
Fuzzy divergence, probability measure of fuzzy 
events and image thresholding

Dinabandhu Bhandari, Nikhil R. Pal* and D. Dutta Majumder
Electronics and Communication Sciences Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, India

Received 12 August 1991 
Revised 16 April 1992

Abstract

Bhandari. D ., N .R . Pal and D . Dutta Majumder, Fuzzy divergence, probability measure of fuzzy events and image thresholding, 
Pattern Recognition Letters 13 (1992) 857-867.

A new measure called divergence between two fuzzy sets is introduced along with a few properties. Its application to clustering 
problems is indicated and applied to an object extraction problem. A  tailored version o f the probability measure o f a fuzzy 
event is also used for image segmentation. Both parametric and non-parametric probability distributions are considered in this 
regard.

Keywords. Fuzzy divergence, fuzzy event, fuzzy dissimilarity, segmentation.

1. Introduction

This paper is logically divided into two parts. In 
the first, a new measure called divergence between 
two fuzzy sets (fuzzy divergence) is introduced. In 
classical probability space a measure o f  divergence 
exists, which quantifies the discrepancy between 
two probability distributions. In this note we intro­
duce the concept o f  fuzzy divergence which rep­
resents a measure of  dissimilarity or difference 
between two fuzzy sets. It may be mentioned that 
the divergence measure is not a metric. A few
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propositions about the measure are also made. As 
an illustration of  its applicability, it has been used 
in a clustering problem for object-background 
classification.

In the second part, the probability measure of 
fuzzy event introduced by Zadeh (1986) is re­
viewed. It has been found that a tailored version of 
this probability measure can be used as a quan­
titative index of similarity/dissimilarity between 
two sets. Hence, this can also be used for cluster­
ing/segmentation problems. In addition, algo­
rithms have been developed for image thresholding 
using this measure. Both parametric and non- 
parametric distributions for describing the histo­
gram have been explored. Under the parametric 
approach, the normal distribution as well as the 
Poisson distribution have been considered.

For the parametric methods initially, a coarse 
object-background classification is carried out, 
minimizing the %2 statistic. The parameters o f  the



resultant distribution are then used to select the 
membership function for defining the required fuzzy 
set. Finally, the fuzzy dissimilarity measure be­
tween object and background is maximized to select 
the threshold for segmentation. The superiority of 
the proposed algorithms has been established by 
comparing the results with some existing methods.

2. Divergence measure for fuzzy sets and its appli­
cation

2.1. Divergence between two f u z z y  sets

A crisp subset A  o f  the universal set U  is a col­
lection o f  objects from U, which are members of 
A .  An equivalent way of defining A  is to specify 
the characteristic function o f  A ,  %a ' U - *  {0,1} for 
all x e U ,  such that

Xa (x ) =  1, x e A ,

= 0 , x $ A .

Generalizing the characteristic function from 
{0,1} to  [0,1] one can obtain the fuzzy sets. More 
specifically, the above concept o f  characteristic 
function generalizes to a membership function 
/u : U-> [0,1]. In general a fuzzy set A  in the uni­
verse of  discourse is defined as

A  = {fJLA(x i) I*;, / '=1 ,2,

where fiA(Xj) is the membership value for x, indi­
cating the degree of possessing the property A.

Let S be the set of supports x h i = \ , 2 , . . . , n ,  and 
A  = {ny{Xj) | Xj} and B = { ii2{x ,) | x,} be two fuzzy 
sets defined on S. Following the concept of  diver­
gence in classical probability theory (Kullback 
(1959)), we define the divergence D ( A , B ) between 
A  and B  as

D(A,  B) = ^ i  [£>, (A, B) + £>, (B,A)] (1)
n , = i

and

where

Dj(A, B) = /i,(x,) log
H\ (xj) 
VliXi)

+ [1- // ,(* ,) ]  log 

0<Mi(Xj), n 2(Xi)< 1

l - / * i  (x,-) 
1 - ju 2(x,)

Dj (B ,A)  = *°S
ViiXj) 

fJ iU,)

+ [1 - ft2(Xj)] log

V\(Xj)

l*l(Xi)

-  [1 - //: (-V,)] log

0 < / / | (x , ) ,  n 2( x , ) < \ .

1 - V 2(Xj)

(3)

Here, , D,(A,B )  can be described as the m ean  
information per support from A  for discrimination 
in favor of A  against B. A similar interpretation 
is also applicable for , Dj(B,A) .  The second 
part in D ' s has been incorporated to bring into 
account the fact that the divergence between the  
complements o f  A  and B  should be equal to tha t  
between A  and B.

Note that D(A,  B) is symmetric with respect to  A  
and B,  and it has all the metric properties except 
the triangle inequality property.

Property 1. D ( A , B ) ^  0, D(A, B)  = 0 i f f  A  = B.

Property 2. D(A ,B )  = D(B,A) .

It is also interesting to note the following p ro p ­
osition.

Proposition 1. For any two f u z z y  sets A  and  B,  

D(A U B,A(~) B) = D(A, B).

This is indeed a desirable property for any distance 
measure between two fuzzy sets.

It is to be mentioned here that equations (2) and  
(3) do not include the crisp sets. In order to account 
for this, one can use the following expressions for 
D ’s:

Dj(A, B) = n x(Xj) log

+ [1- / / , (* ,) ]  log

1 + ^ 2(*/)

2 - n x(Xj)

and

Dj(B,A)  = M2(x i) log

2 ~H2(Xi)

1 + n 2{Xj)

1+//,(* ,)



+ [1 -/U2(jrf)] log
2- fi2(Xj) 

2 -HiiXi)

1 L -1

(4)

This does not violate the properties satisfied by 
D(A,B)  defined earlier. Under this framework the 
following propositions can be stated.

Let A = {fiA(Xj) | Xj} be a fuzzy set. The furthest 
non-fuzzy set A  is defined as A  =  {^ (x ,-)  | x,}, 
where

HA(x , )= \  if fiA(Xj)^ 0 .5 ,

= 0 otherwise.

Proposition 2. For any fu zzy  set A ,  D (A ,B) is 
maximum i f f  B is the furthest non-fuzzy set (A ) o f  
A. In other words,

max D (A,B) = D (A ,A).
B

Proposition 3. Let A Q be the complement o f  A ,  
then

max D(A, A Q) = 2 log 2.
A

This occurs when A  is a non-fuzzy set.

2.2. Applications

The divergence measure introduced in the pre­
vious section can be used for clustering problems 
as this information measure may be used to quan­
tify the separation between classes. Here, as an 
illustration of its applicability we shall use it for 
image segmentation.

A grey tone M x N  image of L  levels can be con­
sidered as an array o f  fuzzy singletones, each 
having a value of  membership denoting its degree 
o f  belonging to object (black) and background 
(white) relative to some brightness level x,-: x, = 
0 ,1 ,2 , . . . ,  L -  1. Let n 0(Xj) and /ib(x,) be the degree 
o f  belonging of an image pixel having grey 
level Xj ( 0 < x ; ^ L - l )  to the object O  and to the 
background B, respectively. In other words, 
{//0(x ,) |x ,}  represents the fuzzy set “X  is black 
(object)” while { m b(x;) | x, } characterizes the 
fuzzy set “X  is white {background)” . According 
to  (1) and (4) the divergence between object and 
background of the image can be defined as

0 ( 0 ,  £ )  = - — £  h(x, ) [D, (O, B) + Dj (B, 0)\
M N  i=o

(5)
where h(xt) is the frequency (number of occur­
rences) of grey level x; in the image,

D,(0, B) = fi0(Xj) log

+ [ l - / / 0(x,)] log

1 + ,u0(x,) 

l+AbC*;)

2 — ii0(Xj)

and

Dj(B, O) = Mb(x i) log

2 - n h(Xj)

1 +fih(x,)
1 +/U0(Xi)

2 ~Mb(x i)
+ [ l - , « b(x;)]log

2 — n 0(Xj)

X/ = 0,1,2,... ,L -1. (6)

In other words,

1 L- x 
D(Ot B)  = —j — E  h(x,)

1 +fi0(Xj)

1 +^b (*;)
2-/u0(Xj)~)

+ [/^b(*/)-^o(*()] logT------ —  • (7)
2-/ub(xi) )

Let us now assume that s, 0 <  s <  L -  1, is a thres­
hold for object-background classification of the 
image F  and that D (0 ,B  :s) is the divergence 
measure corresponding to s. In this sense, 5 is the 
most ambiguous point on the grey scale. Thus the 
membership functions are to be chosen in such a 
manner that /u0(s) =/ub(s) = 0.5 (Figure 1) and in­
crease as we go away from s. Any S-type function 
with the above requirement can be used. However, 
a detailed discussion on the selection of a member­
ship function can be found in Section 4.

It is clear that the divergence measure should be 
maximum when s corresponds to an appropriate 
valley for object-background classification. Thus 
the optimum threshold can be obtained by m ax­
imizing D (0 ,B  :s) with respect to 5. In other 
words, r  can be taken as the threshold, when

D (0, B : r) =  max D (0, B : s). (8)

Before describing the results obtained by the 
method, another algorithm using the probability



measure o f  fuzzy events will be developed in the 
following section.

3. Probability measure of a fuzzy event and its ap­
plication

3.1. Probability measure o f  a f u z z y  event

Let us now define a fuzzy event and its fuzzy 
probability measure. In ordinary probability 
theory, a probability space is a triplet (Q,B,P) ,  
where B  is the cr-field o f  Borel sets in Q  and p  is a 
probability measure over Q,  such that 0 <  P ( A ) ^  1, 
for any A e B ,  with P(0) = O, P(£2) = l and it 
satisfies the countably additivity property, i.e., if 
A u A 2, ... ,A„ are disjoint events of B  then,

(̂Ua) =

For an event A e B ,  the probability of A  can be ex­
pressed as

P(A)  = d P

or

^ ) = j  Xa (x ) * P  = E(jca ). (9)
J Q

Here, x A defines the characteristic function of A  
{Xa(x ) = ® or 1) and E(Xa ) is the expectation 
o f  Xa ■

The notion o f  an event and its probability con­
stitute the most basic elements of probability 
theory. As defined above, an event is a precisely 
specified collection of  points in the sample space. 
By contrast, in real life one frequently encounters 
situations in which an event is fuzzy rather than a

clearly defined collection of  points (K andel (1982)). 
For example, the ill-defined events: “ x  is a tall 
m an” , “ .v is much greater than 1”  a r e  fuzzy 
because of the imprecision in the m e a n in g  o f  the 
italicized words.

By using the above concept Z.adeh (1986) ex­
tended the notion of an event and its p ro b a b i l i ty  to 
the fu/zy domain, l et (Q , B , P ) be a probabili ty  
space in which B is a rr-field of Borel sets in  Q  and 
P  is the probability measure over (2. T h e n  a  fuzzy 
event in Q is a lu / /y  set .1 in Q whose m em bersh ip  
function *10,1) is Borel m easu rab le .  The
probability of a l'u//y ev ent A is defined b y  th e  fol­
lowing:

P ( A ) = \  / / , ( .v )d P  = £(//,,) . (10)
• (- J

Thus, as in the ease of  a crisp set, the probab il i ty  
of  a fuzzy event A is the expectation o f  its m e m b e r­
ship function.

Under a proper framework, as we shall see  in the 
next section, this probability measure can  b e  view­
ed as a similarity/dissimilarity m easure between 
two sets.

3.2. Fuzzy similarity dissimilarity measure between
two sets

Lei A', and X 2 be two sets cha rac te r ized  by 
some joint probability distribution P. Let us define 
a fuzzy event A,

A = {a',,.v2 | -V) e X \ , .Vi e A"2;

a ' | , . v2 a r e  s i m i l a r / d i s s i m i l a r } .

The fuzzy set A may be defined by a su itab le  m em ­
bership function /ja ( x ], x 2), which will g ive  the 
degree of similarity/dissimilarity. Then th e  p r o b a ­
bility of the fuzzy event A is defined by

P(A)  = I I jiA( x u x 2)dP.  ( i i )
. A’; . X ;

This P(A)  can be viewed as a measure o f  s im i la r i ty /  
dissimilarity between the two popula tions. I f  x x 
and X 2 are two disjoint sets and they are g o v e rn ed  
by two independent probability d is tr ibu tions ,  say 
Pi  and P2, then one can redefine the s im i la r i ty /  
dissimilarity measure as



P(A)  = 1 I HA( x \ , x 2) dP] d P 2- ( 12>
' ' x :

This will represent a measure of similarity/dis- 
similarity between two independent distributions. 
This measure, considering only the set o f  supports 
observed in the two sets, can be used in solving 
clustering the segmentation problems. The fol­
lowing section illustrates its application to object 
extraction.

3.3. Application

The segmentation problem may be viewed as a 
partitioning of the image into two non-intersecting 
dissimilar regions. In other words, given a measure 
o f  dissimilarity, our intention is to partition the 
image in such a manner so as to maximize the dis­
similarity between the object and background.

Let 5 be the assumed threshold for objec t-back­
ground classification. Now each o f  the two re­
sulting pixel populations can be modeled by some 
probability density Pj(gn s ), / =  1,2 (may be para- 
metric/non-parametric). Given a suitable member­
ship function /uA for the fuzzy set

A  =  { x l, x 2 \ x i e X u x 2 e X 2,
x j , x 2 are dissimilar},

a dissimilarity measure between two sets (object 
and background) is obtained by

P (/l , s)=l  I VA(g \ ,g 2)P\ (g\ ,s )
.'() . s + r.

x p 2(g2, s ) d g i dg2 (13)

where c is an arbitrary small positive quantity. 
For the discrete case, it can be written as

5 L -  1

P (/ 4 ,s)= £  £  P A(g\,g2)P\ (g\ ,s)p2(g2,s).
° S + 1 (14)

It must be mentioned here that equation (13) or 
(14) is not exactly the probability of  the fuzzy 
event, “ (*j,.x2) are dissimilar”  as the limits of 
integration (or summation) do not span the entire 
permissible range. Equation (13) or (14) gives a 
measure of dissimilarity between two sets which 
might have been generated from two populations 
characterized by /?,(gi,s) and p 2(g2,s).  Note that 
the overlap area between the two probability distri­
butions has not been considered.

Since in this case, the two probability densities 
are independent, clearly, PC4,s) is a function o f  5 
only. Hence, equation (13) can be regarded as an 
objective criterion for the correct classification 
performance. The optimum threshold can there­
fore, be obtained by maximizing P(A,s ) ,  in other 
words, t  is taken to be the optimum threshold for 
object-background classification, where

P { A , t) = max P(A,s) .  (15)

H e re Pj(gj,s)  can be parametric or non-parametric 
as discussed in the next sections.

3.3.1. Non-parametric
In this case, we are considering the histogram 

itself as the representative of the probability distri­
bution of grey values in the image F. Let h(g)  be 
the frequency of grey value g ( O ^ g ^ L - l )  in F, 
and let / ^ ( ^ s )  and p 2(g2, s ) be the probability 
densities for the two sets, namely, object ( g i ^ s )  
and background (g2> s) .  Then

p ,(g i ,s )  = h{gi) j(^ t o h (g\)J,

(16)

p 2(g2,s) = h(g2)j(^  £ + i A(S2 )^>

S + l^ ;g 2 ^ ^ -  — 1, (17)

and the dissimilarity measure P(^4,5) can be writ­
ten as

s i.-\
P{A,s)  = Y. I  ^ A ( 8 u g i ) P \ ( S u s ) p 2(g2,s).

(18)

3.3.2. Parametric
Usually normal distributions (Kittler and Illing­

worth (1986), Pal and Bhandari (1992)) are used to 
describe the grey level variation, but recently it has 
been established by Pal and Pal (1991) that a grey 
level distribution over a uniform region can be bet­
ter approximated by a Poisson distribution. In this 
study both normal and Poisson distributions have 
been considered. Let G 0 (A0 (s)) and G B(kB(s)) be 
two Poisson distributions for the object and the 
background grey levels, respectively. The pa ram ­
eters o f  the two distributions A0 (s) and AH(s) can 
be estimated as



and

W  = ( T.Qg h ( g ) J  ^ h ( g ) (19)

Afl(*) = (  i  g h(g))  I (  lY? h(g)V  (20)
\g=S+l / /  \g=J+l /

Hence, the dissimilarity measure P ( / l ,s )  between 
object and background becomes

P ( A , s ) = t  I '  MA(g u g2) (~
gl =0 £2 = 5+1 £ l  '

#2!
(21)

On the other hand, if we assume that object and 
background densities follow normal distributions 
( N( mu O\) and N ( m 2, a 2), respectively), then for 
an arbitrary threshold 5 the parameters can be esti­
mated as follows:

and

"*,-(s)= ( I  8 h(g)j  j £  h(g) (22)

fT/2('s ) =  ( X  ( g - m i (s ))2h ( g ) ) / (  £  A(g)
\ g  = a

where

a =

and

b =

0 for /=  1,

5+1 for i = 2,

s for / = 1,

L - 1 for i = 2.

(23)

(24)

(25)

In this situation the measure of  dissimilarity be­
tween object and background becomes,

I'i'-e j '£- l
P04,.s) = f iA(gug2)Pi(g\ , s)p2(g2, s )dgl dg2

*0 Js+£

1 1

CT,(s)(72(s) 271 t,0 ;,5+£

1 ( g\ - w , ( s ) \ 2

HA(g\,g2)

- exp -

x exp( - -

2 V <7,(5)

1 f g 2~ m2( s ) \ 2
a 2(s)

d g ,d g 2. (26)

The dissimilarity measure P (/ l ,s ) ,  in each case 
(parametric and non-parametric), is explicitly a

function of  s only. Maximizing P(A,s)  on s we can  
find the optimal threshold.

To reduce the computation overhead, we h ave  
used the ^-s ta t is t ic  to find a reasonable range o f  
grey values for the threshold. Here, our in ten tion  
is not to test the goodness of fit hut to find so m e  
approximate range in which the threshold lies. F o r  
this we minimized

m <> 

where

Ej = p,(g,s) N,,  / — 1,2

and

Og = h(g), N t = t h ( g ),
I! 0

( O ,  /  ; ) '
(27)

L I

-v : = I  h ( g ) .

Let

X 2t =  m i n ^ 2,

and /??,(r) and m 2(r) be the means of the tw o sets 
when the threshold is r. It is then reasonable to  
assume that the optimal threshold belongs to  th e  
interval [mx(r ) ,w 2(r)]. So instead of c o m p u tin g  
the dissimilarity for all ,v (O^.v^ /. -  1) we can m a x ­
imize P ( / l ,s )  over W ] ( r ) ^ 5 ^ / / / : (r).

4. Selection of membership function

In order to segment an image using the d iv e r ­
gence measure, we need to define two fuzzy sets “ g  
is white" and “g is b lack" . For defining such  a 
pair any S-type function and its complement can  be 
used. We have used here the standard S -func tion  
o f  Zadeh as defined below, for the fuzzy set “ g  js  
white":

S(g:a,b,c)

= 0 g^a,

- 2 {g~ a)1 
(c - a ) 2

a^ g ^ b ,

= i - 2 te ~ c);
( c - a )2

b ^ g ^ c ,

= 1 g>c,

where b is the cross-over point and ( c ~ a )  is th e



bandwidth. Thus, we can take fj2(g) = S(g:a , s ,c )  
and 1 (since the black set is the
complement of white), where s is an assumed thres­
hold. It may be mentioned here that for such an S- 
function several authors (Pal and Dutta Majumder 
(1986)) have used different bandwidths (windows) 
without givini: any criteria for the selection o f  an 
appropriate window size. For this purpose one can 
use the guideline provided by Murthy and Pal 
(1990). In this investigation we have used a band­
width of 10.

To define the fuzzy set “ x, and x 2 are dis­
similar",  we have used ,V |- .V 2 ; as the argument 
of the .S'-1''unction. Here the window size has been 
selected depending on the parameters o f  the proba­
bility distributions. For example, one can usetf = 0 
and where ).a is the parameter of the
Poisson distribution assumed for the object and 
?.H is that o f  the background.

Table 1

Images Thresholds

Divergence Non-param. Poisson Normal

Biplane 13 14 12 14
Lincoln 9 11 11 6
Boy 18 14 9 30
Test 1 17 17 17 17
Test 2 to 10 9 9
Test 3 16 16 16 16

One can also use an exponential function for 
computing the dissimilarity measure between x, 
and x 2. For example,

HA(xx,x2) = l - e x p ( - | x , - x 2|).

(b)

L_L
0

I . I I I  !
15 20

O r e y  l e & l

25

Figure 2. Biplane image, (a) Input, (b) Histogram, (c) Output 
obtained using divergence, (d) Output obtained using dissimi­
larity assuming Poisson. (e) Output obtained using dissimilarity 
assuming normal and non-parametric. (f) Output obtained 

using minimum error thresholding.



5. Implementation and comparison with some ex­
isting methods

In this section, we shall discuss the results ob­
tained by the algorithms introduced earlier on a set 
o f  three (64 x  64) images with 32 levels. Algorithms 
have also been applied on three test histograms. 
Some o f  the existing thresholding techniques 
(Kittler and Illingworth (1986), Pun  (1980), Kapur 
et al. (1985)) have also been implemented and com­
pared with the proposed algorithms.

Kittler and Illingworth (1986) have suggested an 
iterative method for minimum error thresholding, 
assuming normal distributions for the grey level 
variation within the object and background. It 
should be noted that this method is computa­
tionally intensive and convergence is not guaran­
teed (may converge to the boundary points of the 
grey level range).

Pun (1980) and Kapur et al. (1985) have used

(b)

3
o

o
o2

5 10 15 20 25 31
G r e y  l e v e l

entropy of  the histogram of an image as the cr i­
terion for object-background classification. In 
Pun (1980), the a posteriori entropy of the p a r t i ­
tioned image defined as

//„ -  P J o u P ,  (1 / \ ) l o g ( l  I \ )

( 5  is the assumed threshold and Ps= ^ [  () h ( X j ) /  
M N )  is maximized to obtain a threshold for seg­
mentation.

Kapur et al. (1985) considered two probability  
distributions, one for the object and the o the r  for 
the background. The entropy of the parti t ioned 
image is then maximized to obtain a threshold for 
segmentation. In other words, they maximized

Figure 3. Lincoln image, (a) Input, (b) Histogram. (c) Output 
obtained using divergence, (d) Output obtained using dis­
similarity assuming Poisson and non-parametric. (e) Output

• produced by the method of Kapur et al. (1985).



In (lie next pan of this section we shall discuss the 
results obtained by the proposed and existing algo­
rithms (Kittler and Illingworth (1986), Pun (1980), 
Kapur et al. (1985)).

Table 1 show s  the thresholds obtained by the 
suggested algorithms. Figures 2(a) and 2(b) repre­
sent the input image of a biplane and its histogram, 
respectisel\. l-rom the table, one can observe that 
all the methods produce comparable thresholds. 
The m u  pu t s  obtained using the divergence and 
the dissimilarity measure are shown in Figures 
2(c)—(e).

Figure .'(a) represents the input image of 
A braham  Lincoln with a multimodal histogram 
(Figure 3(b)). For this type o f  image, multi-thres- 
holding is more appropriate. But, since this image 
has two clear portions (object and background), an 
attempt has been made to find the best possible 
partitioning. Here, the divergence measure and the 
dissimilarity measure with Poisson parameters 
resulted in good segmentations (Figures 3(c)—(d)). 
For this image, the dissimilarity measure using the

(b)

LlIcz(X
U
(J
o
u_
O

0  5 10 15 2 0  2 5  31
GRAY LEVEL

normal distribution is not able to extract the 
object.

For the Boy image (Figure 4(a)), the segmented 
outputs obtained by different methods are shown 
in Figures 4(c)-(e). In this case the dissimilarity 
measure with a normal distribution fails com ­
pletely.

To establish the effectiveness o f  the proposed 
methods we have implemented them on three test 
data which are shown in Figures 5(a)~(c). It is to 
be noted here that for these histograms all the 
methods produce good thresholds (see Table 1).

So as to have a comparative study, some o f  
the existing thresholding techniques (Kittler and 
Illingworth (1986), Pun  (1980), Kapur et al. (1985)) 
have also been implemented. The thresholds ob­
tained by the algorithms are depicted in Table 2. 
The results produced by the algorithm of Kittler 
and Illingworth (1986) are not satisfactory except 
for the Biplane image, where it was able to segment 
properly (Figure 2(f)). It is also to be noted here 
that the algorithm does not converge for the

Figure 4. Boy image, (a) Input, (b) Histogram, (c) Output ob­
tained using divergence, (d) Output obtained using dissimilarity 
assuming Poisson. (e) Output obtained using dissimilarity 
assuming non-parametric and method o f Kapur et al. (1985). 

(f) Output produced by the method o f  Pun (1980).



Lincoln and Boy images. The methods o f  Pun 
(1980) and Kapur et al. (1985) are also not able to 
extract the objects. Only the method proposed by 
Kapur et al. (1985) has produced a reasonable 
result (Figure 4(d)) for the Boy image. A visual 
inspection of  the thresholded images shows that 
the thresholds obtained by the proposed algorithms 
are better (which can further be verified from the 
valleys of the histograms of the images).

T a b l e  2

I m a g e s  t h r e s h o l d s
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Conclusions

A divergence measure between two fuzzy sets 
has been suggested, which satisfies all properties o f  
a metric except the triangle inequality property. 
Some properties of  this pseudo-metric have been 
discussed. This measure has been used to partition 
an image into object and background. Like diver­
gence in probability theory this fuzzy divergence 
quantifies the discrepancy between two fuzzy sets.

A tailored version of the probability measure o f  
a fuzzy event has been viewed as an index of  
similarity/dissimilarity between two sets and used 
to  develop algorithms for image segmentation. In 
this context the grey level histogram of the image 
has been considered as a mixture of two p roba­
bility distributions (may be parametric or non- 
parametric).

The algorithms have been applied to a set o f  
three images and to some test data. Both measures, 
fuzzy divergence and dissimilarity, produced satis­
factory results. Results have also been compared 
with three existing algorithms. It may be m ention­
ed that the performance o f  the proposed methods 
is better for images with bimodal histograms.
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