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The task o f  recognizing and posi tioning the partially occluded three-dimensional (3-D) rigid objects o f  a given scene is con­
sidered. The surfaces of  3-D objects may be planar or curved. The 3-D surface informations are captured through range data 
(depth map). For  recognition we use the principal curvatures,  mean curvature and Gaussian curvature as the local descriptions 
o f  the surfaces . These curvatures are the local invariant features o f  the surfaces. A com puter  vision scheme, based upon the 
matching between the local features o f  the 3-D objects in a scene and  those o f  the models which are considered as knowledge 
da ta  base, is described. Finally, the hypothesis generation and verification scheme is considered for best possible recognition.
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1. Introduction

A three-dimensional (3-D) vision system deals 
with images o f  a 3-D scene. It recognizes 3-D ob­
jects and their relative locations in the scene. This 
capability is quite useful for automatic assembly or 
industrial inspection. The most important aspcct 
of 3-D object recognition is to establish an efficient 
algorithm applicable to various scenes. We deal 
with scenes which have the following charac­
teristics:

(i) Objects are placed at any 3-D position with 
arbitrary orientation.

The authors are  also affi liated with the nodal centre for 
knowledge based com puting  (KBCS) at Indian  Statistical In­
stitute, 203 B.T. Road, Calcutta-700035, India.

(ii) Objects may be stacked and partially oc­
cluded.

(iii) Objects have planar a n d /o r  smooth curved 
surfaces.

The existing 3-D object recognition studies 
mostly deal with two types of  input data, namely, 
the gray-scale intensity image and range image 
(depth map). At the time we use sensor data to 
yield information about the real world, it is im por­
tant to understand the image-formation process. 
This process has been studied in detail by both 
computer vision and computer graphics research­
ers. At each point in an intensity image, the 
brightness value encodes information about sur­
face geometry (shape, orientation and location), 
surface reflectance characteristics, surface texture, 
scene illumination, the distance from the camera to



an object surface, the characteristics o f  the in­
tervening medium and the camera characteristics 
(which include spatial resolution, noise para­
meters, dynamic range, brightness resolution and 
lens parameters). Over the years, increased under­
standing o f  intensity-image formation (Horn, 
1977) and of the constraints o f  the physical world 
has led to significant computer vision research 
developments, including shape from binocular 
stereo (Crimson, 1980), shape from motion (Jain, 
1983; Ullman, 1979), shape from shading (Ikeuchi 
and Horn, 1981), shape from photometric stereo 
(Coleman and Jain, 1982; W oodham  1981), shape 
from texture (Witkin, 1981) and shape from con­
tours (Kanade, 1981). This group o f methods is 
referred to as the shape-from-X techniques. These 
developments are directed toward the goal of co r­
rectly inferring the 3-D structure of  a scene from 
brightness values alone. The great difficulty in 
reaching that goal is certainly related to the large 
number of factors encoded in each brightness 
value during the intensity-image formation p ro­
cess. Range-image form ation is conceptually a 
simpler process than intensity-image formation. At 
each pixel in a range image, the depth value en­
codes information about surface geometry and 
viewing geometry in terms of the distance from the 
sensor to the object surface, and the range-finder 
characteristics which include spatial resolution, 
range resolution, dynamic range, noise parameters 
and other range-finder parameters that depend on 
the type of range finder used. One important dif­
ference is that scene illumination and surface 
reflectance are not directly encoded in range 
values, even though they can definitely affect the 
accuracy of measured values. Moreover, range 
finders directly produce the depth (shape) informa­
tion that the shape-from-X techniques seek to p ro ­
duce. Depth maps are currently receiving a great 
deal o f  attention and are very useful for 3-D object 
recognition. The available literature in this direc­
tion includes (Nevatia and Bindord, 1977), (Kuan 
and Drazovich, 1984), (Smith and Kanade, 1984), 
(Gennery, 1979), (Bayter and Aggarwal, 1984), 
(Bhanu, 1982, 1984), (Horaud and Bolles, 1984), 
(Oshima and Shirai, 1981, 1983), (Faugeras, 1984), 
(Besl and Jain, 1984) etc.

In this paper we develop a computer vision

system to recognize and locate partially occluded 
3-D objects present in a range image. The basic 
concept, to accomplish this task, is based upon the 
matching of local descriptions of the scene and the 
models. For ultimate recognition and positioning, 
the vision system considers a hypotheses genera­
tion and verification scheme coupled with an ap­
propriate estimation of the model-to-scene 
transformations. The control strategy for mat­
ching is important particularly in processing a 
complex scene, since it is very time consuming to 
match each part o f  a scene against every possible 
model. To reduce the number o f  trials, we first try 
to get some invariant representative local features 
of  the scene and then find models which have these 
local features so that this initial matching may 
guide further processing.

2. Outline of the vision scheme

In the first phase the vision system builds up the 
model data base of  the objects which arc most like­
ly to appear in the scene. If one view is not enough 
to describe an object, several typical views are 
shown to the vision system and multiple models of 
an object are made. When we talk about the 
models o f  a 3-D object, we mean the local in­
variant representative features of the surface of the 
3-D objects. These features will essentially con­
struct the models o f  the 3-D objects. For instance, 
we consider the principal curvatures, mean cur­
vature and Gaussian curvature to characterize the 
surface of  a 3-D object.

In the second phase the vision system makes a 
description of  the unknown scene in the same way 
as in the first phase. That means, again the prin­
cipal curvatures, mean curvature and Gaussian 
curvature are used to characterize the surface of 
the 3-D scene.

The model and scene descriptions are given in 
Section 4.

The third phase is the recognition and position­
ing phase. At the initial stage of  recognition, the 
scene descriptions (principal curvatures of  the 
scene edge-points) are matched with the models’ 
descriptions (principal curvatures of  the model 
edge-points) so that the edge-points o f  the model



objects are  found  sequentially in the scene. The 
detail descrip tion  of this initial matching is de- 
>cribed in Section 5.1.

After the task of  initial recognition is over, ap ­
propriate coordinate  transformations are perform ­
ed. This is discussed in Sections 5.1 and 5.2.

Based upon the initial match and coordinate 
transformations, the vision system initially hypo­
thesizes the locations of the edge-points of the 
model ob jec ts  in the scene. This initial hypothesis, 
ihich uses the verifications of  structural com ­
patibility o f  the edge-points, is discussed in detail 
m Section 5.3.

Now the surfaces of the model objects are 
matched with those of the scene. This is mainly 
pertormed through the matching of the non-edge- 
points o f  the model object with those of  the scene. 
This ta sk  is described in Section 5.4.

In Sec tion  5.5 the vision system finally hypo­
thesizes the locations o f  the 3-D objects in the 
'cene.

F inally  the vision system verifies the hypotheses. 
This verif ica tion  process is discussed in Section 
5.6.

This process of hypothesizing and verifying the 
locations o f  3-D objects continues until everything 
in the scene is understood or no more matches can 
he fo u n d .

3. M athem atical preliminaries

W e have seen (Besl and Jain, 1984; Ray and 
Dutta M ajum der,  1989) that curvature, torsion 
and speed  uniquely determine the shape of  space 
curves. These characteristics are the ideal type of  
characteristic for a mathematical entity. They are

Figure 1. Curvature  o f  curves on a surface.

invariant to coordinate transform ations and they 
have a one-to-one relationship with curve shapes. 
W'e now briefly discuss similar surface character­
istics by generalizing the mathematical frame work 
o f  curves to surfaces. Surfaces are the natural 
geometric generalization of curves. For detailed 
discussions on surface characteristics interested 
readers are referred to (Hsiung, 1981; Besl and 
Jain, 1984).

3.1. Curvature o f  curves on a surface and the 
approximate surface area

The curvature of a surface at a given point is 
characterized by the rate at which the surface 
leaves its tangent plane. But in different directions 
the surface may leave its tangent plane at different 
rates. For example the surface illustrated in Figure 
1 leav es the plane P  in the direction OA  at a faster 
rate than in the direction OB. So it is natural to 
define the curvature of  a surface at a given point 
by means of the whole set of curvatures of curves 
lying in the surface and passing through the given 
point in different directions.

Thus it appears that a surface may be curved ar­
bitrarily in many directions. In fact this is not so. 
In differential geometry (DoCarm o, 1976), it is 
shown that at each point o f  a surface there exist 
two particular directions such that:

(i) they are mutually perpendicular;
(ii) the curvatures K { and K 2 o f  the normal sec­

tions in these directions, as shown in Figure 2, are 
the smallest and largest values o f  the curvatures of 
all normal sections;

Figure 2. Principal directions and principal  curvatures o f  the 
surface at a point .



(iii) the curvature K(0)  o f  the normal section 
rotated from the section with curvature A, by the 
angle 0  is expressed by the formula

K((/>) = A, cos- 0  + A: s i ir  0. (1)

Such directions are called the principal direc­
tions and the curvatures A, and A: are called the 
principal curvatures of the surface at the given
p o i n t .

Thus, if we know A, and A2, the curvature of  
any curve in the surface is defined by the direction 
nl its tangent and the angle between its osculating 
plane and the normal to the surface. Consequent­
ly. the character of the curvature of  a surface at a 
given point is defined by the two numbers K\ and 
A: . Their absolute values are equal to the cur­
vatures of  two mutually perpendicular normal sec­
tions and their signs show the direction of  the 
concavity of  the respective normal sections with 
respect to a chosen direction on the normal.

In many questions of  the theory o f  surfaces the 
most im portant role is played, not by the principal 
curvatures themselves, but by certain quantities 
dependent on them, namely the mean curvature 
and the Gaussian curvature of  the surface at a 
given point.

The mean curvature H  o f  a surface at a given 
point is the average of the principal curvatures

H  =  \ { K x + K 2). (2)

The Gaussian curvature of  a surface at a given 
point is the product of  the principal curvatures:

(3)

The Gaussian curvature is an intrinsic property 
o f  the surface, since it depends only on the coeffi­
cients o f  the first fundamental form and their 
derivatives, whereas the two principal curvatures 
and the mean curvature are extrinsic properties. 
The coefficients of  the first and second fundamen­
tal forms, i.e., E ,F ,G , e , f g  are given below. They 
determine the surface uniquely up to a rigid body 
transform ation (DoCarmo, 1976). The principal 
curvatures at a point on a surface are computed in 
terms of the parameters u and v as follows. Let 
X ( u ,u ) represent the surface.

d.\
“ 7  —  ( ■ '»  i ii  '  '• »  )  > 
dll

X „

x„

X ,

d x

<h) 

a2x
thidv

d2x

d ir

d2x

dv~

=■ (-V, , .1’, , z,),

ni’1 J in ’ )

mt ’ uh ’ "mi)»

(■Vi ’ } n ’

(6 i

Let

E  = X u ~ =  (.v,7 + y- + Z u ),

F  = X u - X h = (A „ .Y „  + v „  V„ + Z,r 

G = X„ ~ = (.v‘ +>7 + c^).

The unit normal is then given by

N  =
X u x X h 

]/EG

( S ;

(9 ‘

( 1 0 1 

(H i  

( 12 )

( 1?)

The Gaussian curvature K  at any point on a su r­
face is defined as the product of the two principal 
curvatures AT, and K 2 and is further represented by

K =
e g - f 2

E G - F 1 

where e , / a n d  g  are given by 

e = N - X uu, 

f = N - X m„ 

g = N - X w .

The mean curvature / /  is given by

e G - 2 f F +  gE
H = ---------------f - ,

2 ( E G - F 2)

and the principal curvatures are

K { = H - ] / H 2~ K ,  

K 2 = H + ] / H 2- K .

(14)

(15)

(16)

(17)

(18)

(19)

(20 )

X(u, v) = (x(u, v), y(u, u), z(u, u)), (4)

For further details on the computations of  su r ­
face curvatures interested readers are referred to 
(Besl and Jain, 1984, 1988). Based upon the above 
computations we can classify surface shapes, as 
shown in Figure 3, into eight basic categories.
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Figure 3. Eight fundamental  surface shapes: (a) peak surface 
H < 0 ,  A '> 0; (b) flat surface: H =  0, K =  0; (c) pit surface: H >  0, 
A > 0 ;  (d) minimal surface: H =  0, K < 0; (e) ridge surface: 
H <  0, K ~  0; (f) saddle ridge: H < 0, K <  0; (g) valley surface: 

H > 0, A = 0 ;  (h) saddle valley: H > 0; A '<0.

To obtain a formula for surface area, we con­
sider a curvilinear rectangle bounded by the coor­
dinate curves u = u0, v = v0, u = uQ + Au, v = 
u0 + zlu and we take as an approximation to it the 
parallelogram lying in the tangent plane and 
bounded by the vectors X uA u , X uA v ,  tangent to 
the coordinate curves (Figure 4). The area of  this 
parallelogram is

bounded by the vectors .V, , \ v .

zlS = IA'„j \X h\ A n  Au  sin <//,

where y/ is the angle between X„ and X„. Since 
sin i// = } 1 — cos2 1//, it follows that

J.V - X„ ‘X, I Aii A v V 1 -cos2 (//

= V ' 'X ,,2 X t, 2 -  A'„ : !A'i, 12 cos2 1/j A u  Av.

Recall that X U 2 = E, X,, 2 = G and X N, \X V\ 
cos \p = X U - X r = F. Flence, we get

A S  = J EG  — F~ A n  Au. (21)

Summing up the areas of  the parallelograms over 
the depth map regions we get the approximate sur­
face area of  the region (Besl and Jain, 1986). The 
continuous domain formulation of equation (2 1 ) is

Surface area = \ E G - F 2 d u d v ,
. . D

where summation is replaced by integration taken 
over the domain D  o f  the variables u and v, in the 
limit A u , A v-> 0 .

4 . Computations o f model and scene descriptions

Based upon the expressions o f  Section 3 we com ­
pute the principal curvatures (K I,K 2), mean cur­
vature (H )  and Gaussian curvature (K)  at different 
points o f  the model objects and scene. These cur­
vatures are the local features of  the model objects 
and scene. After the computations o f  these cur­
vatures we consider the following.

(i) We extract the edge-points of the model o b ­
jects and scene. In the presence of an edge the prin ­
cipal curvatures will achieve a local maximum 
(Vemuri et al., 1987). Therefore it is appropriate  to



declare as edge-points those points at which the 
principal curvatures are above the given thresholds 
(Cline, 1981). Edge-points are further clarified in 
Figure 5. The edge-points o f  the models and scene 
will be used for initial matching.

(ii) We classify each non-edge-point into one of  
the eight categories show'n in Figure 3. Finally we 
group all neighbouring points of the same type in 
a patch and similar neighbouring patches into a 
region (Oshima and Shirai, 1979, 1983). Each 
natch (or region) of  the models and scene is 
A scribed by a representative point. In case of p a t­
ches we denote such points by Ph i = 1 ,2 ,3 , . . . ,  
and in case of regions we denote such points by 
V , i -  1 ,2 ,3 , . . . .  Each P, (R j ) is associated with an 

appropriate three-dimensional coordinate and the 
values of  the mean curvature and Gaussian cur­
vature of  the patch (region). These non-edge- 
poarts will be used for surface matching. For fur- 
th<y clarity see Figure 5. Non-edge-points are 
• siways surrounded by contours or edge-points of 
.he object.

5 . Recognition and positioning o f 3-D objects

The task of recognition and positioning of par­
tially occluded 3-D objects is performed sequen­
tially as follows.

5.J. Initial matching between m odel edge-points 
and scene edge-points

To match the edge-points we use the Euclidean 
distance between the principal curvatures of the 
model edge-point and scene edge-point. An Eucli­
dean distance / ,  greater than a threshold TJ{ in-

Surfaces between edge-points

Figure 5. 3-D car representing the edge-points and  the 3-D sur­
face orientat ion.

dicates two dissimilar edge-points and less than or 
equal to TJt results in two similar edge-points. 
This decision rule decides if a scene edge-point 
matches a model edge-point (see the Appendix). 
After finding the match we compute the ap­
propriate 3-D coordinate transformation T  to 
place the coordinates o f  the matched edge-points 
o f  the models on the corresponding edge-points of 
the scene. T  is represented by the rotational 
parameters a  (rotation around  the x-axis), /? (rota­
tion around the j-axis),  y (rotation around the c- 
axis) and the translation parameters tx (translation 
in the x-direction), t y (translation in the v- 
direction), t- (translation in the z-direction).

The model edge-points form a dictionary of the 
model features which is used as knowledge data 
base. Considering the scene edge-points the m at­
ching algorithm looks up the possible matches to 
the model edge-points with the help of  this dic­
tionary.

5.2. Coordinate transformations o f  the initially 
matched po in ts

After achieving the initially matched edge-points 
between model objects and scene, our aim is to 
estimate the three-dimensional coordinate trans­
formation T  which consists of rotation (rotation 
about three axes) and translation (translations in 
the directions o f  three axes) and which transform.^ 
the model objects into the scene reference frame. 
The transformation T  is applied only on the 
matched edge points of  the model objects. To 
achieve the transform ation  T  we apply the concept 
o f  composite transform ation through matrix 
multiplication or concatenation (Plastock and 
Kalley, 1986; Ballard and Brown, 1982). Actually, 
to estimate the rotational and translational p a r a ­
meters of the edge-points of the model objects into 
the scene reference frame we solve a set o f  n o n ­
linear equtions using the iterative m ethod  of 
N ew ton-Raphson (Carnaham  et a l . , 1969).

5.3. Generation o f  initial hypothesis

The initial hypothesis makes a list o f  scene edge- 
points and their matches for each possible model 
that could appear in the scene. To hypothesize ar.



edge-point o f  the model object in the scene, mutual 
compatibility constraints extract a set of consistent 
matches from a model’s match list. First we discuss 
the mutual match compatibility between two m at­
ches. Then we discuss a group of  mutually com­
patible matches.

5.3.1. Mulucil compatibility and multiple matches
Suppose that two matches 0 ,  (/'= 1,2) contain a 

scene edge-point 5, and a model'edge-point Af,. 
The following four rules test 0 ,  and &2 for their 
mutual compatibility.

(i) 5, J=S2 .
(ii) M ^ M 2.

(iii) The two scene edge-points refer to model 
edge-points belonging to the same model (M, and 
M 2 belong to the same model).

(iv) The structure between the two scene features 
equals the structure between the two model 
features.

The first three rules are self-explanatory. The 
fourth rule comes from the assumption that rigid 
objects make up the model set. To have the same 
structure, two matches should have the same rota­
tion and translation parameters. The very unlikely 
possibility that two matches have exactly the same 
coordinate transform parameters requires that the 
distance between them to be less than some small 
value e. That is

=  | (X j Ct2 <C £a ,

d/i = \P\~ Pi \ < £p> (22)

<5y = \Y\ — 72 <£;,

and

Sx i A\'| — ^  ’

I. <■’.;• (23)

6z = i ^ - y  <£,•

To compare two matches, w'e compare the rota­
tional parameters first. If the difference between 
the rotational parameters is less than a certain 
threshold value as indicated by equation (22 ), then 
we fix the rotation parameter to the same value for 
both matches. After this we compute the transla­
tional parameters. If the difference between the

translational parameters has a value less than some 
threshold value as indicated by equation (23), then 
the matches have compatible coordinate structure 
(Ray and Dutta Majumder, 1989; Koch and 
kashyap, 1985). Otherwise the matches do not 
meet the structural compatibility requirements.

Suppose a group of compatible model features 
represents a high-level model feature which agrees 
with a high-level scene feature or a large portion of 
the model identifiable in the scene. There are 
already a lot of schemes (Ballard, 1983; Hakalathi, 
1984; Stockman et al., 1982; Bolles and Cain, 
1982; Crimson and Lozano-Perez, 1984; Fischer 
and Bolles, 1981; Koch and Kashyap, 1985) 
available for multiple compatible matches. 
However, we apply the minimal spanning tree 
algorithm (Shamos and Floey, 1975). This algo­
rithm has several benefits which are briefly discuss­
ed below. The algorithm starts with the smallest 
am ount of data needed to form a solution and then 
adds consistent da ta  instead of using all the data to 
form a cluster around  the match. The compatible 
matches satisfy the four compatibility conditions 
mentioned earlier. Conflicts can occur between 
pairs o f  matches which can be solved by taking the 
match with the highest structural compatibility. 
Thus, we find out the largest set of mutually com ­
patible matches. The complexity of the algorithm 
is o f  the order o f  O (n log n) where n represents the 
num ber o f  points to be clustered. This technique 
can avoid stray matches by fixing the cluster cen­
ters (see the Appendix). An example o f  our m at­
ching procedure for finding the largest compatible 
match is discussed in the Appendix.

The storage requirements to realize this algo­
rithm are not large. We have to store the values of 
the principal curvatures (K h K2) and of  the coor­
dinates at different edge-points of the model ob­
jects and scene.

At the end of the initial hypothesis we complete 
some tasks for non-edge-point matching in the 
following way.

We record the coordinates, mean curvatures and 
Gaussian curvatures o f  the representative points of 
the patches (regions) of  the model objects and 
scene. These non-edge-points are surrounded by 
the matched edge-points of the model objects and 
scene. For further clarity see Figure 5.



5.4. Matching o f  the non-edge-points o f  the model  
objects and scene

After matching the edge-points, we try to match 
the patches (regions) which are surrounded by the 
matched edge-points o f  model objects and scene 
and which are formed by a similar type of  non- 
edge-points mentioned in item (ii) o f  Section 4. At 
the time of  matching the patches (regions), we con­
sider the representative point (see Figure 5) of each 
patch (region) of the model objects and scene. We 
apply the appropriate transformation T, which is 
already estimated in Section 5.1, to each represen­
tative point o f  the patch (P,) or region (R/) of the 
model objects and find the corresponding repre­
sentative point of the patch (region) o f  the scene. 
At the time we match the patch (/*) or region (/?,■) 
of the model objects with that o f  the scene we 
assume the similar four compatibility conditions 
mentioned in Section 5.3.1. To maintain the same 
compatibility structure, the two distinct represen­
tative points of  patches (regions) o f  model objects 
and scene should satisfy the inequality type con­
straints o f  equations (22) and (23). We compare 
the transformed coordinates o f  the representative 
points o f  patches (regions) o f  the model objects 
with the coordinates of the corresponding points in 
the scene. If the compared results (comparison is 
performed through Euclidean measure) are below a 
certain threshold value, then the transformation is 
acceptable. Otherwise it is not acceptable. Finally, 
we compare the mean curvature and Gaussian cur­
vature of  the representative points o f  patches 
(regions) o f  model objects with those of  the scene. 
These curvatures essentially characterize the orien­
tation o f  the surface of the patches (regions). Dif­
ferent surface orientations are shown in Figure 3. 
If  the compared values (comparison is performed 
through Euclidean measure) are below a certain 
threshold, then it indicates similarity between two 
patches (regions). Thus the matching of  the non- 
edge-points indicates similarity in orientation of  
surfaces which exist between different edge-points 
o f  the model objects and scene.

5.5. Generation o f  the f in a l  hypothesis

Finally we hypothesize the locations of p a r­

ticular views of  the model objects in the three- 
dimensional scene. Thus, we construct the three- 
dimensional scene using the hypothesized model 
objects. In the next section we try to verify how far 
the hypotheses are correct.

5.6. Verification o f  the hypotheses

The verification of the hypotheses can be per­
formed through the verification of the following 
three items.

(i) Verify the total num ber o f  patches (regions) 
o f  the original 3-D scene with that of patches 
(regions) of the scene formed by the hypothesized 
model objects. If the hypotheses are correct, then 
the total number is the same in both cases.

(ii) Compare the adjacency relation o f  patches 
(regions) o f  the original 3-D scene with that of p a t ­
ches (regions) o f  the scene formed by the hypo­
thesized model objects. This actually reduces to a 
graph matching problem mentioned in (Oshima 
and Shirai, 1983). The nodes of the graph repre­
sent the type of  the patches (regions) and an arc 
between two nodes represents the adjacency re la­
tion between the two patches (regions). For further 
clarity see Figure 6 .

(iii) Finally, using equation (21), we com pute 
the approximate surface area of  the original 3-D  
scene and the approximate surface area of th e  
scene formed by the hypothesized model objects. 
If  the difference between the two approximately 
computed surface areas (Besl and Jain, 1986) is 
below a certain threshold, then the hypotheses a re  
consistent.

R S  = Ridge surface with H<0, K = 0 
FS  = Flat surface withH = 0,K = 0

Figure 6. Adjacency relation between pa tches /reg ions .



Figure -7(a). Original 3-D scene. Figure 7(b). Edge-points and  non-edge-points of  the 3-D scene

|view -4|
Figure 7(c). Different views o f  the model objects.

Vi'ew-1

View-2

( d )

View-2

?  6

View-3

View-3
Figure 7(d). Edge-points and non-edge points o f  the model objects.
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Figure 7(e). Hypothesized 3-D scene.

6. Experimental results and discussion

Case study  1

Figure 7(a) represents a 3-D scene formed by 
wooden blocks. The stars of Figure 7(b) represent 
(he edge-points (see item (i) o f  Section 4) of  the real 
3-D scene shown in Figure 7(a). Figure 7(c) re­
presents different views of the model objects. The 
stars of  Figure 7(d) represent the edge-points of the 
model objects. An Euclidean measure J x and an 
appropriate threshold Tj determine if two edge-

points match and result in a 3-D coordinate trans­
form for the ultimate matching through structural 
compatibility using the minimal spanning tree 
algorithm. Tables 1, 2 and 3 represent the matches 
that make up compatible structures for the model 
ob jec t-1, model object-2 and model object-3.

The following coordinate transformations give 
the locations o f  the best possible hypotheses for 
the edge-points.

For model object-1
view-1: a '=  153, £ '  =  89, 7 ' = 212,

r v= - 1 4 1 ,  7 > 2 3 1 ,  71= 122 
view-2: a ' = 17, /? '=  10, y' =  5,

7V=51, T, = 89, 71 = 453

For model object-2
view-1: a ' = 164, /?' =  318, y' = 118,

T,=  121, r (. = 51, 71 = 432

For model object-3
view-1: a ' = 13, /?' =  04, y ' = 13,

7;.= 131, Ty = 332, 71 = 222 1

The dots o f  Figure 7(b) represent the selective

Table 1

Cluster (using minimal spanning tree) for determining the edge-poims of  lire model object-1 (see Figure 7(d)) in the scene represented 
by Figure 7(b)

Cluster  o f  compatib le  matches for edge-points, o f  the model object-1

J\ between
Scene View-1 A, A'; a P y lx ty t- a' P' y' lx t ’v C

1 3 0.0012 0.004 150 90 210 -1 4 5 230 120 153 89 212 -141 231 121
9 4 0.0011 0.0005 154 87 215 - 1 4 2 232 124 153 89 212 -1 4 2 231 122

25 8 0.0015 0.0025 155 88 212 -1 4 0 234 122 153 89 212 -141 232 12!
26 1 0.0045 0.0015 152 91 213 -1 4 4 233 126 153 89 212 -1 4 0 230 123
27 2 0.0033 0.0025 153 89 209 -1 4 0 231 128 153 89 212 -141 231 122

a ’ = ---
n

=5.II I P  r
= --- = 89, y' = —

n n

y
-  = 212, Tx II

w| 
* -1 4 1 , IIf~~T‘ = 231, T.

1’ >z

n
122

J\ between
Scene View-2 K\ k 2 a P y tv tz a ’ P' y' /; >y 1 -

11 1 0.0023 0.0014 15 10 05 53 95 450 17 10 05 50 90 452
12 2 0.0018 0.0016 18 8 03 55 90 451 17 10 05 51 89 453
13 4 0.0022 0.0022 19 9 04 52 91 455 17 10 05 50 88 454
14 3 0.0011 0.0034 16 12 06 51 93 457 17 10 05 51 89 452

if
- 

1 M 1 £
?

II ■C
a II I P  

—  = 10, 
n n

= 5,
v

n
- = 51, Tr =

I  t'v
— -  = 89, 

n
Tz = X <z 

n
= 453



Table 2
Cluster (using minimal spanning tree) for determining the edge-points o f  the model objeet-2 (see Figure 7(d)) in the scene represented 
by Figure 7(b)

Cluster of compatible matches for edge-points o f  the model object-2

Scene View-
between 

A] AS a P V /, /, 1- u ‘ P' y' S' l':

3 1 0.0011 0.0015 165 318 118 120 50 430 164 318 18 121 51 431
4 3 0.0020 0.0012 160 315 115 123 51 432 164 318 18 122 52 432
5 4 0.0035 0.0011 163 318 116 124 55 433 164 318 18 123 53 431
6 5 0.0014 0.0012 167 319 120 120 54 434 164 318 18 121 52 433
7 8 0.0019 0.0025 168 320 120 121 53 435 164 318 18 122 50 431
8 7 0.0014 0.0014 160 322 118 125 52 431 164 318 18 120 51 433

16 11 0.0025 0.0035 163 314 1 19 126 50 434 164 318 18 121 52 432
17 12 0.0012 0.0011 164 315 128 122 51 432 164 318 18 120 50 431

-

n
= 164,

I  P
P' = ----- = 318, y' =

n

v  V
—  = 118, 7S 

n

1' S' 

it
121,

v  S'
- —  

It
- 51 , 7- =

v  n
= 432

n

Table 3
Cluster (using minimal spanning tree) for determining the edge-points o f  the model object-3 (see Figure 7(d)) in the scene represented 
by Figure 7(b)

Cluster o f  compatible matches for edge-points of  the model object-3

between
Scene View 1 K, AS a P S t: a ' P ‘ Y S'

18 6 0.0041 0.0024 10 05 12 135 331 223 13 04 13 131 332 220
19 9 0.0011 0.0021 15 04 13 136 335 220 13 04 13 130 331 221
20 10 0.0014 0.0035 16 03 14 131 330 224 13 04 13 131 333 222
21 11 0.0051 0.0044 12 06 15 132 336 225 13 04 13 132 331 221
22 8 0.0011 0.0013 14 02 10 133 332 221 13 04 13 131 332 222
23 7 0.0015 0.0019 15 04 15 135 331 226 13 04 13 131 331 223
28 14 0.0021 0.0027 12 03 10 131 334 224 13 04 13 132 332 221
29 5 0.0032 0.0012 13 02 12 136 336 225 13 04 13 130 333 222
30 13 0.0004 0.0010 14 05 13 132 335 222 13 04 13 131 331 223

-

n
= 13,

I P
P' = ----- = 04,

n

 ̂
j 

^

IIV
. = 13, ’l \  -=

v  'v
------131,

n
Tv

Y. S' 

/;
332, T:

v  t: 

n
= 222

non-edge-points o f  the scene and the dots of Figure 
7(d) represent the selective non-edge-points of  the 
model objects (see Section 5.4). The non-edge- 
points o f  the model objects experienced the same 
3-D coordinate transformation as mentioned for 
the best possible hypothesis for the edge-points. 
Checking the structural compatibility, as mentioned 
in Sections 5.3 and 5.4, we compare the mean cur­
vature and Gaussian curvature of  the non-edge- 
points of the model objects and scene. An Eucli­
dean measure J 2 and an appropriate threshold 7}, 
determine if two non-edge-points match.

Finally we hypothesize that the 3-D scene of 
Figure 7(a) is formed by the following combi­
nations.

(i) View-1 and -2 o f  the model object-1 with 
the 3-D transform ation shown in equation (24).

(ii) View-1 of the model object-2 with the 3-D 
transform ation shown in equation (25).

(iii) View-1 of the model object-3 with the 3-D 
transform ation shown in equation (26).

The hypothesized 3-D scene is shown in Figure 
7(e). To verify the hypotheses we check the three 
items of Section 5.6.



Case study 2

In the second experiment we consider the 3-D 
scene shown in Figure 8(a). Similar to Case study 
! we ultimately hypothesize that the 3-D scene of 
Figure 8(a) is formed by the following combi­
nations.

(i) View'-l o f  the model objec t-1 with the 
following 3-D transformation:

a '=  160, £ '  =  135, y '=  65,

T, = 240, 7; = - 1 7 5 ,  71=340.

(ii) View-1 and -2 o f  the model object-2 with 
the following 3-D transformations:

or' = 145, £ '  = 75, y' = 350,

T,=  150, 7}, =  210, 71 = 355

and

<*' =  231, £ '= 1 4 5 ,  y '=  175,

7;. =  295, 7j, = 345, 71 = 312.

(iii) View-3 of the model object-3 with the 
following 3-D transformation:

f f '=  195, £ '  = 97, y' = 325,

7V=135, r v = 314, 71 = 175.

Finally the hypotheses are verified.

The choice o f  thresholds is very important in 
both cases. If the values of  thresholds are set at a 
higher level, different surfaces and edge-points

tend to be recognized as identical. On the other 
hand identical surfaces and edge-points may be 
recognized as different if the threshold values are 
set at lower values because o f  noise and digitiza­
tion errors. In the PDP-11 (24) computer the total 
C P U  time (starting from the scene and model 
descriptions to hypotheses verifications) required 
for Case study 1 is 5.75 minutes and for Case 
Study 2 is 6.35 minutes.

7. Conclusion

We have presented a model based vision scheme 
to recognize and locate partially occluded three- 
dimensional rigid objects. The input to the vision 
system is the range data. The system describes a 
scene in terms of planes, curved surfaces and edge- 
points. The models of  objects are built in the 
system by showing them one at a time. Sometimes 
multiple views of an object model is necessary for 
complete description. Objects in an unknow n 
scene are recognized by matching the description 
o f  the scene to those o f  the models. During the 
matching process we have used some standard  
results o f  differential geometry for curves and su r­
faces. Based on the matched descriptions o f  the 
scene and model objects we form the hypotheses 
about the 3-D scene. Finally we verify the 
hypotheses. The validity of the present vision 
scheme is tested on two examples and very p ro m is ­
ing results are obtained.
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Table

(£5) =  Indicates a node which wou ld  consist on m atch . An arc between two nodes satisfies 
the four compatibility constra in ts The scene edge-points 2,5,7^8.10 are matched with the 
edge-points of the model The scene edge-points 1,2,6,7 are matched with the 
edge-points of the model The scene edge-points 4,11, K  are matched with the
edge-points of the model Mnr

Appendix

Assume that the edge-points of the model ob­
jects and scene are detected and marked by integers 
1 ,2,3 ,. . . .

Consider Table 4. Each entry o f  Table 4 repres­
ents the Euclidean measure J x between the prin­
cipal curvatures of an edge-point o f  a model object 
(at a particular view) and an edge-point o f  the 
scene. A threshold TJf decides whether a scene 
edge-point matches a model edge-point. According 
to the numerical value of T,i a particular scene 
edge-point may be matched with more than one

edge-points of different views of a particular 
model a n d /o r  different models o f  different objects 
and vice versa. This initial matching between scene 
edge-point and model edge-point segregates the 
most dissimilar features between the scene and 
model objects. The symbol 0  of Table 4 indicates 
the similarity between the /'th edge-point o f  the 
scene and they'th edge-point o f  K t h view o f  the r th  
model. After the initial segregation o f  dissimilar 
features we decompose Table 4 into /7-number of 
tables where n represents the total number o f  views 
of the model objects. On the individual table we 
separately apply the minimal spanning tree algo-



Figure 9. a = pe rfo rm  the task of  initial edge-point matching o f  the scene with respect to the model A#n ; b =  perform the task of  initial 
edge-point matching o f  the scene with respect to the model A/u .; c = perform  the task o f  initial edge-point matching of  the scene with 
r o p e d  to the model M„r; d = determination o f  the compatible st ructure  (using minimum spanning tree) between the matched scene 
edge-points and  the matched edge-points o f  the model  M n \ e = determination  of  the compatible s tructure (using minimum spanning 
irce) between the matched scene edge-points and  the matched edge-points o f  model f = determination  o f  the compatible structure 
(using minimum spanning tree) between the matched scene edge-points and the matched edge-points of  the model M,„: 
g = com puta tion  o f  the cluster centers (o', /S', y')  and  Tx, T„ T. for the best possible hypothesis about  the model  M ] h = computation 
o f  the cluster centers («', /?', y') and Tx , T„ Tz for the best possible hypothesis about the model M {k; i = com puta tion  of  the cluster cen­

ters (a \ P \ y ') and  Tx,T y,T-  for the best possible hypothesis about the model  M m .

rilhm discussed in subsection 5.3.1. Thus we get 
the most compatible match between the scene 
edge-points and model edge-points. A node (0) in 
a table would consist on a match. An arc would ex­
ist between two nodes if the two matches complied 
with the four compatibility constraints mentioned 
in subsection 5.3.1. In Figure 9 we indicate that the 
task of edge-point matching can be done simul­
taneously (i.e., parallel computation is possible).

After determining the compatible structure on 
each table we compute the cluster center for each 
compatible structure of  each table. The cluster 
center (see Tables 1-3) at each table is essentially 
formed by taking the average of  all the rotational 
parameters a, /?, y of all compatible structures of 
each table. (Thus in Case study 1 o f  Section 6 we 
get four cluster centers indicated in Tables 1-3). 
The translation parameters tx , t v and t- o f  all the 
compatible structures of  each table are further 
modified to  t ’y and tl due to the fixing up of all 
the rotational parameters a, fi and y o f  each table 
to the cluster center a ' ,  /?' and y'. After this we 
switch over to the task o f  non-edge-point match­
ing. We apply the 3-D transformation (i.e., a',  /?', 
y' and Tx , Ty , T,, which are already estimated for 
the best possible hypothesis for the edge-points) to 
the non-edge-points which are surrounded by the 
matched edge-points. We compare the transformed

coordinates of the non-edge-points of the model 
objects with the coordinates of the corresponding 
non-edge-points o f  the scene. The comparison is 
performed through the Euclidean measure J2• A 
threshold 7}, indicates whether the transformed 
coordinates of the non-edge-points of the model 
objects are acceptable. Finally we compare 
(through the Euclidean measure J 3) the mean cur­
vature and Gaussian curvature of the transformed

i

Figure  10. The end poin t  (i.e. node 8) o f  Figure 9 is the starting 
point  o f  Figure 10. j = application o f  3-D t ransform ation  on the 
non-edge-points o f  the model M n \ k = application of 3-D 
t ransform ation  on the non-edge-points o f  the model  M lk : 
1 = application o f  3-D t ransform ation  on the non-edge-points o f  
the model M m \ m = matching ( through the mean curvature and 
G aussian  curvature) o f  the non-edge-points o f  the model Af, | 
with the non-edge-points o f  the scene; n = matching (through 
the m ean  curvature  and  Gaussian curvature) o f  the non-edge- 
points o f  the model M [k with the non-edge-points o f  the scene: 
o =  matching (through the mean curvature and Gaussian cu r ­
vature)  o f  the non-edge-points o f  the model M nr with the non- 

edge-points o f  the scene.
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indicates non edge-poinl (patch/region) m atch,Where k = r, Q  indicates edge-points m atch,

integer 1,2, 3---indicate the edge-points ol the scene and the model objects and (D ,(2),< 3) 
indicates the non-edge points (patch/region).

I'iuure 11.

non-edge-points of the model objects with those of 
the corresponding non-edge-points o f  the scene. A 
threshold 7}, indicates whether a non-edge-point 
of the scene matches a non-edge-point of the 
model objects. Figure 10 indicates the possibility 
of parallel computation of the task of  non-edge- 
point matching.

Thus, for an arbitrary example we get the com­
plete compatible structure shown in Figure 11.
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