make the following assumptions on the prescribed data

fr 9.
(C1): Same. as (B,).

(C2):, lim sup |f(z, )] =0

C @y - O %

(C3): for all t >0, , » 0
§ 0 faw Y et =) pY)dY dy,
{0, ») Td‘l

1 ~ A A
+ 3 I an(0) o(y)py(t, =y, O)p(y)dy =0
- Td'-l: - )

Lemma 4.1. Let (A1)—(A3) hold ; let f, ¢ satisfy the conditions (C1)—
(C8). Let € > 0. Then there exists 1o > O such that for any 0 € ¢, <t <o

and 51 > To:
¢t
aup | § [ 1 100 0@, iy
x 1 qG - =

tg 1 an(Oe@)pt, e, B), 0, )y | &
2

2

T e 0 ;
<210k 6 flle ‘f V2 exp | —
® & L

kylro—a,|®

. ]dt

N i’ . ty
Feael € die g bty o an(0) [ 10 exp(Ji“ﬁ) dt
1 1

(4:2)
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where the positive constants c,, c, are as in (2.12) and ky, ky are as in (4.1) ; also
1, depends only on ¢, f.

Proof. By our assumptions note that f is bounded. Let ¢>0. By
(C2) there exists 7, > 0 such that

sup |f(y, §)| < eforally, > 1,

v
Consequently by (4.1) we get for all ¢ > 0, 2, > ro,g}
[oj;) [y, Yo, 24, Y1)y, | < e+ ”f”oo[ J : (b, 24, ¥1)dyy
A 0,7

I R (4

Note that, because of condition (C3),

Lhs. of (4.2) = sup |a(t,, ty ; 2,, :;:)
x

= sup | Lyfty, ta) ; @y, ®)+Lylty, ba s 21, @) | e (44)
&x

where %, I,, I; are defined analogous to the correspoing objects in Section 3.
Applying (4.1) to py(t, z;, 0), using (2.12), (4.3), (4.4) we can now easily prove

(42). [J
Note: For e > ||fl, we may take ry, = O.

Theorem 4.2. Let (Al)—(A3) hold ; let f. ¢ satisfy (C1)—(C3).Let u(z)
be defined by (3.18). Then

(@) w is a bounded continuous function on G;

(b) u is periodic in w,, ..., 24 ;

(¢) u is a stochastic solution to (8.1) ;
@) lm sup |ulz;, @) = 0.
z > > &
Moreover w i3 the unique stochastic solution to (3.1) in the class

C, = {v :G>R : (i) v is bounded measurable ; (i) v is periodic in (zs, ...,

xg)), and (iii) ' lim sup | v(x,, )| - 0.} (4.5)
Ty L
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Proof. From the preceding lemma it is clear that « is well defined, boun-
ded, periodic in (%, ..., #g). Continuity of 4 can be proved as in Section 3,
The proof of » being a stochastic solution is also similar to the one in Section 3.
In view of (4.2), the assertion (d) is easy to establish. In particular u € G,

Finally, let v € @, be a stochastic solution to (3.1). To prove uniqueness
it is enough to show that

lim sup |E (w(X () |=0. .o (4.6)
t—> > x

~ 1
Let ¢ > 0. Since ve @, there is ry > 0 such that sup [v(y,, )| <5€ for all

y
#, > ro. Consequently by the upper bound in (4.1) we get for any (z;, %5

vy Xg) € (7, t >0,
| Balo(XO)] | < 5 642 hyry ol 22

From the above inequality (4.6) is obvious. This completes the proof. [

We now prove the necessity of the condition (C3) for the homogeneous
problem. '

Theorem 4.3. Let (A1)—(A3) hold ; let f = 0 and ¢ be @ bounded periodic
Sfunction on 8G. Suppose there is stochastic solution in the class @, to the prob-

lem (3.1) Then [ of)p(9)dy =0
Td—l
Proof. Note that in the proof of the uniqueness part of Theorem 4.2
we have not used the condition (C3). So, if ue G, is a stochastic solution

then by the representation

~ T
w(®) = u(ey, &) = lim B[ [ o(X@)Ee)]

. 1 7 ;
= Jim 5 [ ] suOewipa, m, 0) (Bae, 2. y)—p(yldy ds
+g O] [ e} tim [ o n
3 %u Td_’l‘P o9) T-I_L;ﬂmgpl(s, %y, 0) s} v (47)

By the upper bound in (4.1), and (2.12)
sup [first term on r.h.s. of (4.7)]
x

® 4.
< a13(0) ligllo €4 Ky of e exp [—% x?]dt—) 0 as 2, 0.
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By the lower bound in (4.1)

T
lim lim § pyt, 2, 0)dt
0

>0 T+

. . T Mg X
> lim lim [ 2m,¢tV2 exp[— 2 ]dt
Z~> 00 T—pow z% ¢

>2me? lim lim [v/T—a,] (4.9)

Xy 00 T 0

As ue @, Lhas. of (4.7) tends to 0 as #,—> 0. In view of (4.7)—(4.9) this is
now possible only if | o(y)o(y)dy = 0. This completes the proof. []
ri-1

Remark 4.4. Suppose f, ¢ satisfy

dI lf(yl’ .';) p(g)dyA = 0, for any ¥, > 0.
To— ... (4.10)

Tdf_ P W)p(y)dy =0

Then clearly f, ¢ satisfly the condition (C3). Conversely, if f is of the form
fan, ) = f1(¥)f«(), then the condition (C8) implies (4.10) ; for, by (C3)

[OI w)f 1{¥)Pa(¢, 21, y1)dy, = const. p,(¢, 2, 0)

unless | fz(g})p(‘;/)d?; = 0, and consequently either f, = 0 or j‘fz(?l)P(g)d!; = 0.

Remark 4.5. In view of the preceding remark, the condition (C3) is not
sufficiently general. (In particular, f can not be a function of y, alone, unless
f=0). A more satisfactory condition would be an analogue of (B3); but
we have not been able to carry out the analysis under such a condition. How-
ever, in the homogeneous case (as (C2) trivially holds), by Theorems 4.2 and
4.3, the condition (C3) is a necessary and sufficient condition for the existence
of a unique solution in the class @, ; and the solution is given by

~ T ~ ~ ~ ~ -~
u(ty, @) = lim § { Tdf_ | 9u(0) @ (@)pals, 20, O)pyls, @, y) dy ds.

(Note that, » 7= 0 in general. Indeed, using the uniqueness of Doob-Meyer
decomposition, sample path continuity, Corollary 2.3 of Stroock and Varadhan
(1971), and proceeding as in the proof of Proposition 3.2 of Hsu (1985), it can
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be shown that, if ¢ is continuous and » = 0 then ¢ = 0). It may be noted
that, in the homogeneous case, (C3) is the same as (B3). Thus, for the homo-
geneous problem our analysis gives a complete picture.

5. NEUMANN PROBLEM : L = LAPLACIAN
In this section we assume that ay (.) = 6y, b () =0, 1 < 4, j < d; that
is, {Pe: @ e.(_}’} is the Brownian motion in @ with normal reflection it the boun-
dary. Forx = (x,, 5:), ﬁ = (Yy, 3;), t > 0 observe that

Pl 25 Y) = pi(t, %3, 1) Dolts B, Y)
where

1
pit, 2 9s) = (51”7) [ oxp |- ,(z@_z-;;)“ bt exp {— <yn;txl)ﬂ 3
d-1

pﬁ(t’ Aw’ !}) = (“%{)—2- exp {—-%t ;_;2 (y‘__,,;')z}'
4=

The case when f. ¢ are periodic in the variables x,, ..., 4 has already been
dealt with in Section 3. Here we make the following assumptions on the
prescribed data f, 9.

(D1): fe Ly (B, € L(3G);

D2): My=| |y|r If(y)ldy+a{;l§l’l¢(§nl dy < oo, r=0,1,2;
G )
@3): [ fg)dy+ | #g)dy =o.

(2]

For 0 <th<wo, &= (2, :f:) €@, let 17(t1, by %4, :;:) be defined by
(8.5), with {Pz} denoting the reflected Brownian motion in §. Let F be
the extension of f as in the proof of Lemma 3.4. By Remark 2.2 and condition
(D3) it is seen that

by 1 4 | z—a |2
ot b w @) = [ ()2 _lE—m i
by by 3 0 @) = {1 ( 2mrs ) ’: IjldF(z) { °xp ( 2s ) ! }dz

o #@) { e oxp (—L:iz%@_'f)—l }dé] ds ... (5.1)

In view of the conditions the following lemma can now be proved easily.

: 4 2 v
" Lemma 5.1. LetL=1}% X _62— Let f, ¢ satisfy conditions (D1) —(D3).
. ¢

=1
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Then fw any 0 <ty <ty <o, (x,, &) € G,

. fy, _(@+2) ,
W . o 2 — 2
[ty, bs; 2y, ) | <4(§;) [M2+|w| M, tf P ds .. (52
’ 1

and

_ . 2}
[0, 61 52, ®)| < f oty + () Nolo v e (83)

where the constants My, M, are as in (D2). O

We now have the following theorem.

d 2
Theorem 5.2. Let L =1 X 73%2— and let f, o satisfy conditions (D1)—
X =1 A

(D3). Let u be defined as in (3.18). Then
(@) w is a continuous function on G such that

| @) | < K14+ | ® |?), forallx ¢ G,
(b) w s a stochastic solution to (3.1) ;

(¢) lim E [u(X(f))] = O uniformly over compact subsets of G.
t—x

Moreover u ts the unique stochastic solution to (3.1) in the class

={v: G- R: @) @) < K(1+ |x|?), (u) hm Ez[v(X(t))] =0 for all®e G}

(5.4)
Proof. In view of the preceding lemma, all the assertions except (c) can
be proved as in Section 3.

In view of (D3), by an argument similar to the derivation of (3.26), (3.27),
using Chapman-Kolmogorov equations, we get for ¢ > 1.

| Bl X)) = | Jim i, T, )|

d
< CQ+1z|He ®
whence assertion (¢) follows. This completes the proof. [
Our next result concerns the necessity of the condition (D3).
.- Proposition 5.3. Let L = —!—’gﬁqz—and let f, o satisfy (D1), (D2).
Suppose there is a stochastic solution in the.class @, to the problem (3 1)
Then f, @ satisfy the condition (D3).
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Proof. Note that the condition (D3) is not used in the proof of the uni-

queness part of the preceding theorem. So, if u ¢ G, is a stochastic golution
then

IN T T
u@) = e, @) = lim B, | [ f(X(0) do+ [ ¢ (X(eDdkle)]

F(z) {exp (—-— I_Z_E__‘ZW’ )—-—1} dz

.

+R£—' <p(z3 {e_;?' exp {—-Lz————ziﬂi)——l} dz ] ds

—

2 [ 1 A LA
+ lim g( S gf(y)dyqtgafﬁ(y)dy] ds. .. (69)

By the proof of Lemma 5.1, using only conditions (D1), (D2), it is easily seen
that first term on the r.h.s. of (5.5) is well defined. The second term on the
r.h.s, of (5.5) is well defined only if (D3) is satisfied. [

In Theorem 5.2 uniqueness is guaranteed in the class G given by (5.4).
It would be desirable to replace the condition (if) in the definition of G; by a

condition not inovlving the parameter ¢. The following result is in that
dn-ectlon

Theorem 5.4. Let L be as before ; let f, ¢ be integrable functions on G’,
8@ respectively. For z¢ R®, put

d
1

F(z) = i) (57)% Fape<¥=> ay.

«

rof &

2@ = [ (3)% ¢ @ oxp (~i <092 >}dy,
u(®) = 2|z~ (F(z)+¢(2)},

Y Yo - Ya) ye @
where Fly) = { e y _
f(""yli Y2 > Ya) Y ¢ G

Suppose  is an integrable function on RS, Let u be defined as in (3:18), Then

u 18 the unique bounded conbinuous function vamshmg at infinity, which is a slo-
chastic solution to (3.1).
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Proof. By the spectral representation of the transition probability den-

sity of the Brownian motion note that

d 1
l\vg —gl?#% cg2> —i<y z>
s,y = — ’ ’ dz
s, ®, y) .Id (27,.) e €

+
e

1
d —= |z|%s 2 . :
(2177)?'e 2 gfSTE> TS YNEZ g

for all 8 > 0, ®, y € @, where Y* = (—yy, ¥s, ..., Yd)- Consequently under the
given assumptions it can easily be verified that

wE) = | wez) el 2 de
Ra'
whence it follows that u is a bounded continuous function vanishing at infinity.
It can be established as before that u is a stochastic solution to (3.1).
Suppose v is another such function. Given ¢ > 0 one can find a compact

set K C G suoh that lv(®)| < }efor xe K. Therefore
1
S:PIEw[v(X(t))]I < 5 etlvlle [K|(2mt)-22

where | K| denotes the Lebesgue measure of K. From the above inequality
it follows that sup | B.[v(X(f))]] > 0 ast — co. It is now easily seen that
V=, completirfg the proof. [
Remark 5.5. The hypotheses of the preceding theorem imply that #(0)+
6(0) = 0 which is just condition (D3).
1 a 52 a

p)] — 2

6. NEUMANN PROBLEM : L = — A —_—
2 §=1 ax? =1 ax‘

In this section we consider the Neumann problem for L when L is the
generator of the Ornstein-Uhlenbeck process ; that is ag(x) = dy, by(®) = —ut.
The transition probability density is given by (2.14)—(2.16). Unlike the
preceding cases, now one has an invariant probability measure -»(y)dy given
by (2.17)—(2.19). We make the following assumptions on the prescribed

data f, o :

(1) : M, = [ |f(y)|dy +a{;|¢(g)|d9 <
G

(E2) : [ /) )iy + 34(0) | o@n@)dy = 0.
G 2@
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~ In what follows {P,} denotes the distribution of the Ornstein-Uhlenbeck
process. v
Theorem 6.1. Let L —— Zd‘. 9 — 9 and f.o satisfy (E1), (E2).
2; [ Ox% ' Oxy }’ ’ ’
Let u be defined as in (3.18). Then u is a continuous function on G such that
(@) |u@) | < K,+Ky|®|, where the constants K,, K, are as in (2.20) ;
(b) w is a stochastic solutoin to (3.1) ;
(c) [ w(@®)v(z)de = 0.
} p

Moreover, u is the unique stochastic solution in the class

={h: G R :() |h@)| < K1+ |x|), (i) [ bz)v(z)de =0} ... (6.1)
Q

Proof. In view of Proposition 2.4 and conditions (E1), (E2) we have for

0 <ty<oo,xel,
tz ~ A -~
[ | $f(ytt, =, y)dy+%a£y oY), , (0, y))dy | di
@

14

ta

<[ J Ifo]lat = y)—(y)|dy dt
1

-
Rl -
Ll " Nl

)L lo) ] 14(t, 2, (0.4) —v,(O)y(y) | dy dt

t
< (K +-K,|z)) M, fe-tdt .. (62)

From (6.2) it follows that u is well deﬁned and that (a) holds. Continuity of
u, and assertion (b) can be proved as in the earlier sections,

Note that »,(0) = [j' q4(t, 24, O) vy(x;)dxe; for any t. Since v is the invariant
0, w)

measure, by (E2) we now have

f u@(@)de = lim fjp I 7t x, yyw)dy de dt
a o 0 G @

T ~ A A A ~
+lim 3 [ § §f eyl x, 0 y)ve)v@)dy de du, dt
T->w 0 [0, ) 3G °@

T PN
= lim [ [ SAMuky+ 5 %O [ diuldy]d=0 ... (63)
T 0 G Eled

establishing (c).
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Finally, by Proposition 2.5, for any stochastic solution A € &,, note that
[(y) 4(t, 2, y)| < [polynomialin | y|] »(y). Consequently by the dominated
convergence theorem, lim K, [M(X(¢))] = [ h{@)v(@)de = 0, and the conver-

t—>

gence is uniform on compact sets. It can now be proved that k = u, complet-
ing the proof of the theorem. []

Theorem 6.2, Let L be as in the preceding theorem ; let f. ¢ satisfy (E1).
Suppose there is a stochastic solution in the class @, to the problem (3.1). Then
[, o satisfy the condition (E2).

Proof. 1In view of the derivation of (6.3), the theorem can be proved as

in the earlier sections. []

Remark 6.3. It may be noted that Propositions 2.4 and 2.5 are the essen-
tial ingredients for proving the above theorems. Therefore, for any ergodic

diffusion in @ (with normal reflection at 0@) such that zero is an isolated point
of the spectrum of the generator (on the L,-space with respect to the invariant
probabiiity) and for which Proposition 2.4 and 2.5 hold, our analysis can be
extended. However, it is not clear to us for what class of diffusions Proposi-
tions 2.4 and 2.5 hold.
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IND1A.



	Px = P("xPT	... (2.6)

	LiP(y) ~ 0,yeR*-i,	...	(2.11)

	v(y) =* *1(1/1) vdy)	••• (2-17)

	!*'<«>! <(T!ii?S-+(T^	"• (2-22)


	***»>-( di	^ n ••• <«

	= J J J- /(*l. *)Pi («, *1> 8i) [!>*(*, *, #)-/>(*)] <^1 ia 11
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	<«. *•) = V? {“P (—


	L 212 ’ 2tx J
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	Pi (*i Vi) Pi («, y, *) P(y) dz dzt dy dyx
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	\Ex[v(X{t))] | < y6+2 Vo IML l~X/%

	«(a?) = u(xlt x) = lim E f J <p(Z(s))^(s)l

	I 9 (y)p(y)dy = o

	p(t, x, y) = pj{t, xv 1/1) p2(t, x, y)


	w	"

	& ga



	| u(*) | < K (1+ | * j2), for ail x e 0,
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