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Abstract

Bhandari, D., N.R. Pal and D. Dutta Majumder, Fuzzy divergence, probability measure of fuzzy events and image thresholding,

Pattern Recognition Letters 13 (1992) 857-867.

A new measure called divergence between two fuzzy sets is introduced along with a few properties. Its application to clustering
problems is indicated and applied to an object extraction problem. A tailored version of the probability measure of a fuzzy
event is also used for image segmentation. Both parametric and non-parametric probability distributions are considered in this

regard.
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1. Introduction

This paper is logically divided into two parts. In
the first, a new measure called divergence between
two fuzzy sets (fuzzy divergence) is introduced. In
classical probability space a measure of divergence
exists, which quantifies the discrepancy between
two probability distributions. In this note we intro-
duce the concept of fuzzy divergence which rep-
resents a measure of dissimilarity or difference
between two fuzzy sets. It may be mentioned that
the divergence measure is not a metric. A few
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propositions about the measure are also made. As
an illustration of its applicability, it has been used
in a clustering problem for object-background
classification.

In the second part, the probability measure of
fuzzy event introduced by Zadeh (1986) is re-
viewed. It has been found that a tailored version of
this probability measure can be used as a quan-
titative index of similarity/dissimilarity between
two sets. Hence, this can also be used for cluster-
ing/segmentation problems. In addition, algo-
rithms have been developed for image thresholding
using this measure. Both parametric and non-
parametric distributions for describing the histo-
gram have been explored. Under the parametric
approach, the normal distribution as well as the
Poisson distribution have been considered.

For the parametric methods initially, a coarse
object-background classification is carried out,
minimizing the x? statistic. The parameters of the
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resultant distribution are then used to select the
membership function for defining the required fuzzy
set. Finally, the fuzzy dissimilarity measure be-
tween object and background is maximized to select
the threshold for segmentation. The superiority of
the proposed algorithms has been established by
comparing the results with some existing methods.

2. Divergence measure for fuzzy sets and its appli-
cation

2.1. Divergence between two fuzzy sets

A crisp subset 4 of the universal set U is a col-
lection of objects from U, which are members of
A. An equivalent way of defining A is to specify
the characteristic function of 4, x,4: U— {0, 1} for
all xe U, such that

xa(x)=1, xe€A,
=0, x¢A.

Generalizing the characteristic function from
{0,1} to [0, 1] one can obtain the fuzzy sets. More
specifically, the above concept of characteristic
function generalizes to a membership function
u:U—[0,1]. In general a fuzzy set A in the uni-
verse of discourse is defined as

A= {pax) | x;, i=1,2,...,n},

where u4(x;) is the membership value for x; indi-
cating the degree of possessing the property A.

Let S be the set of supports x;, i=1,2,...,n, and
A={u(x)|x} and B={u,(x;) | x;} be two fuzzy
sets defined on S. Following the concept of diver-
gence in classical probability theory (Kullback
(1959)), we define the divergence D(A, B) between
A and B as

1 n
D(A,B) = 7 _‘_4:1 ID;(A, B)+ D;(B, A)] H
where
D.(A, B) = 1,(x;) log = 10)
a(x;)
1= (x;)
1— . ke
+[1—-4,(x))] log 1= 1,00
0< u(x;), ua(x;)<1 2)
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and
DI(B’A) = lul(xz) l()g ﬂZ(XI)
i (x;)
1— )
U1 pato)] Tog 22D
1—p(x)
X;
= —s(x,) log my(x;)
U (x;)
1= (x;)
—[1- us(x;)) log —————
1 etelloe 7= 6
0</I|(X,‘), .UZ(-\',)<1- (3)

Here, Y./ | D,(A, B) can be described as the mean
information per support from A4 for discrimination
in favor of A against B. A similar interpretation
is also applicable for Y7 | D;(B, A). The second
part in D;’s has been incorporated to bring into
account the fact that the divergence between the
complements of 4 and B should be equal to that
between 4 and B.

Note that D(A, B) is symmetric with respect to 4
and B, and it has all the metric properties except
the triangle inequality property.

Property 1. D(A,B)>0, D(A,B)=0 iff A=B.
Property 2. D(A, B)=D(B, A).

It is also interesting to note the following prop-
osition.

Proposition 1. For any two fuzzy sets A and B,

D(AUB,ANB) = D(A, B).

This is indeed a desirable property for any distance
measure between two fuzzy sets.

It is to be mentioned here that equations (2) and
(3) do not include the crisp sets. In order to account
for this, one can use the following expressions for
Dy’s:

DA, B) = 1y (x;) log 1)
1+ u,y(x;)
2 1 ()
1— . il i 4
+[1~u(x;)] log > ()
and
Dy(B.A) = py(x;) log 1200
T+ (x0)
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2 —py(x;)
2—u;(x;)
0 (), 1a(x) <1, 4)

+[1=uy(x;)] log

This does not violate the properties satisfied by
D(A, B) defined earlier. Under this framework the
following propositions can be stated.

Let A ={u,(x;) | x;} be a fuzzy set. The furthest
non-fuzzy set A is defined as A={puz(x)|x;},
where

,u/i(xz): 1 if #A(Xi)<0'57

=0 otherwise.

Proposition 2. For any fuzzy set A, D(A,B) is
maximum iff B is the furthest non-fuzzy set (A) of
A. In other words,

max D(A, B) = D(A, A).
B

Proposition 3. Let A be the complement of A,
then

max D(A, A%) = 2log 2.
A
This occurs when A is a non-fuzzy set.
2.2. Applications

The divergence measure introduced in the pre-
vious section can be used for clustering problems
as this information measure may be used to quan-
tify the separation between classes. Here, as an
illustration of its applicability we shall use it for
image segmentation.

A grey tone M X N image of L levels can be con-
sidered as an array of fuzzy singletones, each
having a value of membership denoting its degree
of belonging to object (black) and background
(white) relative to some brightness level x;: x;=
0,1,2,...,L —1. Let u,(x;) and u,(x;) be the degree
of belonging of an image pixel having grey
level x; (0<x; <L -1) to the object O and to the
background B, respectively. In other words,
{u.(x;) | x;} represents the fuzzy set “X is black
(object)”’ while {my(x;) ] x;} characterizes the
fuzzy set ““X is white (background)’’. According
to (1) and (4) the divergence between object and
background of the image can be defined as
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1

N E.O h(x;)[D;(O, B) + D;(B, o(;])

where A(x;) is the frequency (number of occur-
rences) of grey level x; in the image,

D(O,B) =

1+/uo(xi)
D; (O, B) = uy(x;) log —————
(O,B) ﬂ(X)Ogl-!—/lb(x,-)
2= po(x;)
1 - o)) log =1
+ 1= o (x)] %8 ) )
and
3 141, (x;)
D;(B, 0) = my(x;) log T a0} ()

2 — up(%;)
2= o (X;)
x=012,...,L—-1. 6)

+ [1—up(x;)] log

In other words,
1 L-1
D(O,B) = —— h(x;
(O, B) MN X,Z:o (x;)

1+,U0(X,')

L+ (x;)

Z_HO(XI-)
—— 4, 7
Z‘ﬂb(xi)} @

X {[uo(xf) — thp(x;)] log

+ [ () — o (x)] log

Let us now assume that s, 0<s<L —1, is a thres-
hold for object-background classification of the
image F and that D(O,B:s) is the divergence
measure corresponding to s. In this sense, s is the
most ambiguous point on the grey scale. Thus the
membership functions are to be chosen in such a
manner that u,(s) =u,(s)=0.5 (Figure 1) and in-
crease as we go away from s. Any S-type function
with the above requirement can be used. However,
a detailed discussion on the selection of a member-
ship function can be found in Section 4.

It is clear that the divergence measure should be
maximum when s corresponds to an appropriate
valley for object-background classification. Thus
the optimum threshold can be obtained by max-

“imizing D(O,B:s) with respect to s. In other

words, 7 can be taken as the threshold, when

D(O,B:7)=max D(O,B:s). )

Before describing the results obtained by the
method, another algorithm using the probability
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measure of fuzzy events will be developed in the
following section.

3. Probability measure of a fuzzy event and its ap-
plication

3.1. Probability measure of a fuzzy event

Let us now define a fuzzy event and its fuzzy
probability measure. In ordinary probability
theory, a probability space is a triplet (2, B, P),
where B is the g-field of Borel sets in Q and p is a
probability measure over £, such that 0 < P(A4) <1,
for any AeB, with P(@) =0, P(Q)=1 and it
satisfies the countably additivity property, i.e., if
A, A, ..., A, are disjoint events of B then,

P(LJ1 A,) = L pA).

For an event A € B, the probability of 4 can be ex-
pressed as

P(A) = g dP
JA
or
P(A) = \ 24 () dP = E(x.,). ©)
J 2

Here, x4 defines the characteristic function of A
(x4(x)=0 or 1) and E(x4) is the expectation
of x4.

The notion of an event and its probability con-
stitute the most basic elements of probability
theory. As defined above, an event is a precisely
specified collection of points in the sample space.
By contrast, in real life one frequently encounters
situations in which an event is fuzzy rather than a

S5(x;a,b, Q)

N e — — - p—

|
|
|
|
|
!
\
|
4

Figure 1. S-function.
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clearly defined collection of points (Kandel (1982)).
For example, the ill-defined events: “‘x is a fall
man’’, “‘x is much greater than 1°° are fuzzy
because of the imprecision in the meaning of the
italicized words.

By using the above concept Zadeh (1986) ex-
tended the notion of an event and its probability to
the fuzzy domain. l.et (€, B, P) be a probability
space in which B is a g-tield of Borel sets in £ and
P is the probability measure over Q2. Then a fuzzy
event in € s a fuzzy set - in © whose membership
function g, : € +10,1] is Borel measurable. The
probability of a fussy event A is defined by the fol-
lowing:

PAY = | w0 dP = E(uy). (10)

0
Thus, as in the case of a crisp set, the probability
ot a fuzzy event A1 is the expectation of its member-
ship function.

Under a proper framework, as we shall see in the
next sectton, this probability measure can be view-
ed as a similarity/dissimilarity measure between
twoO sets.

3.2, Fuzzv similarity/dissimilarity measure bet ween
wo sels

Let X, and X, be two sets characterized by
some joint probability distribution P. Let us define
a fuzzy event A,

A={x, 5| eX,, vneXs;

Xy, X5 are similar/dissimilar}.

The fuzzy set 4 may be defined by a suitable mem-
bership function u,(x),x,), which will give the
degree of similarity/dissimilarity. Then the proba-
bility of the fuzzy event A is defined by

P(A) = \ \ Ua(x),x;) dP. (11)
Jxy X

This P(A) can be viewed as a measure of similarity/
dissimilarity between the two populations. If X,
and X, are two disjoint sets and they are governed
by two independent probability distributions, say
Py and P,, then one can redefine the similarity/
dissimilarity measure as
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P(A) = \ \ 11,(x1,%2) AP, dP;. (12)
XX

This will represent a measure of similarity/dis-
similarity between two independent distributions.
This measure, considering only the set of supports
observed in the two sets, can be used in solving
clustering the segmentation problems. The fol-
lowing section illustrates its application to object
extraction.

3.3. Application

The segmentation problem may be viewed as a
partitioning of the image into two non-intersecting
dissimilar regions. In other words, given a measure
of dissimilarity, our intention is to partition the
image in such a manner so as to maximize the dis-
similarity between the object and background.

Let s be the assumed threshold for object-back-
ground classification. Now each of the two re-
sulting pixel populations can be modeled by some
probability density p;(g;,5), {=1,2 (may be para-
metric/non-parametric). Given a suitable member-
ship function u, for the fuzzy set

A= {XI9X2|XI EXH XZGXZ’
Xy, X, are dissimilar},

a dissimilarity measure between two sets (object
and background) is obtained by

s pl-1
PAs) = | | matene)pilens
GO ste

X Py(£2,5) dg; dg, (13)

where ¢ is an arbitrary small positive quantity,
For the discrete case, it can be written as
s L~1
P(A,s) =Y ¥ walgn &) pi(g1s) pag29).
O s+ (14)

It must be mentioned here that equation (13) or
(14) is not exactly the probability of the fuzzy
event, ‘“‘(x;,x,) are dissimilar’’ as the limits of
integration (or summation) do not span the entire
permissible range. Equation (13) or (14) gives a
measure of dissimilarity between two sets which
might have been generated from two populations
characterized by p,(g,s) and p,(g,,s). Note that
the overlap area between the two probability distri-
butions has not been considered.
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Since in this case, the two probability densities
are independent, clearly, P(4,s) is a function of s
only. Hence, equation (13) can be regarded as an
objective criterion for the correct classification
performance. The optimum threshold can there-
fore, be obtained by maximizing P(A,s), in other
words, 7 is taken to be the optimum threshold for
object-background classification, where

P(A, 1) = max P(4,s). (15)

Here p;(g;, s) can be parametric or non-parametric
as discussed in the next sections.

3.3.1. Non-parametric

In this case, we are considering the histogram
itself as the representative of the probability distri-
bution of grey values in the image F. Let k(g) be
the frequency of grey value g (0<g<L~-1) in F,
and let p,(g,,s) and p,(g,,5) be the probability
densities for the two sets, namely, object (g, <s)
and background (g, >s). Then

pi(g),8) = h(gl)/< Zoh(§1)>,
&1 =

0<g, <5, (16)
L1
D2(82,8) = h(gz)/< ) h(g2)>,
ga=s5+1
s+l<gm<L—1, 17)

and the dissimilarity measure P(A4,s) can be writ-

ten as
s L—1

PA,s)=Y ¥ 14(g1,8) Pi(815) Da(&2,5).
0 s+1 (18)

3.3.2. Parametric

Usually normal distributions (Kittler and Iling-
worth (1986), Pal and Bhandari (1992)) are used to
describe the grey level variation, but recently it has
been established by Pal and Pal (1991) that a grey
level distribution over a uniform region can be bet-
ter approximated by a Poisson distribution. In this
study both normal and Poisson distributions have
been considered. Let Go(4(s)) and Gy(Ag(s)) be
two Poisson distributions for the object and the
background grey levels, respectively. The param-
eters of the two distributions 4,5(s) and Az(s) can
be estimated as
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Ao(s):< ¥ gh(g)>/< ¥ h(g)) (19)
g=0 g=0

and

L-1 L-1
'18(5):< ) gh(g)>/< ) h(é’))- (20)

g=s+1 g=5+1

Hence, the dissimilarity measure P(A,s) between
object and background becomes

Ky L1
AisN®
PAs)=Y L ualgne)——e
&1=0 g=s5+1 &1*
/1 &2
X (2& e-lz(s)‘ @

8!
On the other hand, if we assume that object and
background densities follow normal distributions
(N(m,,0,) and N(m,,d,), respectively), then for
an arbitrary threshold s the parameters can be esti-
mated as follows:

b b
my(s) =< Y gh(g)> / < ¥ h(g)> @2)
g=a g=a

and

b b
62(s) :< y (g—m(s))zh(g)) / < ¥ h(g)>
g=a g=a

(23)
where
0 fori=1,
a= ) (24)
s+1 fori=2,
and
s for i=1,
b= ] 25)
L—-1 fori=2.

In this situation the measure of dissimilarity be-
tween object and background becomes,

s—e pL-1
P(A4,9)= |

Jo

14(81,8) p1(81,5) P2(82,5) dg  dg,

vs+e
1 1 {*°¢
a1(s)a,(s) 2n .\o

Yoo

14(81582)

CS+E

Xexp<—l<gl_ml(s)>2>
2\ o,9)

1 /8 —my(s)\?
X Cxp<—§<‘azT> > dgl dg2 (26)

The dissimilarity measure P(A4,s), in each case
(parametric and non-parametric), is explicitly a
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function of s only. Maximizing /’(-1,5) on s we can
find the optimal threshold.

To reduce the computation overhead, we have
used the y>-statistic to find a rcasonable range of
grey values for the threshold. tlere, our intention
is not to test the goodness of it but 1o find some
approximate range in which the threshold lies. For
this we minimized

O, - E) T 0, -
e T = cY)

where

E =p(gs)N, i-12
and

O,=h(g), N = i hg), No= E h(g).
Let © 0 o

X7 =min x7,

and m,(r) and m,(t) be the means of the two sets
when the threshold is 7. It is then reasonable to
assume that the optimal threshold belongs to the
interval [m (1), my(7)]. So instcad of computing
the dissimilarity for all s (0 <s</. - 1) we can max-
imize P(A,s) over m (1) <s< (7).

4. Selection of membership function

In order to segment an image using the diver-
gence measure, we need to define two fuzzy sets ‘g
is white” and “‘g is black’’. For defining such a
pair any S-type function and its complement can be
used. We have used here the standard S-function
of Zadeh as defined below, for the fuzzy set ‘g ;s
white’’:

S(g:a,b,0)
=0 g<a,
2
—-da
=2%L‘%- asgsh,
c—a
2
—-C
= 1—2% b<g<,
=1 g=c,

where b is the cross-over point and (¢—a) is the
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bandwidth. Thus, we can take u,(g)=5(g:a,s,0)
and u,(¢) - 1--u2(g) (since the black set is the
complement of white), where s is an assumed thres-
hold. It may be mentioned here that for such an S-
function several authors (Pal and Dutta Majumder
(1986)) have used different bandwidths (windows)
without giving any criteria for the selection of an
appropriate window size. For this purpose one can
use the guideline provided by Murthy and Pal
(1990). In this investigation we have used a band-
width of 10.

To define the fuzzy set “‘x; and x, are dis-
similar’”, we have used x; —x,' as the argument
of the S-function. Here the window size has been
selected depending on the parameters of the proba-
bility distributions. For example, one can use a=0
and ¢ =4, /4. where 4, is the parameter of the
Poisson distribution assumed for the object and
Ay is that of the background.

No.of occurrence

(b)

L

5 31
Grey le‘rel
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Table 1
Images Thresholds
Divergence Non-param. Poisson Normal

Biplane 13 14 12 14
Lincoln 9 11 11 6
Boy 18 14 9 30
Test 1 17 17 17 17
Test 2 10 10 9 9
Test 3 16 16 16 16

One can also use an exponential function for
computing the dissimilarity measure between x,
and x,. For example,

Ua(Xy,X3) = 1 —exp(=|x; —x3|).

ara
dle

Figure 2. Biplane image. (a) Input. (b) Histogram. (c) Output

obtained using divergence. (d) Output obtained using dissimi-

larity assuming Poisson. (¢) Output obtained using dissimilarity

assuming normal and non-parametric. (f) Output obtained
using minimum error thresholding.
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5. Implementation and comparison with some ex-
isting methods

In this section, we shall discuss the results ob-
tained by the algorithms introduced earlier on a set
of three (64 x 64) images with 32 levels. Algorithms
have also been applied on three test histograms.
Some of the existing thresholding techniques
(Kittler and Illingworth (1986), Pun (1980}, Kapur
et al. (1985)) have also been implemented and com-
pared with the proposed algorithms.

Kittler and Illingworth (1986) have suggested an
iterative method for minimum error thresholding,
assuming normal distributions for the grey level
variation within the object and background. It
should be noted that this method is computa-
tionally intensive and convergence is not guaran-
teed (may converge to the boundary points of the
grey level range).

Pun (1980) and Kapur et al. (1985) have used

(b)

No- of occurrence

0 5 10 15 20 25 31
Grey level
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entropy of the histogram of an image as the cri-
terion for object-backeground classification. In
Pun (1980), the a posteriori entropy of the parti-
tioned inage defined as

H = Plogf (I Pologil-P)

(s is the assumed threshold and P =Y, A(x;)/
MN) is maximized to obtain a threshold for seg-
mentation.

Kapur et al. (1985) considered two probability
distributions, one for the object and the other for
the background. The entropy of the partitioned
image is then maximized to obtain a threshold for

segmentation. In other words, they maximized

5 .
plx)
H =~ ——lo
’ \',Z() pS P

plx;)

(3}

5

L oply, (X,
- ¥ P )louﬂJ

wSa =P T 1P

Figure 3. Lincoln image. (a) Input. (b) Histogram. (c) Output

obtained using divergence. (d) Output obtained using dis-

similarity assuming Poisson and non-parametric. (¢) Output
< produced by the method of Kapur et al. (1985).
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In the next part of this section we shall discuss the
results obtained by the proposed and existing algo-
rithms (Kittler and Hlingworth (1986), Pun (1980),
Kapur ¢t al. (1985)).

Table 1 shows the thresholds obtained by the
suggested alporithms, Figures 2(a) and 2(b) repre-
sent the input image of a biplane and its histogram,
respectively. From the table, one can observe that
all the methods produce comparable thresholds.
The outputs obtained using the divergence and
the dissimilarity measure are shown in Figures
2(c)-(0).

Figure 3(a) represents the input image of
Abraham Lincoln with a multimodal histogram
(Figure 3(by). for this type of image, multi-thres-
holding is more appropriate. But, since this image
has two clear portions (object and background), an
attempt has been made to find the best possible
partitioning. Here, the divergence measure and the
dissimilarity  measure with Poisson parameters
resulted in good segmentations (Figures 3(c)-(d)).
For this image, the dissimilarity measure using the

NG. OF OCCURRENCE

|

H

!

—_—

I’il

il

| S

HHA

GRAY LEVEL

(@]
%]
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normal distribution is not able to extract the
object.

For the Boy image (Figure 4(a)), the segmented
outputs obtained by different methods are shown
in Figures 4(c)-(e). In this case the dissimilarity
measure with a normal distribution fails com-
pletely.

To establish the effectiveness of the proposed
methods we have implemented them on three test
data which are shown in Figures 5(a)~(c). It is to
be noted here that for these histograms all the
methods produce good thresholds (see Table 1).

So as to have a comparative study, some of
the existing thresholding techniques (Kittler and
Illingworth (1986), Pun (1980), Kapur et al. (1985))
have also been implemented. The thresholds ob-
tained by the algorithms are depicted in Table 2.
The results produced by the algorithm of Kittler
and Illingworth (1986) are not satisfactory except
for the Biplane image, where it was able to segment
properly (Figure 2(f)). It is also to be noted here
that the algorithm does not converge for the

Figure 4. Boy image. (a) Inpuct. (b) Histogram. (c) Qutput ob-

tained using divergence. (d) Output obtained using dissimilarity

assuming Poisson. (e) Output obtained using dissimilarity

assuming non-parametric and method of Kapur et al. (1985).
(f) Output produced by the method of Pun (1980).
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(a)

T

(b}

ld'\l |MI

J\H Ulmlm Hllln

Figure 5. Histograms for (a) Test 1, (b} Test 2, (¢) Test 3.

(2]

Lincoln and Boy images. The methods of Pun
(1980) and Kapur et al. (1985) are also not able to
extract the objects. Only the method proposed by
Kapur et al. (1985) has produced a reasonable
result (Figure 4(d)) for the Boy image. A visual
inspection of the thresholded images shows that
the thresholds obtained by the proposed algorithms
are better (which can further be verified from the
valleys of the histograms of the images).
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Table 2
Images I hresholds
Kittler & Hhingworth Method of
Initial Final Pun Kapur
Biplance s 2
s 10
10 10 25 22
15 10
28 10
Lincoln 2 2
s
10 17 16
15
28 28
Boy 2 2
s _
10 16 14
15 -
28 32
Conclusions

A divergence measurc between two fuzzy sets
has been suggested, which satisfies all properties of
a metric except the triangle inequality property.
Some properties of this pscudo-metric have been
discussed. This mecasure has been used to partition
an image into object and background. Like diver-
gence in probability thcory this fuzzy divergence
quantifies the discrepancy between two fuzzy sets.

A tailored version of the probability measure of
a fuzzy event has been vicwed as an index of
similarity/dissimilarity between two sets and used
to develop algorithms for image segmentation. In
this context the grey level histogram of the image
has been considered as a mixture of two proba-
bility distributions (may be parametric or non-
parametric).

The algorithms have been applied to a set of
three images and to some test data. Both measures,
fuzzy divergence and dissimilarity, produced satis-
factory results. Results have also been compared
with three existing algorithms. It may be mention-
ed that the performance of the proposed methods
is better for images with bimodal histograms.
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